
Heights of motives

By Kazuya KATO

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637, U.S.A.

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 12, 2014)

Abstract: We define the height of a motive over a number field. We show that if we

assume the finiteness of motives of bounded height, Tate conjecture for the p-adic Tate module

can be proved for motives with good reduction at p.
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0.1. In this paper, we generalize the definition

of the height of an abelian variety over number field

due to Faltings [2] to a motive over a number field.

Here by motive, we mean a pure motive.

We define the height of a motive M over a

number field K as the Arakelov degree of the one

dimensional Q-vector space

LðMÞQ :¼ �r2Z ðdetQ grrMdRÞ�r

which is endowed with a metric at the infinite

place and an integral structure. Here MdR denotes

the de Rham realization of M, and grr is that of the

Hodge filtration on MdR.

The metric on LðMÞQ is defined by using

Hodge theory (see Section 1), and the integral

structure of LðMÞQ is defined by using p-adic

Hodge theory (see Section 2).

In the case M is the H1 of an abelian variety A,

grrMdR is LieðAÞ if r ¼ �1 and is 0 if r 6¼ 0;�1, and

our definition coincides with the height of Faltings

who used the Arakelov degree of coLieðAÞ (the dual

of LieðAÞ).
Height is a basic notion in number theory. We

hope that our generalization of this notion to

motives will supply fruitful subjects and interesting

problems to number theory.

Details of this paper will be given elsewhere.

1. Hodge theory.

1.1. In this section, for a pure Hodge structure

H ¼ ðHZ; F Þ, we define a canonical metric on the

one dimensional C-vector space

LðHÞ :¼ �r2Z ðdetC Fr=Frþ1Þ�r:
1.2. Let H ¼ ðHZ; F Þ be a pure Hodge struc-

ture of weight w. That is, HZ is a free Z-module of

finite rank and F is a descending filtration on HC ¼
C�HZ such that Fr ¼ HC for r� 0 and Fr ¼ 0 for

r� 0, satisfying

HC ¼ �r2Z H
r;w�r
C where Hr;w�r

C ¼ Fr \ �Fw�r:

Here �Fr is the image of Fr under the complex con-

jugate HC ! HC ; z� h 7! �z� h (z 2 C; h 2 HZ).

Let

L0ðHÞ :¼ �r2Z ðdetC Hr;w�rÞ�r:

The canonical isomorphism Hr;w�r !¼
�
Fr=Frþ1 in-

duces a canonical isomorphism L0ðHÞ !¼
�
LðHÞ.

1.3. The complex conjugate HC ! HC induces

an isomorphism

L0ðHÞ !¼
�

�L0ðHÞ :¼ �r2Z ðdetC Hw�r;rÞ�r

¼ �r2Z ðdetC Hr;w�rÞ�ðw�rÞ

where the last ¼ is obtained by replacing r by w� r.
We have a canonical isomorphism

L0ðHÞ �C
�L0ðHÞ ¼� C�Z ðdetZ HZÞ�w

as follows:

L0ðHÞ �C
�L0ðHÞ

¼ ð�r2Z ðdetC Hr;w�rÞ�rÞ
� ð�r2Z ðdetC Hr;w�rÞ�ðw�rÞÞ

¼ �r2Z ðdetC Hr;w�rÞ�w ¼ ðdetC HCÞ�w

¼ C�Z ðdetZ HZÞ�w:
1.4. Let s 2 L0ðHÞ. Then we have an element �s

of �L0ðHÞ, and s� �s is sent to an element ze of C�Z

ðdetZ HZÞ�w via the canonical isomorphism, where

z 2 C and e is a Z-basis of ðdetZ HZÞ�w. We define

jsj ¼ jzj1=2.
Via the canonical isomorphism L0ðHÞ !¼

�
LðHÞ,

we obtained a metric on LðHÞ.
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2. p-adic Hodge theory.

2.1. In this section, let p be a prime number

and let K be a finite extension of Qp. Let T be a free

Zp-module of finite rank endowed with a continuous

action of GK :¼ Galð �K=KÞ such that V ¼ Qp �Zp
T

is de Rham in the sense of Fontaine [3]. The goal

of this section is to define a p-adic integral structure

(a Zp-structure) LrðT Þ of

LrðV Þ :¼ detQp
ðDdRðV Þ=Dr

dRðV ÞÞ

for each r 2 Z.

LrðT Þ is defined to be L0 of the Tate twist T ðrÞ.
So, we consider L0ðT Þ.

2.2. As in [1], we have an exact sequence

0! H0ðK;V Þ ! DcrysðV Þ
! DcrysðV Þ �DdRðV Þ=D0

dRðV Þ ! H1
f ðK;V Þ ! 0

where Hm are Galois cohomology and H1
f ðK;V Þ �

H1ðK;V Þ is as in [1]. The map DcrysðV Þ ! DcrysðV Þ
is x 7! ð1� ’Þx where ’ is the Frobenius, and

the map DcrysðV Þ ! DdRðV Þ=D0
dRðV Þ is the evident

map.

We will define a Zp-submodule H1
cfðK;T Þ of

H1
f ðK;T Þ of finite index, and define the p-adic

integral structure L0ðT Þ of L0ðV Þ as

L0ðT Þ :¼ detZp
H1
cfðK;T Þ � ðdetZp

H0ðK;T ÞÞ��1

� detQp
H1
f ðK;V Þ � ðdetQp

H0ðK;V ÞÞ��1

¼� detQp
DdRðV Þ=D0

dRðV Þ � detQp
DcrysðV Þ

� ðdetQp
DcrysðV ÞÞ��1 ¼� detQp

DdRðV Þ=D0
dRðV Þ

where the first isomorphism is obtained by the

above exact sequence and the second isomorphism

is obtained by canceling two DcrysðV Þ via the

identity map.

2.3. We describe our motivation of the defi-

nition of H1
cfðK;T Þ.

Let A be an abelian variety over K, and let

TA ¼
Q

‘ T‘A where ‘ ranges over all prime num-

bers (including p) and T‘A is the ‘-adic Tate

module. Then the Kummer sequences

0! TA=nTA! Að �KÞ !n Að �KÞ ! 0

for n 	 1 induce connecting homomorphisms

AðKÞ ! H1ðK;TA=nTAÞ, and the inverse limit

gives an isomorphism AðKÞ !¼
�
H1
f ðK;TAÞ (see [1]).

Let A be the Néron model of A and let A
 � A
be the connected Néron model of A (A
 is the

open set of A obtained from A by removing all

connected components of the special fiber of A

which do not contain the origin). Thus

A
ðOKÞ � AðOKÞ ¼ AðKÞ ¼� H1
f ðK;TAÞ:

For our seek of the nice integral structure on the

de Rham object, A
ðOKÞ is important. We can

identify A
ðOKÞ as the subgroup H1
cfðK;TAÞ of

H1
f ðK;TAÞ.

Proposition 2.4. Let ‘ be a prime number,

and let T be a free Z‘-module of finite rank endowed

with a continuous action of Galð �K=KÞ. In the case

‘ ¼ p, assume that V ¼ Q‘ �Z‘
T is de Rham. Let

a 2 H1
f ðK;T Þ. For n 	 1, let Kn be the unique

unramified extension of K of degree n.

(1) The following three conditions are equiv-

alent.

(a) For any n 	 1, a belongs to the image of the

trace map H1
f ðKn; T Þ ! H1

f ðK;T Þ.
(b) For any n 	 1, the image of a in H1

f ðKur; T Þ
belongs to the image of 1� ’n : H1

f ðKur; T Þ !
H1
f ðKur; T Þ. Here Kur is the maximal unramified

extension of K and ’ is the Frobenius of Kur=K.

(c) For any n, the map H1
f ðKn; TaÞ !

H1
f ðKn;Z‘Þ ¼ Z‘ is surjective. Here Ta is the exten-

sion of Z‘ by T corresponding to a.

(2) If ‘ 6¼ p, the equivalent conditions (a)–(c)

are also equivalent to

(d) a belongs to the kernel of H1ðK;T Þ !
H1ðKur; T Þ.

(3) If T ¼ T‘A for an abelian variety A over K,

the equivalent conditions (a)–(c) are also equivalent

to

(e) a belongs to the image of A
ðOKÞ.
Concerning (2), note that in the case ‘ 6¼ p,

H1
f ðK;T Þ is defined to be the kernel of H1ðK;T Þ !

H1ðKur; V Þ which can be a little bigger than the

kernel of H1ðK;T Þ ! H1ðKur; T Þ.
2.5. We define H1

cfðK;T Þ to be the subgroup of

H1
f ðK;T Þ consisting of all elements satisfying the

equivalent conditions in 2.4 (1) (we take ‘ ¼ p). We

call it the connected finite part of H1ðK;T Þ. We can

prove that H1
f ðK;T Þ= H1

cfðK;T Þ is finite.

2.6. Let A be an abelian variety over K and let

T ¼ TpA. Then we have

L0ðT Þ ¼ detZp
LieðAÞ ¼ detZp

LieðA
Þ:

2.7. Assume K is unramifed over Qp, V is

crystalline, and there is a 2 Z such that Da
dRðV Þ ¼

DdRðV Þ and Daþp�1
dR ¼ 0. Then there is an OK-lattice

D of DdRðV Þ ¼ DcrysðV Þ corresponding to T which

satisfies D ¼
P

i2Z p�i’Di where Di ¼ D \Di
dRðV Þ.
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(T is constructed from D by the method of

Fontaine-Laffaille.) In this case, we have

H1
f ðK;T Þ ¼ H1

cfðK;T Þ

and we have an exact sequence

0! H0ðK;T Þ ! D0 !1�’ D! H1
cfðK;T Þ ! 0:

In the case T ¼ Hm
et ðX �K;ZpÞðrÞ=ðtorsionÞ for a

proper smooth scheme X over OK with m 2 Z

such that m � p� 2 and with r 2 Z, if Y denotes

the special fiber of X, then D ¼ Hm
dRðX=OKÞ=

ðtorsionÞ ¼ Hm
crysðY Þ=ðtorsionÞ, ðDiÞi coincides with

r-twist of the Hodge filtration of Hm
dRðX=OKÞ=

ðtorsionÞ, and ’ of D coincides with p�r’ of

Hm
crysðY Þ=ðtorsionÞ.

2.8. Let K0 be a finite extension of Qp con-

tained in K and let T 0 be the Weil restriction of T

to K0 (that is, the induced representation of GK0

obtained from T ). Then H1
f ðK;T Þ ¼ H1

f ðK0; T 0Þ,
H1
cfðK;T Þ ¼ H1

cfðK0; T 0Þ, and L0ðT Þ ¼ L0ðT 0Þ.
This corresponds to the fact that the Weil

restriction of A (resp. A
) to OK 0 is the Néron model

(resp. connected Néron model) of the Weil restric-

tion A0 of A to K0.
3. Heights of motives.

3.1. Let Af be the ring of finite adeles of Q.

Let k be a field of characteristic 0. For a motive

M over k (this means the usual pure motive with

Q-coefficients), let MAf
is the étale realization of M

with Af -coefficients which is endowed with the

continuous action of Gk ¼ Galð�k=kÞ.
By a Z-motive over k, we mean a motive M

over k endowed with a Gk-stable Ẑ-submodule T of

MAf
which is free of finite type over Ẑ such that

Af �Ẑ T ¼MAf
.

In this section, we define the height of a

Z-motive over a number field.

3.2. To avoid a technical problem, we fix

integers a; b such that a � b, and we define the

height of a Z-motive M over a number field K

satisfying Ma
dR ¼MdR and Mb

dR ¼ 0, depending on

the choices of a; b.

We define the height of such M as the height of

the Weil restriction of M to Q. Hence we consider

Z-motives over Q.

3.3. Let M ¼ ðM;T Þ be a Z-motive over Q

such that Ma
dR ¼MdR and Mb

dR ¼ 0. Let

LðMÞQ ¼ �r2Z ðdetQ grrMdRÞ�r:

We define a metric on LðMÞR ¼ R�Q LðMÞQ.

Let MB be the Betti realization which is a Q-

vector space. Then we have a Z-structure MB;Z of

MB by

MB;Z ¼MB \ T �MAf
:

Via the canonical isomorphism MB;C ¼� MdR;C,

MB;C ¼ C�Z MB;Z has a Hodge filtration Fr :¼
C�Q Mr

dR (r 2 Z), and H ¼ ðMB;Z; F Þ is a pure

Hodge structure. Hence by Section 1, we have a

metric on LðHÞ ¼ LðMÞC. By restricting to LðMÞR,

we have a metric on LðMÞR.

Next we define an integral structure LðMÞZ on

LðMÞQ. For each r 2 Z, let

LrðMÞQ ¼ detQðMdR=M
r
dRÞ:

Then by Section 2, the p-adic component Tp of

T regarded as a representation of GQp
defines a

Zp-structure LrðTpÞ of LrðMÞQp
. When p ranges,

this gives a Ẑ-structure LrðMÞẐ of Af �Q LðMÞQ.

This follows from the fact that if ðM;T Þ ¼
ðHmðXÞ; Hm

et ðX �Q; ẐÞÞ for a projective smooth

scheme X over Q and if X is a projective scheme

over Z such that X ¼ X�Q, then LrðTpÞ ¼ Zp �Z

detZðHm
dRðX=ZÞ=FrHm

dRðX=ZÞÞ for almost all p by

2.7. Let

LrðMÞZ ¼ LrðMÞQ \ LrðMÞẐ � Af �Q LrðMÞQ:

We define

LðMÞZ :¼ ð�a<i<bLiðMÞ��1
Z Þ � LbðMÞ�ðb�1Þ

Z

� ð�a<i<bLiðMÞ��1
Q Þ � LbðMÞ�ðb�1Þ

Q ¼ LðMÞQ:
The reason why we do not take the simpler

definition

LðMÞZ :¼ �r2Z ðLrðMÞ��1
Z � Lrþ1ðMÞZÞ

�r

(independently of a and b) is that we are not sure

whether this is a finite tensor product.

3.4. For a Z-motive M over Q, we define its

multiplicative height HðMÞ and the logarithmic

height hðMÞ as

HðMÞ ¼ jej�1; hðMÞ ¼ �logðjejÞ

where e is a Z-basis of LðMÞZ and j j is the metric

of LðMÞR.

3.5. If A is an abelian variety over a number

field K, for M ¼ ðH1ðAÞ; T ðAÞÞ, the height of A

defined by Faltings coincides with our height for the

choice a ¼ �1 and b ¼ 1.

4. Some topics.

4.1. We fix the type � ¼ ðw; ðhrÞr2ZÞ of mo-
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tives, where w is the weight and hr ¼ dim grrdR. Take

a; b such that hr ¼ 0 unless a � r < b and define the

height of a Z-motive by using these fixed a; b.

The following is a basic conjecture.

Conjecture 4.2. Let K be a number field

and let c > 0. Then there are only finitely many

isomorphism classes of motives over K of type � of

semi-stable reduction such that hðMÞ � c.
4.3. In [2], by using his heights of abelian

varieties, Faltings proved the Tate conjecture Zp �
HomðA;BÞ !¼

�
HomGK

ðTpA; TpBÞ for abelian variet-

ies A and B over a number field K. A key point

was that the above finiteness is true for abelian

varieties. He proved this finiteness by using the fact

that his height of an abelian variety essentially

coincides with the height of the corresponding

point of the moduli space of abelian varieties. For

the above general conjecture, the difficulty is that

usually there is no moduli space of Z-motives of

type �.

Proposition 4.4. Let M ¼ ðM;T Þ and M 0 ¼
ðM 0; T 0Þ be Z-motives over a number field K of type

�. Let p be a prime number, and assume that Mp and

M 0
p are crystalline as representations of GKv

for any

place v of K lying over p, p is unramified in K=Q,

and that b � aþ p� 1. Assume that Conjecture 4.2

is true. Then

Zp �Z HomðM;M 0Þ !¼
�

HomGK
ðTp; T 0pÞ:

This proposition is proved in the following way.

Lemma 4.5. Let V be a finite dimensional

Qp-vector space endowed with a continuous action

of GQ. Assume that V is de Rham as a representa-

tion of GQp
and assume that there is an integer

w 2 Z such that for almost all prime numbers ‘, the

action of GQ‘
on V is unramified and all eigen values

of the action of the geometric frobenius of ‘ on V are

algebraic numbers whose all conjugates over Q are

of complex absolute value ‘w=2. Let

sðV Þ ¼
X

r2Z

r � dim grrDdRðV Þ;

tðV Þ ¼ w � dimðV Þ=2:

Then we have sðV Þ ¼ tðV Þ.
Proof. This is reduced to the case dimðV Þ ¼ 1

by the facts sðV Þ ¼ sðdetðV ÞÞ and tðV Þ ¼ tðdetðV ÞÞ.
If dimðV Þ ¼ 1, V is isomorphic to QpðmÞ for some

integer m as a representation of GK for some finite

extension K of Q, and hence sðV Þ ¼ �m ¼ tðV Þ.
�

If we assume Conjecture 4.2, then by the

argument of Faltings in [2], the proof of Proposition

4.4 is reduced to

Proposition 4.6. Let M ¼ ðM;T Þ be as in

the hypothesis of Proposition 4.4. (We do not

assume Conjecture 4.2 here.) Let U be a free

Zp-module of finite rank endowed with an action of

GK, and assume that we have a surjective homo-

morphism Tp ! U which is compatible with the

actions of GK. For n 	 0, let T ðnÞ :¼ KerðT !
U=pnUÞ, and let MðnÞ be the Z-motive over K which

is the same as M as a Q-motive over K but with the

Galois representation T ðnÞ over Ẑ. Then hðMðnÞÞ ¼
hðMÞ for any n 	 0.

Proof. By Weil restriction, we may assume

K ¼ Q. Let D be as in 2.7. We have exact sequences

0! DiðT ðnÞp Þ ! DiðTpÞ ! DiðUÞ=pnDiðUÞ ! 0 for

all i. From this, we have

LðMðnÞÞZ ¼ pnsðV ÞLðMÞZ
where V ¼ Qp �Zp

U . On the other hand,

ðdetZ H
ðnÞ
Z Þ

�w ¼ p2ntðV ÞðdetZ HZÞ�w;

where H (resp. HðnÞ) is the Hodge structure

associated to M (resp. MðnÞ). Hence

HðMÞ=HðMðnÞÞ ¼ pnðsðV Þ�tðV ÞÞ ¼ 1

by Lemma 4.5. �

4.7. Many questions arise concerning heights

of motives. For example, we have the following

analogue of abc conjecture (or Vojta conjecture [4])

for motives. For a motive M over a number field

K, let nðMÞ ¼
P

v logNðvÞ where v ranges over all

finite places of K at which M has bad reduction and

NðvÞ denotes the order of the residue field of v.

Conjecture 4.8. There are constants c; c0 >
0 such that

nðMÞ 	 c � hðMÞ � logðjDK jÞ � c0 � ½K : Q


for any number field K and any Z-motive M over K

of type � of semi-stable reduction. Here DK denotes

the discriminant of K.
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