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Abstract: We study how the Aharonov–Bohm effect is reflected in the location of

quantum resonances for scattering by three solenoids at large separation. We also discuss what

happens in the case of four solenoids.
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1. Introduction. In quantum mechanics, a

vector potential is said to have a direct significance

to particles moving in a magnetic field. This

quantum effect is known as the Aharonov–Bohm

effect (AB effect) ([3]). We study this effect through

resonances in scattering systems by three solenoids

the centers of which are placed almost in line. The

resonances are shown to be generated near the

real axis by the trajectories trapped between these

centers, when the centers are largely separated from

one another. The location of the resonances depends

on the ratio of the distances between the centers as

well as on the magnetic fluxes. We also discuss the

case of four solenoids.

We begin by fixing the basic notation to

formulate the obtained results. We work in the

two dimensional space R2 with generic point x ¼
ðx1; x2Þ and write

HðAÞ ¼
X2

j¼1

ð�i@j � ajÞ2; @j ¼ @=@xj;

for the Schrödinger operator with A ¼ ða1; a2Þ :
R2 ! R2 as a vector potential. The magnetic field

b associated with A is defined as

b ¼ r�A ¼ @1a2 � @2a1 : R2 ! R

and the magnetic flux is defined by the integral

ð2�Þ�1 R bðxÞ dx, where the integral with no domain

attached is taken over the whole space.

We now take AðxÞ to be

AðxÞ ¼ ð�x2=jxj2; x1=jxj2Þð1Þ
¼ ð�@2 log jxj; @1 log jxjÞ

which generates the solenoidal field

r� A ¼ ð@2
1 þ @2

2Þ log jxj ¼ 2��ðxÞ

with center at the origin. This vector potential is

often called the Aharonov–Bohm potential in phys-

ics literatures. The scattering system by one

solenoid is known as one of exactly solvable models

in quantum mechanics ([1,3,6]). We consider the

operator H ¼ Hð�AÞ associated with the solenoid

2���ðxÞ, � being a magnetic flux. The operator

formally defined is symmetric over C10 ðR2 n f0gÞ,
but it is not necessarily essentially self–adjoint in

L2 ¼ L2ðR2Þ because of the strong singularities at

the origin. The Friedrichs extension is realized by

imposing the boundary condition

lim
jxj!0
juðxÞj <1ð2Þ

at the center. We use the same notation H to denote

this self–adjoint operator. The operator admits the

partial wave expansion. We denote by fð!! �;EÞ
the amplitude for scattering from the incident direc-

tion ! 2 S1 to the final one � at energy E > 0. The

amplitude is explicitly calculated as

fð!! �;EÞ ¼ c0ðEÞ sinð��Þei½��ð��!Þ
eið��!Þ

1� eið��!Þ

with c0ðEÞ ¼ ð2=�Þ1=2ei�=4E�1=4, where the Gauss

notation ½�� denotes the greatest integer not ex-

ceeding � and the coordinates �; ! over the unit

circle S1 are identified with the azimuth angles from

the positive x1 axis. In particular, the backward

amplitude takes the form

fð!! �!;EÞð3Þ
¼ ð2�Þ�1=2ei�=4ð�1Þ½��þ1 sinð��ÞE�1=4
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independent of !. We note that the amplitude

vanishes for integer flux � and that the forward

amplitude fð!! !;EÞ diverges for non–integer flux

�.

We define the Hamiltonian associated with the

three centers

d� ¼ ð���d; 0Þ; d0 ¼ ð0; �d1=2Þð4Þ

labelled by the large parameter d� 1, where �� >
0 and �� þ �þ ¼ 1. By assumption, it follows that

jdþ � d�j ¼ d for the distance between d� and dþ.

Let AdðxÞ be the potential defined by

AdðxÞ ¼ ��Aðx� d�Þð5Þ
þ �0Aðx� d0Þ þ �þAðx� dþÞ;

which generates the three solenoids 2����ðx� d�Þ
and 2��0�ðx� d0Þ. We consider the self–adjoint

operator

Hd ¼ HðAdÞð6Þ

under the boundary conditions like (2) at each

center. It is known that Hd has no positive

eigenvalues and the continuous spectrum occupied

by ½0;1Þ is absolutely continuous. We can show

that the resolvent

Rð�;HdÞ ¼ ðHd � �Þ�1 : L2 ! L2;

with Re � > 0 and Im � > 0 is meromorphically

continued from the upper half plane of the complex

plane to the lower half plane f� 2 C : Re � >

0; Im � < 0g across the positive real axis where

the continuous spectrum of Hd is located. Then

Rð�;HdÞ with Im � � 0 is well defined as an operator

from L2
compðR2Þ to L2

locðR2Þ in the sense that

�Rð�;HdÞ� : L2 ! L2 is bounded for every � 2
C10 ðR2Þ, where L2

compðR2Þ and L2
locðR2Þ denote the

spaces of square integrable functions with compact

support and of locally square integrable functions,

respectively. The resonances of Hd are defined as

the poles of Rð�;HdÞ in the lower half plane (the

second sheet or the unphysical plane).

The argument here is restricted only to a

neighborhood of the positive axis. We fix E0 > 0
and take a complex neighborhood

Dd ¼ f� : jRe � � E0j < �0E0;ð7Þ
jIm �j < ð1þ 2�0ÞE1=2

0 ððlog dÞ=dÞg
for �0, 0 < �0 	 1, small enough. We denote by

f�ð!! �;EÞ the scattering amplitude by 2����ðxÞ
and set

f0ð�Þ ¼ f�ð�!1 ! !1; �Þfþð!1 ! �!1; �Þð8Þ
¼ ð2�Þ�1ið�1Þ½���þ½�þ� sinð���Þ sinð�þ�Þk�1

for !1 ¼ ð1; 0Þ (see (3)), where the branch k ¼ �1=2 is

taken in such a way that Re k > 0 for Re � > 0. Let

�� and � be as in (4). We define the integral Ið�Þ by

Ið�Þ ¼ ð2=�Þ1=2e�i�=4

Z 	

0

eis
2=2 dsð9Þ

with 	ð�Þ ¼ �ð1=�� þ 1=�þÞ1=2�1=4, and the two

terms ��ð�Þ by

��ð�Þ ¼ p0ð�Þe�i�0� þ ð1� p0ð�ÞÞe�i�0�;ð10Þ

where the contour is taken to be the segment from 0

to 	 and

p0ð�Þ ¼ ð1þ Ið�ÞÞ=2:

We further define

hð�; dÞ ¼ ðe2ikd=dÞf0ð�Þ��ð�Þ�þð�Þ

over Dd. If the fluxes �� and �þ are not an integer

and if ��ðE0Þ 6¼ 0, then f0ð�Þ 6¼ 0 and ��ð�Þ 6¼ 0
over the complex neighborhood Dd of E0. We can

show ([7, Lemma 4.6]) that the equation

hð�; dÞ ¼ 1ð11Þ

has the solutions

f�jðdÞg; �j 2 Dd; Re �1 < Re �2 < 
 
 
 < Re �Nd
;

such that �jðdÞ behaves like

Im �jðdÞ � �E1=2
0 ðlog dÞ=d;

Reð�jþ1ðdÞ � �jðdÞÞ � 2�E
1=2
0 =d

for d� 1. Then the first result is formulated as the

theorem below, and the second one is obtained as a

consequence of this theorem.

Theorem 1. Let the notation be as above.

Assume that �� and �þ are not an integer and

��ðE0Þ does not vanish. Then we can take �0 > 0 so

small that the neighborhood Dd defined by (7) has the

following property: For any " > 0 small enough,

there exists d" � 1 such that for d > d", Hd has the

resonances f�res;jðdÞg, �res;j 2 Dd, with

Re �res;1ðdÞ < 
 
 
 < Re �res;Nd
ðdÞ

in the neighborhood f� 2 C : j� � �jðdÞj < "=dg, and

Rð�;HdÞ is analytic as a function with values in

operators from L2
compðR2Þ to L2

locðR2Þ over

Dd n f�res;1ðdÞ; 
 
 
 ; �res;Nd
ðdÞg:
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Corollary 2. Let I ¼ ½a; b� with 0 < a < b <

1 and let

DdðIÞ ¼ f� 2 C : Re � 2 I;
jIm �j � ð1þ 2�0ÞðRe �Þ1=2ððlog dÞ=dÞg

for �0 > 0 small enough. Denote by NdðIÞ the number

of resonances in DdðIÞ. Assume that �� and �þ are

not an integer and ��ðEÞ does not vanish over the

interval I. Then one can take �0 > 0 so small that

NdðIÞ obeys the asymptotic formula

NdðIÞ ¼ ððb1=2 � a1=2Þ=�ÞdþOðd1=2Þ
as d!1.

The rigorous proof of the theorem is long. We

are going to discuss the details elsewhere ([9]).

2. Heuristic arguments. We see from an

intuitive point of view how reasonable (11) is as an

approximate relation to determine the location of

the resonances. For brevity, we consider the special

case � ¼ 0 ðd0 ¼ ð0; 0ÞÞ. In this case, the three

centers are exactly placed in line and the integral

Ið�Þ defined by (9) vanishes, and hence hð�; dÞ is

explicitly represented as

hð�; dÞ ¼ ðe2ikd=dÞf0ð�Þ cos2ð�0�Þ:

We denote by ’0ðx;!;EÞ ¼ expðiE1=2x 
 !Þ the

plane wave with ! as an incident direction at

energy E > 0 and write x� for x� ¼ x� d�. The

incident plane wave ’0ðx�;�!1; EÞ takes the form

f�ð�!1 ! !1;EÞðeiE1=2jx�j=jx�j1=2Þ

after scattered into the direction !1 by the solenoid

2����ðx�Þ, and the scattered wave hits the other

solenoid 2��þ�ðxþÞ. Since jx�j behaves like

jx�j ¼ jx� d�j ¼ jdþ � d� þ xþj
¼ dþ !1 
 xþ þOðd�1Þ

around dþ, the scattered wave behaves like the

plane wave

ðeiE1=2d=d1=2Þf�ð�!1 ! !1;EÞ’0ðxþ;!1; EÞ

when it arrives at dþ, provided that there is not the

third solenoid 2��0�ðxÞ between d� and dþ. If the

potential �0AðxÞ associated with it is present, then

the wave function undergoes a change of the phase

factor by the AB effect. We consider particles

moving from d� to dþ and distinguish between the

trajectories passing over x2 > 0 and x2 < 0 to

denote the former and latter trajectories by lþ and

l�, respectively. The vector potential AðxÞ defined

by (1) satisfies the relation AðxÞ ¼ r 
ðxÞ for the

azimuth angle 
ðxÞ from the positive x1 axis. The

change in the phase factor of the wave function is

given by the line integralZ
l�

�0 AðxÞ 
 dx ¼ �0

Z
l�

r
ðxÞ 
 dx ¼ ��0�

along l�. The contribution from lþ and l� is fifty–

fifty, and hence cosð�0�Þ arises as the sum of the

phase factors expð�i�0�Þ. Thus the scattered wave

takes

ðeiE1=2d=d1=2Þf�ð�!1 ! !1;EÞ
� cosð�0�Þ’0ðxþ;!1; EÞ

as an approximate form, when it hits the center dþ.

A similar argument applies to the plane wave

’0ðxþ;!1; EÞ after scattered into the direction �!1

by the solenoid 2��þ�ðxþÞ, so that it again returns

to the center d�, taking the approximate form

hðE; dÞ’0ðx�;�!1; EÞ. Hence the trapping phenom-

enon between d� and dþ is described by the series

X1
n¼1

hðE; dÞn
 !

’0ðx�;�!1; EÞ:

For example, the term with hðE; dÞn describes the

contribution from the trajectory oscillating n times.

This is the reason why the resonances are approx-

imately determined by (11) and why the magnetic

flux �0 is related to their locations through the AB

effect. If � 6¼ 0, then the contribution from l� is not

necessarily fifty–fifty, but it depends on the ratio of

the distances between the centers, as is seen from

(10). The coefficient ��ð�Þ describes the AB effect

term along the trajectory from d� to d�.

3. Strategy. The proof of the theorem is

done by constructing the resolvent kernel Rð�;
HdÞðx; yÞ with the spectral parameter � 2 Dd. Here

we mention only the basic strategy briefly. The idea

is based on the results obtained by [4] and [8].

As already stated, the scattering system by one

solenoid is known to be exactly solvable. We make a

full use of the information from such a system. Let

K ¼ Hð�0Að
 � d0ÞÞ with flux �0 in (5). We know

that the Hamiltonian with one solenoid has no

resonances in C n f0g. The first step is to analyze

the behavior as jx� yj ! 1 of the resolvent kernel

Rð�;KÞðx; yÞ. The kernel is represented in terms of

a complex integral and admits the decomposition

Rð�;KÞðx; yÞ ¼ Rfrð�;KÞðx; yÞ þ Rscð�;KÞðx; yÞ;
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where Rfrð�;KÞðx; yÞ corresponds to the free trajec-

tory which goes directly from y to x without being

scattered by the solenoid 2��0�ðx� d0Þ, while

Rscð�;KÞðx; yÞ corresponds to the scattered trajec-

tory which goes from y to x after scattered at the

center d0. The first term on the right side behaves

like

Rfrð�;KÞðx; yÞð12Þ
� ei�0ð
ðx̂;�ŷÞ��Þðeikjx�yj=jx� yj1=2Þ

with x̂ ¼ x=jxj as jx� yj ! 1, where 
ð�;!Þ, 0 �

ð�;!Þ < 2�, denotes the azimuth angle from ! to �

and we skip some numerical constants. The second

term takes the asymptotic form

Rscð�;KÞðx; yÞð13Þ
� f0ð�ŷ! x̂; �Þðeikjxj=jxj1=2Þðeikjyj=jyj1=2Þ;

where f0ð!! �;EÞ denotes the scattering ampli-

tude by 2��0�ðxÞ.
The second step is to construct the resolvent

kernel with two solenoids for the pair ðd�; d0Þ by

composing two resolvent kernels with one solenoid.

In doing this, a difficulty comes from the exponential

growth of the resolvent kernel. For magnetic fields

compactly supported, the corresponding vector

potentials can not be expected to fall off rapidly at

infinity, because of the topological feature of the two

dimensional space that R2 n f0g is not simply con-

nected. This is the case where the magnetic fluxes

do not vanish. In fact, it is seen from (1) that vector

potentials have the long range property. Thus the

vector potentials can not be expected to be well

separated, even if the supports of the two magnetic

fields are largely separated from each other. In other

words, cut–off functions used to separate the two

centers do not have bounded supports. As is seen

from (12) and (13), the resolvent kernels with

spectral parameters in the lower half plane grow

exponentially at infinity, and hence the composition

of the resolvent kernels can not be controlled simply

by integration by parts using oscillatory properties.

We make use of gauge transformations and of a

complex scaling method to construct the resolvent

kernels for two solenoids. Then the asymptotic form

(13) plays an important role in construction. We

have already constructed resolvent kernels for two

solenoids in [4]. The complex scaling method in

the resonance problem has been initiated by [2]. We

refer to the book [5] and literatures there for details

and further developments.

The third step is to construct the resolvent

kernel of the operator Hd in question from the two

kernels corresponding to the two centers ðd�; d0Þ
and to one center dþ. The construction is again

based on the complex scaling method. Then the

asymptotic analysis on the behavior as d ¼ jdþ �
d�j ! 1 of Rð�;KÞðd�; d�Þ is crucial. We note from

(12) and (13) that Rfrð�;KÞðx; yÞ and Rscð�;KÞðx; yÞ
are singular along the forward direction x̂ ¼ �ŷ. In

fact,

Rfrð�;KÞðx; yÞ � e�i�0�eikjx�yjjx� yj�1=2

is not necessarily continuous along the direction

x̂ ¼ �ŷ, and the forward amplitude f0ð�ŷ! �ŷ; �Þ
is divergent for Rscð�;KÞðx; yÞ. However, these

singularities are canceled, and we have

Rð�;KÞðd�; d�Þ � ðeikd=d1=2Þ��ð�Þ:

The AB effect term ��ð�Þ is obtained through this

asymptotic form.

4. Four solenoids. We move to the case of

four solenoids. Assume that the four centers are

located at d� and at

d1 ¼ ð��0d; �1d
1=2Þ; d2 ¼ ð�0d; �2d

1=2Þ;

where d� are as in (4), and �0 > 0 satisfies �0 <

minð��; �þÞ. We use the same notation

AdðxÞ ¼ ��Aðx� d�Þ þ �1Aðx� d1Þ
þ �2Aðx� d2Þ þ �þAðx� dþÞ

to denote the vector potential associated with these

centers (see (5)). We also write Hd ¼ HðAdÞ for the

self–adjoint realization obtained by imposing the

condition like (2) at each center. For the operator

Hd with four solenoids, we can obtain a result

similar to Theorem 1 in the two special cases: (1)

�1 ¼ �2 ¼ 0; (2) �0 ¼ 0. The first case means that all

the centers are horizontally placed along an iden-

tical direction, while the second one means that the

two centers d1 and d2 are vertically placed to the

trajectory trapped between d� and dþ.

We discuss case (1). We define the angle  0,

0 <  0 < �=2, through the relation

cos 0 ¼
�� � �0

�� þ �0

� �1=2 �þ � �0

�þ þ �0

� �1=2

< 1

and set

�0 ¼ ð1�  0=�Þ cosð�þ�Þ þ ð 0=�Þ cosð���Þ

with �þ ¼ �2 þ �1 and �� ¼ �2 � �1. The constant
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�0 describes the AB effect arising from the trajec-

tories from d� to d�. Let f0ð�Þ be as in (8). We

further define

h1ð�; dÞ ¼ ðe2ikd=dÞf0ð�Þ�2
0

over the neighborhood Dd defined by (7). If �� is

not an integer and �0 6¼ 0, then we can show that

the location of the resonances in Dd of Hd is

approximately determined by the solutions to the

equation h1ð�; dÞ ¼ 1 as in Theorem 1.

Next we consider case (2). For brevity, we

assume that �1 < �2. We define the integrals Ijð�Þ,
j ¼ 1; 2, by

Ijð�Þ ¼ ð2=�Þ1=2e�i�=4

Z 	j

0

eis
2=2 ds

with 	jð�Þ ¼ �jð1=�� þ 1=�þÞ1=2�1=4, and we set

��ð�Þ ¼ p1ð�Þe�i�þ� þ p3ð�Þe�i��� þ p2ð�Þe�i�þ�

with �� as above, where

p1ð�Þ ¼ ð1þ I1ð�ÞÞ=2; p2ð�Þ ¼ ð1� I2ð�ÞÞ=2

and p3ð�Þ ¼ 1� p1ð�Þ � p2ð�Þ. The term ��ð�Þ de-

scribes the AB effect arising from the trajectory

from d� to dþ, and �þð�Þ corresponds to the

trajectory from dþ to d�. We further define

h2ð�; dÞ ¼ ðe2ikd=dÞf0ð�Þ��ð�Þ�þð�Þ

for � 2 Dd. Assume that �� is not an integer and

��ðE0Þ 6¼ 0. Then we can show that the location of

the resonances in Dd of Hd is specified by the

equation h2ð�; dÞ ¼ 1 as in Theorem 1. To illustrate

the vertical case, we end the note by discussing the

particular case when the sum of the two fluxes

vanishes ð�1 þ �2 ¼ 0Þ, and �1 ¼ �� and �2 ¼ �
with � > 0. We set �1 ¼ �� and �2 ¼ �. Then we

have I1ð�Þ ¼ �I2ð�Þ ¼ �Ið�Þ for the integral Ið�Þ
defined by (9), and ��ð�Þ takes the form

��ð�Þ ¼ ð1� Ið�ÞÞ þ Ið�Þe�2i��:

We add a brief comment. Loosely speaking, the AB

effect is not observed, provided that 0 < �	 1 or

�� 1. If the width 2�d1=2 between the two centers

d1 ¼ ð0;��d1=2Þ and d2 ¼ ð0; �d1=2Þ is small in com-

parison with the distance d ¼ jdþ � d�j, then a large

contribution comes from the closed trajectories

enclosing the two centers d1 and d2, and the phase

factor of the wave function along such trajectories is

not changed. In fact, the integral Ið�Þ goes to zero

as the interval ½0; 	 � shrinks ð�! 0Þ, and hence

��ð�Þ ¼ 1. If, conversely, the width is large, then a

large contribution comes from the closed trajecto-

ries passing between the two centers. In this

case, the integral interval ½0; 	 � expands to ½0;1Þ
ð�!1Þ, and �� is calculated as ��ð�Þ ¼ e�2i��

by making use of the formula

Z 1
0

eis
2=2 ds ¼

ð�=2Þ1=2ei�=4. As a result, ��ð�Þ�þð�Þ ¼ 1, and hence

the AB effect term disappears.
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