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Abstract: This is an announcement of the results in the paper [4] which is one of the series

of papers dealing with the existence of spun normal surfaces in 3-manifolds with ideal

triangulations. We give short comments for proofs of the results without details.
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1. Introduction. Essential surfaces in a 3-

manifold are important to study the 3-manifold.

Normal surfaces are useful way of representing such

essential surfaces and a key tool for algorithms in

3-dimensional geometry and topology. Especially

spun normal surfaces represent proper essential

surfaces using ideal triangulations of 3-manifolds

with tori and Klein bottle boundary components. So

we studied the existence of spun normal surfaces in

3-manifolds with ideal triangulations in a series of

the papers [4], [5], [6]. Thurston gave lectures on

this topic and Walsh [8] gave the first detailed

account of how to construct a spun normal surface

starting from a properly embedded essential sur-

face, which is not a virtual fiber. She established

that proper essential surfaces which are not virtual

fibers can be put into spun normal form, so long as

the triangulations have no edges isotopic into the

boundary. In our first paper, we replace the

condition about the ideal triangulations having no

edges isotopic into the boundary to the 1-efficient

ideal triangulations. 1-efficiency is a stronger con-

dition than in [8], but we are able to deal with semi-

fiber surface and fiber surfaces with some restric-

tion. In two followup papers, spinning essential

surfaces in general ideal triangulations will be

considered.

The following are some standard definitions,

which will be used throughout the paper. Note that

all surfaces considered are embedded.

Definition 1. Suppose that M is a compact

3-manifold with incompressible boundary. A prop-

erly embedded surface F is essential if it is

incompressible and @-incompressible. By this we

mean the induced maps �1ðF Þ ! �1ðMÞ and

�1ðF; @F Þ ! �1ðM;@MÞ are both injections.

Definition 2. Suppose that M is a compact

3-manifold with incompressible boundary. Assume

also that all the boundary components of M are tori

and Klein bottles. M is called P 2-irreducible if any

embedded 2-sphere bounds a 3-cell and there are no

embedded 2-sided projective planes. M is called

anannular if there are no essential properly embed-

ded annuli and atoroidal if there are no incompres-

sible non-peripheral embedded tori or Klein bottles.

Thurston established in the late 1970s that if

M is compact, with boundary consisting of incom-

pressible tori and Klein bottles and M is anannular

and atoroidal, then M admits a complete hyperbolic

metric of finite volume. We are especially interested

in the existence of spun normal surfaces in ideal

triangulations of this class of hyperbolic 3-mani-

folds.

2. Survey on normal surface theory. Let

M be a compact 3-manifold with a triangulation =.

Normal surfaces are kinds of minimal surfaces

defined in a combinatorial point of view. We define

7 elementary disk types in each tetrahedron of =, 3

quadrilaterals dividing two-two vertices in the

tetrahedron and 4 triangular disks dividing one-

three vertices (see Fig. 1). A normal surface in M is

a properly embedded surface intersecting each

tetrahedron of = in these 7 elementary disk types.

If = contains t tetrahedra, we can make a one-to-

one correspondence of normal surfaces and 7t-tuples

which satisfy a system of linear equations, called

matching equations. From the solution space of the

system of matching equations, we can obtain a finite

set of normal surfaces spanning all normal surfaces

with respect to geometric sums. We call such
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normal surfaces fundamental surfaces. These sur-

faces play a key role in algorithmic problems since

some crucial surfaces must show up in this finite set

of spanning surfaces. There is an excellent reference

on normal surface theory [7].

Now we extend the theory on 3-manifolds using

ideal triangulations. The only difference is embed-

ding a surface with boundary. We introduce the

following notations.

Definition 3. Let M be a 3-manifold with an

ideal triangulation = and let M̂ be the compact 3-

manifold obtained by deleting regular neighbor-

hoods of ideal vertices of = from M with the induced

truncated triangulation =̂.

(1) A spun normal surface S in M is an

embedded surface formed from elementary disks in

the tetrahedra consisting of finitely many quadri-

laterals and infinitely many triangular disks. Dis-

joint subsets of the triangular disks form a finite

collection of disjoint infinite cylinders in S which

spiral around ideal vertices. The remainder of S

outside these cylinders is compact.

(2) Suppose that F is a properly embedded

incompressible and boundary incompressible sur-

face in M̂. F spin normalises (or normally spins) if

there is a spun normal surface S in M so that S \ M̂
is isotopic to F .

In ideal triangulations, there are normal sur-

faces (spun normal surfaces) with infinite number of

triangular disks. So we only deal with quadrilateral

disk types to match a normal surface to a finite

tuple and obtain a 3t-tuple corresponding to a

normal surface. This satisfies the system of

Q-matching equations and gives a finite set of

spanning surfaces, called Q-fundamental surfaces

(or simply fundamental surfaces). In the proof of

our results, we use normal surface theory on the

truncated triangulation =̂ of M̂, rather than to use

ordinary normal surface theory on a general trian-

gulation obtained by decomposing the truncated

tetrahedra of =̂ into general tetrahedra. In the

latter case, we cannot specify spinning of ideal

vertices of the original triangulation =. Although

there are so many elmentary disk types (actually

245 types) in each truncated tetrahedron, the

theory goes on in eactly the same way. See [4] for

a detailed argument of normal surface theory on

truncated triangulations.

3. Spun normal surfaces in 1-efficient

ideal triangulations. Jaco and Rubinstein first

introduced 0- and 1-efficient triangulations [1]. The

following gives the definition of 1-efficiency for ideal

triangulations.

Definition 4. An ideal triangulation = is 1-

efficient if there are no embedded normal spheres,

projective planes, Klein bottles, and tori which are

not peripheral. Equivalently, there are no normal

surfaces with non-negative Euler characteristic,

except for peripheral tori and Klein bottles.

In [1], it was proved that the interior of a

compact orientable 3-manifold M which is irredu-

cible, atoroidal, anannular, with tori and Klein

bottle boundary components has a 1-efficient ideal

triangulation. So, it is reasonable to restrict to 1-

efficient triangulations for this class of 3-manifolds.

Let M be a 3-manifold with a complete hyper-

bolic metric of finite volume with tori or Klein

bottle cusps and let = be a 1-efficient ideal

triangulation of M. For each ideal vertex of =, we

take an open regular neighborhood to obtain a

compact manifold M̂ with an induced truncated

triangulation =̂. We can develop a normal surface

theory for the truncated triangulation =̂ and obtain

a finit set of spanning normal surfaces called

fundamental surfaces. This finite set of fundamental

surfaces plays a key role in our argument proving

the existence of a normal surface which spins at the

boundary cusps.

We begin by describing a procedure to topo-

logically spin a properly embedded surface F which

is incompressible and @-incompressible in a com-

pact 3-manifold M with boundary consisting of tori

and Klein bottles. Topological spinning of F is to

add an annulus winding around a torus or Klein

bottle boundary component to F and compute

the isotopy class of the resulting surface keeping

its boundary fixed. It occurs when the sequence of

surfaces formed by attaching longer and longer

annuli produces infinitely many isotopy classes. Let

Fk be a surface obtained by spinning F k times for

triangular disk

quadrilateral disk

Fig. 1. Elementary disk types.
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each boundary curve, along the boundary compo-

nents of M. We call this a spinning sequence for F .

Note that @Fk’s are all coincident. Let ½S� denote

the isotopy class of a properly embedded incom-

pressible and @-incompressible surface S in M,

keeping its boundary fixed. We have the following

definition and key results for our main theorem.

Definition 5. We say that F topologically

spins for some choice of directions of smoothing, if

there are infinitely many different classes in the

sequence ½Fn�.
Theorem 6. Let M be a compact 3-manifold

with tori or Klein bottle boundary components and =
a 1-efficient ideal triangulation. Let F be a properly

embedded, incompressible and @-incompressible

surface in M. If F is a fiber having more than one

boundary component or a semi-fiber, then F topo-

logically spins for some choice of directions of

smoothing. Specially in a semi-fiber case, F topolog-

ically spins in any choice of directions of smoothing.

Theorem 7. Let M be a compact 3-manifold

with tori or Klein bottle boundary components. Let

F be a properly embedded, incompressible and

@-incompressible surface in M. If F is neither a

fiber nor a semi-fiber of M, then F topologically

spins with 2r choices of spinning direction, where

r is the number of boundary components of M

containing a curve of @F . Moreover, if F is one-

sided, F always topologically spins.

The proof of the theorems are discussed in a

covering space of M. In the fibered case, we work on

an associated infinite cyclic covering of M. If we

choose smoothing of F in opposite directions along

any two boundary curves, F topologically spins in

this choice of spinning direction. For the semi-

fibered case, we look at the boundary surface of a

small regular neighborhood of F which is a fiber of

the associated double covering space of M. Then

the argument from the fibered case will be applied.

In the case of neither a fiber nor a semi-fiber, we

consider the covering space MF of M corresponding

to the subgroup �1ðF Þ of �1ðMÞ. We can show that

there is a unique compact lift of F to MF if F is

neither a fiber nor a semi-fiber. This plays a crucial

role in the proof of Theorem 7. The result for an

one-sided surface follows directly from the previous

results.

From Theorem 6 and 7, we know that if a

properly embedded, incompressible and @-incom-

pressible surface F in M̂ is non-fibered, then F

always topologically spins in any choice of direc-

tions of smoothing. We now discuss normal spin-

nings of such surfaces.

Let F be a properly embedded non-fibered

surface in M̂ which is incompressible and @-incom-

pressible. Assume that F has least weight boun-

dary, i.e., @F has fewest intersections with the 1-

simplices of the induced triangulation of @M̂. This

allows us to normalize a surface isotopic to F

keeping the boundary fixed. We first deal with a

2-sided surface F . Since F is not a fiber, F must

topologically spin, i.e., the sequence h½Fk�i has an

infinite number of different isotopy classes, for any

choice of spinning directions. We now normalize

each surface Fk keeping its boundary fixed and

obtain a normal surface F̂k in M̂. Denote the normal

isotopy class of F̂k by ½F̂k�n, where the subscript n

indicates a normal isotopy class. Note that the

sequence h½F̂k�ni also has an infinite number of

different classes. Since F̂k is a normal surface, it can

be wirtten as a geometric sum of fundamental

surfaces as follows:

F̂k ¼
X

i

nk;iSi þ
Xr

j¼1

lk;jTj

for nonnegative integers nk;i, lk;j, where Si’s are

fundamental surfaces with negative Euler charac-

teristic in ðM̂; =̂Þ and Tj’s are boundary components

of M̂ which contains some curves of @F . Since =̂ is

1-efficient, the peripheral tori or Klein bottles are

the only normal surfaces with nonnegative Euler

characteristic. From the sequence, we will find a

normal surface F̂t which has triangular tails along

all its boundary curves. Once we found such a

surface, we can attach an infinite normal annulus

(with only triangular disks) along each boundary

curve of F̂t to obtain normal spinning of F .

Since �ðF Þ ¼ �ðF̂kÞ ¼ �ð
P

i nk;iSiÞ and �ðSiÞ <
0, there is only a finite number of choices forP

i nk;iSi so that we can choose a subsequence hF̂kii
given by

F̂ki ¼ S þ
Xr

j¼1

lki;jTj

for some fixed S ¼
P

i nk;iSi. This subsquence still

have an infinite number of normal isotopy classes.

We denote the subsequence by hF̂ki again and so

F̂k ¼ S þ
Xr

j¼1

lk;jTj:
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Here if we have some F̂k which has lk;j 6¼ 0 for all

j ¼ 1; 2; � � � ; r, then such F̂k is the desired normal

surface F̂t which has triangular tails along its all

boundary curves. Suppose that F does not normally

spin. There is some j1 such that a subsequence hF̂kii
has lki;j1

¼ 0 for all i ¼ 1; 2; � � � . Say j1 ¼ 1. We

denote the subsequence by F̂k again. On the other

hand, since the sequence hF̂ki has an infinite number

of normal isotopy classes, there must be some j2

such that lk;j2
!1 as k!1, say j2 ¼ 2, so that F̂k

can be written by

F̂k ¼ S þ 0T1 þ lk;2T2 þ
Xr

j¼3

lk;jTj

for lk;2 !1 as k!1. This is the situation that the

surface F normally spins along the boundary curves

on T2, but not on T1. Then we can make a contra-

diction by using the distance between the lifts of

boundary curves of S on T1 and T2 in a covering

space of M (see Fig. 2). If F is non-separating, we

work on the infinite cyclic covering space of M

defined by a cohomology class dual to F . In the case

of separting F , we work on the covering space

corresponding to the subgroup �1ðF Þ of �1ðMÞ.
The following theorem is our main result

dealing with normal spinnings of non-fibered sur-

faces. For details of the proof, see [4].

Theorem 8. Let M be an anannular, ator-

oidal, irreducible and P 2-irreducible 3-manifold

with tori or Klein bottle boundary components and

= be a 1-efficient ideal triangulation of M. If F is a

properly embedded, incompressible and @-incom-

pressible 2-sided surface in M which is not a fiber,

then F can be spun normalized in ðM;=Þ with 2r

choices of spinning direction, where r is the number

of the boundary components of M containing a

curve of @F .

Since two one-sided surfaces which represent

the same homology class can never be disjoint, a

surface cannot be isotoped a long way to another

surface with its boundary fixed. This is just like the

case of a non-fibered surface. Hence we obtain the

same result for a one-sided surface F .

Theorem 9. Let M be an anannular, ator-

oidal, irreducible and P 2-irreducible 3-manifold with

tori or Klein bottle boundary components and = be

a 1-efficient ideal triangulation of M. If a properly

embedded, incompressible, @-incompressible surface

F is one-sided, then F always normally spins in M

with 2r choices of spinning directions, where r is the

number of boundary components of M containing a

curve of @F .

Since Theorem 8 says that a properly embed-

ded, incompressible and @-incompressible 2-sided

surface which is not a fiber can be spun normalized

in a 3-manifold with a 1-efficient triangulation, the

next theorem follows directly from Theorem 8 and

Theorem 9.

Theorem 10. Let M be a semi-bundle over a

non-orientable surface K and let = be a 1-efficient

ideal triangulation of M. If a surface F is a properly

embedded, incompressible, @-incompressible surface

in M, then F can be spun normalized.

Now we turn to the question of the existence of

normal spinnings of a fibered surface. We will find a

sufficient condition for spinning of a fiber surface F

in a surface bundle M over a circle.

Let ~M be the infinite cyclic covering of M,

given by the cohomology class dual to a choice of

fibering. ~M has the induced ideal triangulation from

= which is a 1-efficient ideal triangulation of M. If

there is a closed normal surface S in ~M, S becomes

a barrier (see [1] for details of barrier arguments)

and lifts of fiber surface F cannot go through S by

normalizing process. This is a similar situation to

the case that lifts of a non-fibered surface cannot be

isotoped a long way to a surface with its boundary

fixed. This implies the existence of normal spinnings

of F .

Conversely, suppose that F normally spins in

both directions; all positive or all negative. There

are lifts of the resulting spun normal surfaces

in each direction, which bounds a closed normal

surface in the infinite cyclic covering ~M. Actually

the geometric sum of the both lifts is defined as

S
~

1
~
T 2

~
T

Fig. 2. The distance between boundary curves on ~S which

makes a contradiction to a finite diameter of ~S.
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the union of a closed normal surface and a pair of

infinite annuli parallel to the boundary cylinders

of ~M. So this establishes the existence of a closed

normal surface in ~M.

Theorem 11. Let F be a compact surface

with @F 6¼ ; and let M be an S1-bundle over F with a

1-efficient ideal triangulation =. If F normally spins

in either choice of directions, where all spinning

along @F goes in the same direction in ~M, either

all positive or all negative, then there is a closed

normal surface in ~M, where ~M is the infinite cyclic

covering of M dual to the fiber with the induced ideal

triangulation from =. Conversely, if ~M has such a

closed normal surface, then F normally spins with

all choices of spinning directions.

If M is a fiber bundle over a circle with fiber a

surface F with non-empty boundary, then M

admits layered triangulations ([2]). It is easy to

see that for such a layered triangulation, there

cannot be any closed normal surfaces in ~M and by

Theorem 11, we can obtain the following result.

Theorem 12. Let F be a surface with @F 6¼
; and let M be an S1-bundle over F with a layered

triangulation =. Then F does not normally spin with

all spinning in the same direction. Specifically, if F

has only one boundary component, then F does not

normally spin.

Theorem 12 confirms the result in [3] that there

is no spun normal surface representing a spanning

surface in the figure-8 knot complement with the

ideal triangulation of two tetrahedra which is a

layered triangulation.
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