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Abstract: We consider certain local-global principles related with some splitting

problems for connected linear algebraic groups over global fields. The main tools are certain

reciprocity results due to Prasad and Rapinchuk, Harder’s Hasse principle for homogeneous

projective spaces of reductive groups for number fields and their extensions to global function

fields.
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1. Introduction. Let k be a field, G a

smooth affine algebraic group (i.e. a linear algebraic

group) defined over k. A well-known Hasse Princi-

ple (in fact Albert–Hasse–Noether’s Theorem) (cf.

e.g. [Pi]), for central simple algebras (CSA) says

that if k is a global field, V :¼ Vk is the set of all

places of k, and if a central simple algebra A over k

is split over kv (i.e., A ’MnðkvÞ, the n� n-matrix

algebra over kv for some n) for all v 2 V , then A is

already split over k, A ’MnðkÞ. There are many

other well-known similar results (local–global prin-

ciples) in other contexts, say Hasse–Minkowski

Theorem for quadratic forms, Landherr Theorem

for hermitian forms, etc. We may ask, if there is

any corresponding result for algebraic groups with

a suitable notion of splitting. Recall that (cf.

[B, Chap. V, 15.1], [CGP, A.1.2]) a connected solv-

able algebraic k-group G is k-split if there exists

a composition series G ¼ G0 > G1 > � � � > Gn�1 >

Gn ¼ f1g such that Gi=Giþ1 ’ Ga or Gm, for

all 0 � i � n� 1. Also (cf. [B, Chap. V, 18.6],

[CGP, A.4]), a connected reductive k-group G is

k-split if G has a maximal torus which is defined

and split over k. More generally, one says that a

smooth connected affine algebraic k-group G is

pseudo-k-split (or pseudo-split over k) if G has a

maximal torus which is defined and split over k,

see [CGP, Def. 2.3.1]. Here we would like to

consider the notion of splitting which really com-

bines the case of solvable and reductive groups as

in [T2]. Thus we say that a connected affine

algebraic k-group G is k-split, or split over k, if its

unipotent radical RuðGÞ is defined and split over k,

and the reductive quotient group G=RuðGÞ is

defined and split over k. Likewise, we say that a

smooth affine k-group G is quasi-split over k

(or k-quasi-split) if RuðGÞ is defined over k and

there exists a Borel subgroup B of G=RuðGÞ defined

over k.

It is well-known that (see [Ti], [Sat], [Sp, Chap.

15–17]) one can associate to each reductive alge-

braic group over a field the so-called Tits index. It is

the Dynkin diagram of the given group equipped

with certain action of the absolute Galois group. It

is very useful that one can study the splitness of the

given group via its Tits index. In this note we are

interested in certain local-global principles related

with some splitting properties of the given con-

nected affine groups, related with the Tits index

of these groups in some connection with a Hasse

principle for homogeneous spaces. A full detailed

proof will be published elsewhere.

2. A reciprocity law for algebraic groups

over global fields.

2.1. As a main tool in the study of several

local-global principles to appear in the sequel we

make use of the following results due to Prasad and

Rapinchuk [PR] and its extension in [T2].

Recall the following setup. Let G be an

(absolutely) almost simple group defined over a

field k. Let G0 be a quasi-split inner k-form of G. Let

�ðG; kÞ be the Tits index over k and �ðG; kÞd the

set of all circled (i.e., distinguished) vertices of

�ðG; kÞ. There is a so-called �-action of � :¼
Galðks=kÞ on �ðG; kÞ. Denote by �i the �-orbits

on �ðG0; kÞ, i ¼ 1; 2; . . . ; r.
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2.1.1. Theorem ([PR, Theorem 1], [T2, The-

orem 1]). With above notation, assume that k is a

global field and G0 is simply connected. Fix a non-

archimedean valuation v0 of k and assume that there

are given kv-forms, which are inner twists Gv of G0

for all v 2 V n fv0g, such that for almost all v, Gv is

quasi-split over kv.

a) There exists a k-form, which is an inner twist G

of G0 and is kv-isomorphic to Gv for all v 2 V n fv0g.
b) If an isotropic k-form G satisfying aÞ as above

exists then there exists an index i, 1 � i � r, such

that �i � �ðGv; kvÞd for all v 2 V n fv0g and the k-

rank of G is less or equal to the number of orbits

satisfying the above inclusion.

c) Let L be the minimal splitting field of G0. Assume

that v0 is not split in L if ½L : k� ¼ 2. Then there

exists an isotropic k-form G as in a) if there is some

orbit �i satisfying b), and there exists a k-form G

whose k-rank is equal to the total number of such

orbits.

Regarding the uniqueness of the global forms with

prescribed local forms as above, we have the

following

2.1.2. Theorem (Cf. [PR, Theorem 3], [T2,

Theorem 4]). Let G0 be an absolutely almost simple

simply connected group defined and quasi-split over

a global field k, �G0 the adjoint k-group corresponding

to G0, F0 the center of G0 and v0 a non-archimedean

valuation of k. Assume that for all v 6¼ v0, there are

given local kv-groups Gv which are inner twists of

G0, and consider the k-form G of G0, which is locally

kv-isomorphic to Gv for all v 6¼ v0.

1) The k-form G of G0 is unique if and only if the

localization map

� : H1
flatðk; �G0Þ ! 	v 6¼v0

H1
flatðkv; �G0Þ

is injective.

2) � is injective if and only if the following local-

ization map

� : H2
flatðk; F0Þ ! 	v 6¼v0

H2
flatðkv; F0Þ

is injective.

3) Let L be the minimal splitting field of G0, P=L

(resp. P is a cubic extension of k contained in L) if

½L : k� 6¼ 6 (resp. ½L : k� ¼ 6, i.e., G0 is of trialitarian

type 6D4). Then � is injective if and only if v0 is not

split in P.

4) In general, the uniqueness may not hold and there

are only finitely many k-isomorphism classes of

above indicated such k-forms G.

(Here H1
flatðk; �Þ stands for flat cohomology of

algebraic groups.)

As a first application of Theorems 2.1.1–2.1.2, we

give an extension (to the case of function field) of

a result which due to Harder in the case of number

field. In [Ha1] the following Hasse principle for

projective homogeneous spaces was proved for

number fields.

Theorem A ([Ha1, Satz 4.3.3]). Let X be a

projective homogeneous space of a semisimple group

G, all are defined over a number field k. Then the

Hasse principle holds for X.

One should note that the proof given in [Ha1] is only

sketched and relies on some other arguments (due

to Kneser) related with regular semisimple classes

in the case of characteristic 0 (number field). Later

on some other proofs were given (see [Bo]), where

the main tool used is the theory of non-abelian H2.

Altogether, the proof given in [Ha1] and also the

another ones given in [Bo] (using the non-abelian

H2) do not seem to extend to the case of positive

characteristic. In this section, we describe yet

another proof, which also proves the same result

in the case of global function fields, the case that

previous proofs do not seem to cover. We have the

following

Theorem B. Let X be a projective homoge-

neous space of a semisimple group G, all are defined

over a global function field k. Then the Hasse

principle holds for X.

Theorem A and Theorem B can be combined to

yield the following

2.1.3. Theorem. Let k be a global field, G a

connected linear algebraic group, supposed to be

reductive if char:k > 0 and let X be a projective

homogeneous space of G. Then the Hasse principle

holds for X.

The proof of Theorem 2.1.3 is reduced to proving

the following equivalent statement.

2.1.4. Proposition. Let G be an almost

simple group defined over a global field k. If G has a

parabolic kv-subgroup Pv of type � ¼ �i1 [ � � � [ �is

for all places v of k, then it does so over k.

2.1.5. Remarks. 1) Theorems 2.1.1–2.1.2 are

a kind of reciprocity law for ‘‘splitting pattern’’ of

almost simple algebraic groups over global fields.

Notice that the proofs of 2.1.1 and 2.1.2 make use of

deep results on arithmetic and cohomology of the

global fields, culminated in various duality theo-

rems like Tate–Nakayama Theorem, Tate–Poitou
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Theorem and local-global class field theory.

2) The proof of Theorem 2.1.3 presented above

gives in the case of number fields a new proof of

classical result of Harder.

3) Theorem 2.1.3 has also been proved in

[CGPa, Corol. 5.7] for fields k of geometric type.

3. A local–global principle related with

splitting problems. In this and the next sections

we consider some applications (of the results

presented in previous section) to some local–global

problems related with splitting problems.

3.1. Let notation be as in Section 2. We

consider the following problem.

3.1.1. Assume that a connected smooth affine

algebraic group G is Lv-split (resp., Lv-quasi-split)

for all v 2 V , where Lv=kv is a Galois extension with

its Galois group �v belonging to a certain class of

groups C. Is it true that G is also split (resp. quasi-

split) over a Galois extension L=k with its Galois

group � also belonging to C? If not, what is the

obstruction?

Here we consider, among the others, the most

common class C of groups such as (pro-)cyclic,

(pro-)metacyclic, (pro-)p-, (pro-)nilpotent, or

(pro-)solvable groups (cf. also [Sa], [T1]).

In this note we consider above question in the

simplest case, where �v ¼ f1g for all v, i.e., kv are

the (quasi-)splitting field for G for all v. In other

words, the first question we try to answer is

3.1.2. Given that a smooth affine algebraic

k-group G is (quasi-)split locally everywhere. Is G

already (quasi-)split over k? If not, what is the

obstruction?

Further questions will be discussed in Section 6,

after we have given an answer to 3.1.2. Recall that

for absolutely almost simple groups over global

fields, above question has been considered in [PR]

and [T2] (see Theorems 2.1.1–2.1.2) where v does

not run over all V , but it runs only over the set

V n fv0g, with v0 some fixed non-archimedian place.

There were given also some obstruction related with

the uniqueness of the global forms in question (see

Section 2 for more details).

4. Some reductions to partial cases.

4.1. Solvable case. The first class of groups

we are considering is that of solvable algebraic

groups. By [Co], there exists a unique maximal

connected normal k-split subgroup Gsplit for a given

connected solvable k-group G. Thus G is k-split if

and only if G ¼ Gsplit .

We have the following

4.1.1. Theorem. Let k be a global field and let

G be a solvable k-group. Then G is split over k if and

only if G is so over all kv, v 2 V .

We need the following in the proof

4.1.2. Theorem ([Co, Thm. 5.4]). Let k be a

field. With above notation, G=Gsplit is a central

extension of a k-wound unipotent group U by a k-

anisotropic torus T.

4.1.3. Lemma ([Co, Lemma 5.7]). Let k be a

field, U a k-split unipotent group and M an algebraic

k-group of multiplicative type. Then any exact

sequence

1!M ! G! U ! 1

is uniquely split, i.e., we have G ¼M � U.

4.2. Reductive case. We have the following

local-global principle for the splitting.

4.2.1. Theorem. Let k be a global field and let

G be a connected reductive k-group. Then G is split

over k if and only if G is so over all kv, v 2 V .

We have two proofs of this result. The first one

makes use of Prasad–Rapinchuk’s result and its

extension to function fields (Theorems 2.1.1–2.1.2)

and also Harder’s Theorem (and its extension,

Theorem 2.1.3) to prove our result. The second

one avoids of using 2.1.1–2.1.4 and is more elemen-

tary, by making use of only standard facts of

algebraic groups and Hasse principles for forms over

global fields (see [Sch, Chap. X]). In the proof, we

will make a frequent use of the following

4.2.1.1. Theorem ([Ha2, Korollar 1]). If G is

an absolutely almost simple group of type different

from type A, defined over a global function field k,

then G is k-isotropic.

5. Quasi-splitting.

5.1. Let G be a smooth affine algebraic group

over a global field k. It is well-known that if G is

a connected reductive group, then for almost all

v 2 V , G is quasi-split over kv, i.e., G has a Borel

subgroup defined over kv. However with our notion

of quasi-split groups introduced above, it is not true

for general groups. A natural question arises as

follows:

If G is quasi-split over kv for all v, is then G also

quasi-split over k?

It is clear that we may assume that G is reductive.

Denote by BG the variety of Borel subgroups of G.

It is well-known that BG is defined over k and

rational over �k. Thus the question is reduced to the
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following Hasse principle for BG:

Does BG have a k-point if it does so over all kv?

We have the following

5.1.1. Theorem. Let k be a global field and

let G be a connected smooth affine group defined

over k. If G is quasi-split over kv for all v, then so is

G over k.

First proof. We are reduced to the case of

reductive groups and then to (absolutely) almost

simple k-groups. By Theorem 2.1.3, the variety BG
has a k-point. �

Second proof. We do not use Theorems 2.1.1–

2.1.4 here. Instead, we will make only use of an idea

which Kneser employs in his proof of strong

approximation theorem as in [Kn]. First we can

reduce as above to the case G is semisimple over k

and may reduce further to the case, where G is an

absolutely almost simple k-group. We notice that

the assertion of 5.1.1 is true if G is of inner type,

since then G is in fact split over kv, thus we may

apply results of Section 4 to see that G is also split

also over k. So we assume that G is of outer type

(of Dynkin type A, D or E). Let G1 be a quasi-split

k-group, which is an inner form of G over k and let

� 2 H1
flatðk;AdðG1ÞÞ be the element corresponding to

G, where AdðG1Þ denotes the adjoint group of G1.

Let � : ~G1 ! AdðG1Þ be the canonical central k-iso-

geny ~F :¼ Centð ~G1Þ. Denote by ~B ¼ ~TBu a Borel

k-subgroup of ~G1, where ~G1 is the simply connected

covering of G1, ~T the maximal k-torus of ~B

containing a maximal k-split subtorus ~S of ~G1. Set

B ¼ ~B= ~F , T ¼ ~T= ~F , S ¼ �ð ~SÞ. Then it is known

that ZGð ~SÞ ¼ ~T . We have the following commuta-

tive diagram with exact rows

H1
flatðk; ~T Þ !� H1

flatðk; T Þ !� H2
flatðk; ~F Þ !� H2

flatðk; ~T Þ
# � # � #¼

H1
flatðk; ~G1Þ !

�0
H1

flatðk; AdðG1ÞÞ !
�

H2
flatðk; ~F Þ

and similar diagram over kv. Let � ¼ �ð�Þ 2
H2

flatðk; ~F Þ. Since locally everywhere G is kv-quasi-

split, it means that the restriction of � via

resv : H1
flatðk;AdðG1ÞÞ ! H1

flatðkv; AdðG1ÞÞ belongs

to the image of the map �v : H1
flatðkv; T Þ !

H1
flatðkv; AdðG1ÞÞ, for all v. Therefore �ð�Þ has locally

trivial image everywhere. We need the following

well-known

5.1.2. Lemma. Let ~G be an absolutely almost

simple simply connected quasi-split group defined

over a field k, ~S a maximal k-split torus of ~G, and
~T ¼ Z ~Gð ~SÞ. Then ~T is k-isomorphic to a direct

product of induced tori. In particular, if k is a global

field then ~T satisfies cohomological Hasse principle

in degree 2.

Therefore, by 5.1.2, �ð�Þ is trivial, thus � ¼
�ðtÞ; t 2 H1

flatðk; T Þ, which is what we need. �

6. Some further applications.

6.1. In this section, we consider some appli-

cations related to the local–global behavior of the

relative rank (dimension of maximal split subtorus)

of a given connected reductive group G defined over

a global field k.

Let T be a maximal k-torus of G, Ts the maximal

k-split subtorus of T , T ¼ TaTs, an almost direct

product, where Ta is anisotropic k-subtorus of T .

Let s :¼ dimðTsÞ; a :¼ dimðTaÞ, r :¼ rankkðGÞ, the

k-rank of G, n :¼ sþ a ¼ dimðT Þ, the rank of G. We

say that T is of type ða; sÞ. It is clear that r 
 s. For

each place v of k, denote rv :¼ rankkvðGÞ. Then it is

clear that rv 
 r for all v. There are natural

questions related with the behavior of rv:

6.1.1. a) Is it true that if for some non-neg-

ative integer c and for all v, we have rv ¼ c, then

r ¼ c?
b) Is it true that if rv > 0 for all v then so is r?

c) Is it true that if k is a global field and if G has a

maximal kv-torus of type ða; sÞ over kv for all places v

of k, then so does G over k?

d) Is it true that minv rv ¼ r?
6.1.2. Remarks. 1) It should be mentioned

that this question is closely related to questions we

considered in previous sections. Namely, if G has a

maximal torus T of type ð0; nÞ over a field k, then it

means that G is split over k. Therefore the question

has an affirmative answer in this case.

2) If G has maximal kv-tori of type ð1; n� 1Þ for all

places, then perhaps the best we would say is that G

is isotropic over kv for all places v. In fact, if the

semi-simple part of G has at least two almost simple

components, then we can construct without diffi-

culty an example of a semisimple group G defined

over a global field k such that G is isotropic over kv
for all places v but G is anisotropic over k (see the

results below with more precise statements). There-

fore 6.1.1 truly makes sense only when we restrict

ourselves to the case where G is an absolutely

almost simple k-group.

6.2. Theorem. Let k be a global field, G an

absolutely almost simple k-group, and c a non-

negative integer.

a) If rv ¼ c for all v, then r ¼ c.
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b) Let G be of Dynkin type different from 1An, or 1E6

(and k is a real number field). If rv > 0 for all v then

r > 0.

c) In the remaining cases 1An or 1E6, there are

global fields k and almost simple k-groups of the

corresponding type, for which the local-global prin-

ciple for isotropy does not hold.

6.2.1. Remark. It follows from above that

questions 6.1.1, c)–d) also have negative answers.

7. Existence of rational points on homo-

geneous spaces. One of the main steps in

proving Theorem 2.1.3 is the proof of certain

local-global principle for lifting (namely, the lifting

of a class of cohomology which is locally liftable).

Some of the general results have been proved by

Rapinchuk and Borovoi (cf. [Bo]) for number fields.

We give some analogs in the case of function fields.

We have

7.1. Theorem. 1) (Cf. [Bo, 6.4] for local fields

of char. 0). Let k be a local or global function field

and 1! G1 ! G2 ! G3 ! 1 an exact sequence of

reductive k-groups, where G1 is connected and

Gtor
1 ¼ 1. Then the induced map H1

flatðk;G2Þ !
H1

flatðk;G3Þ is surjective.

2) (Cf. [Bo, 6.10] for number fields) Let k be a global

function field, 1! G1 ! G2 ! G3 ! 1 an exact

sequence of reductive k-groups, where G1 is con-

nected with dimðGtor
1 Þ � 1. If a class of cohomology

from H1
flatðk;G3Þ locally is liftable to H1

flatðk;G2Þ then

it is so globally.

7.2. Let G be a connected reductive group, X

a homogeneous G-space, all defined over a global

field k. In [Bo], a very general results have been

proved in the case charcateristic 0, regarding the

existence of rational points on X over local or global

fields; in particular, Hasse principle of X has been

proved under some conditions on the stabilizers of

X in G in the case k is a number field. We extend

some of these results to the case char. p > 0, but

under a stronger condition on the stabilizers.

7.3. Theorem (Cf. [Bo, Thm. 7.2, Thm. 7.3]

for char. 0 case). Let k be a field, G a smooth

connected (supposed reductive if char:k > 0) group,

X a right G-homogeneous space, all defined over k,

such that for some point x 2 X, the stabilizer �H :¼
StabðxÞ of x is connected and reductive.

1) Then one can associate to the pair ðG;XÞ a gerbe

X with its band L :¼ SðXÞ :¼ lienðXÞ represented

by a connected reductive k-group H and a k-torus

TL.

2) Assume that k is a local non-archimedean field

and one of the following conditions holds:

i) H2
flatðk; TLÞ ¼ 0;

ii) The k-torus TL is k-anisotropic;

iii) TL ¼ 1.

If H1ðk;GÞ ¼ 0, then XðkÞ 6¼ ;.
3) Assume that k is a global field and one of the

following conditions holds:

i) III2ðk; TLÞ ¼ 0;

ii) TL is kv-anisotropic for some place v;

iii) TL ¼ 1;

iv) TL is an induced k-torus;

v) TL is a k-torus split over a cyclic extension of k;

vi) dimðTLÞ � 1.

If III1ðGÞ ¼ 0, then the Hasse principle holds for X,

i.e., if XðkvÞ 6¼ ; for all places v of k, then XðkÞ 6¼ ;.
In particular, 1Þ and 2Þ above hold if G is a quasi-

trivial group (supposed to be reductive if char.

k > 0).

We derive the following corollaries.

7.3.1. Corollary (Cf. [Bo, Corol. 7.4, 7.6] for

number field case). Let k be a global field and the

notation be as above. Assume that G is an absolutely

almost simple simply connected k-group, X a k-

homogeneous space under G with a stabilizer

H ¼ G�, where � is a semisimple automorphism

of G, G� the set of all fixed points of �. If

dimðH=½H;H�Þ � 1, then the Hasse principle holds

for X.

7.3.2. Corollary (Cf. [Bo, Corol. 7.4] for

number field case). Let k be a global field and let

the notation be as above. Assume that the condition

7.3, 3iii) holds. If either XðkvÞ 6¼ ; for all archime-

dean places v of k or k has no real embeddings, then

XðkÞ 6¼ ;.
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un corps de nombres, J. Reine Angew. Math.
327 (1981), 12–80.

[ Sat ] I. Satake, Classification theory of semi-simple
algebraic groups, Dekker, New York, 1971.

[ Sp ] T. A. Springer, Linear algebraic groups, 2nd
ed., Progress in Mathematics, 9, Birkhäuser
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