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Abstract:

We define the height of a motive over a number field. We show that if we

assume the finiteness of motives of bounded height, Tate conjecture for the p-adic Tate module
can be proved for motives with good reduction at p.

Key words:

0.1. In this paper, we generalize the definition
of the height of an abelian variety over number field
due to Faltings [2] to a motive over a number field.
Here by motive, we mean a pure motive.

We define the height of a motive M over a
number field K as the Arakelov degree of the one
dimensional Q-vector space

L(M)q = @rez (detq gr" Mar)™"

which is endowed with a metric at the infinite
place and an integral structure. Here M;r denotes
the de Rham realization of M, and gr” is that of the
Hodge filtration on Myg.

The metric on L(M)q is defined by using
Hodge theory (see Section 1), and the integral
structure of L(M)q is defined by using p-adic
Hodge theory (see Section 2).

In the case M is the H; of an abelian variety A,
gr" Mg is Lie(A) if r = -1l and is 0 if r # 0, —1, and
our definition coincides with the height of Faltings
who used the Arakelov degree of coLie(A) (the dual
of Lie(A)).

Height is a basic notion in number theory. We
hope that our generalization of this notion to
motives will supply fruitful subjects and interesting
problems to number theory.

Details of this paper will be given elsewhere.

1. Hodge theory.

1.1. In this section, for a pure Hodge structure
H = (Hz, F), we define a canonical metric on the
one dimensional C-vector space

L(H) = @,z (detc F"/F™H%"
1.2. Let H = (Hz, F) be a pure Hodge struc-
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ture of weight w. That is, Hz is a free Z-module of
finite rank and F'is a descending filtration on H¢ =
C ® Hgz such that " = H¢ for r < 0 and F" = 0 for
r > 0, satisfying

Hc = @,z HG'™" where HG" "= F N F"".
Here I is the image of F" under the complex con-

jugate Hc — Hc; 2@ h— z®h (2 € C,h € Hy).
Let

L'(H) := Qeg (detg H™ )"
The canonical isomorphism H"*~" E>NF"/F’”'H in-
duces a canonical isomorphism L'(H) — L(H).

1.3. The complex conjugate Hc — Hc induces
an isomorphism

L'(H) = L'(H) = @ez (detc HY )"
= ®yez (detg H)20")
where the last = is obtained by replacing r» by w — r.
We have a canonical isomorphism
L'(H)®c L'(H) = C ®yz (detz Hz)®"
as follows:
L'(H)®c L'(H)
= (®yez (dete H™)T)
® (®rez (detc H"’“""’)®(w7’">)
= ®@yez (detc H™ )" = (detc Hc)™"
= C ®g (dety Hz)™".
1.4. Let s € L'(H). Then we have an element 5
of L'(H), and s ® § is sent to an element ze of C ®z

(detz Hyz)®" via the canonical isomorphism, where

z€ C and e is a Z-basis of (detz Hz)®". We define
ls| = |21"72. .
Via the canonical isomorphism L'(H) — L(H),

we obtained a metric on L(H).
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2. p-adic Hodge theory.

2.1. In this section, let p be a prime number
and let K be a finite extension of Q,,. Let T" be a free
Z,-module of finite rank endowed with a continuous
action of G := Gal(K/K) such that V = Q, ®z, T
is de Rham in the sense of Fontaine [3]. The goal
of this section is to define a p-adic integral structure
(a Z,-structure) L.(T) of

Ly (V) = detq, (Dar(V)/Dgp(V))

for each r € Z.

L,(T) is defined to be Ly of the Tate twist T'(r).
So, we consider Lo(T).

2.2. Asin [1], we have an exact sequence

0 — HYK,V) — Deys(V)
— Derys(V) ® Dar(V)/Dyp(V) — Hy(K,V) — 0

where H™ are Galois cohomology and H(K,V) C
HY(K,V)is asin [1]. The map Deys(V) — Deys(V)
is x+— (1 —¢)x where ¢ is the Frobenius, and
the map Deys(V) — Dyr(V)/DYx(V) is the evident
map.

We will define a Z,-submodule H_,(K,T) of
Hi(K,T) of finite index, and define the p-adic
integral structure Lo(T) of Ly(V) as

Ly(T) = detg, H (K, T) ® (detz, H(K,T))"™"
C detq, H}(K,V)® (detq, H'(K, V)™
=~ detq, Dar(V)/Dyp(V) ® detq, Derys(V)
® (detq, Days(V))"™" = detq, Dar(V)/Dip(V)

where the first isomorphism is obtained by the
above exact sequence and the second isomorphism
is obtained by canceling two Deys(V) via the
identity map.

2.3. We describe our motivation of the defi-
nition of H);(K,T).

Let A be an abelian variety over K, and let
TA =], T:A where ¢ ranges over all prime num-
bers (including p) and TyA is the f-adic Tate
module. Then the Kummer sequences

0— TA/nTA — A(K) 5 A(K) —0

for m>1 induce connecting homomorphisms
A(K) — HY(K,TA/nTA), and the inverse limit
gives an isomorphism A(K) = H};(K,TA) (see [1]).

Let A be the Néron model of A and let A° C A
be the connected Néron model of A (A° is the
open set of A obtained from A by removing all
connected components of the special fiber of A
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which do not contain the origin). Thus
A°(Ok) C A(Ok) = A(K) = H}(K,TA).

For our seek of the nice integral structure on the
de Rham object, A°(Ok) is important. We can
identify A°(Ox) as the subgroup H!(K,TA) of
HY(K,TA).

Proposition 2.4. Let ¢ be a prime number,
and let T be a free Zy-module of finite rank endowed
with a continuous action of Gal(K/K). In the case
{=p, assume that V = Q, ®z, T is de Rham. Let
a€ H}(K,T). For n>1, let K, be the unique
unramified extension of K of degree n.

(1) The following three conditions are equiv-
alent.

(a) For anyn > 1, a belongs to the image of the
trace map H}(K,L,T) — H}(K, T).

(b) For anyn > 1, the image of a in H}(KW.,T)
belongs to the image of 1—(p”:H}(KM.,T) —
H}(KW,T). Here K, is the mazimal unramified
extension of K and ¢ is the Frobenius of K,/ K.

(¢) For any n, the map H}(Kn,Ta) —
H}(Km Z)) = Zy is surjective. Here T, is the exten-
sion of Zy by T corresponding to a.

(2) If £ +# p, the equivalent conditions (a)—(c)
are also equivalent to

(d) a belongs to the kernel of H'(K,T)—
HY(K,,, T).

(3) If T =T, A for an abelian variety A over K,
the equivalent conditions (a)—(c) are also equivalent
to

(e) a belongs to the image of A°(Ok).

Concerning (2), note that in the case £ # p,
H}(K,T) is defined to be the kernel of H'(K,T) —
H'(K,,,V) which can be a little bigger than the
kernel of HY(K,T) — H*(K,,T).

2.5. We define H};(K,T) to be the subgroup of
H}(K,T) consisting of all elements satisfying the
equivalent conditions in 2.4 (1) (we take £ = p). We
call it the connected finite part of H'(K,T). We can
prove that H}(K,T)/ H};(K,T) is finite.

2.6. Let A be an abelian variety over K and let
T =1T,A. Then we have

Lo(T) = detz, Lie(A) = detz, Lie(A°).

2.7. Assume K is unramifed over Q,, V is
crystalline, and there is a € Z such that Dj,(V) =
Dap(V) and D7~" = 0. Then there is an Ox-lattice
D of Dgr(V) = Derys(V) corresponding to T' which
satisfies D = 3., p~'pD’ where D' = DN D,(V).
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(T is constructed from D by the method of
Fontaine-Laffaille.) In this case, we have

H}(Kv T) = Hclf(Ka T)
and we have an exact sequence
0— H(K,T) — D' = D — H',(K,T) — 0.

In the case T = HJ}(Xy,Z,)(r)/(torsion) for a
proper smooth scheme X over Og with m € Z
such that m < p—2 and with r € Z, if Y denotes
the special fiber of X, then D= HJ,(X/Ok)/
(torsion) = H7 (Y)/(torsion), (D?), coincides with
r-twist of the Hodge filtration of HJ,(X/Ok)/
(torsion), and ¢ of D coincides with p~"¢ of
H{ (Y)/(torsion).

2.8. Let K’ be a finite extension of Q, con-
tained in K and let 7" be the Weil restriction of T'
to K’ (that is, the induced representation of Gy
obtained from T). Then H}(K,T)= H;(K',T'),
Hclf(K, T)= Hclf(K’,T’)7 and Lo(T) = Lo(T").

This corresponds to the fact that the Weil
restriction of A (resp. A°) to Ok is the Néron model
(resp. connected Néron model) of the Weil restric-
tion A’ of A to K'.

3. Heights of motives.

3.1. Let Ay be the ring of finite adeles of Q.

Let k be a field of characteristic 0. For a motive
M over k (this means the usual pure motive with
Q-coefficients), let My, is the étale realization of M
with A j-coeflicients which is endowed with the
continuous action of Gy, = Gal(k/k).

By a Z-motive over k, we mean a motive M
over k endowed with a Gj-stable Z-submodule T' of
Ma, which is free of finite type over Z such that
Af ®Z T = MAf~

In this section, we define the height of a
Z-motive over a number field.

3.2. To avoid a technical problem, we fix
integers a,b such that a < b, and we define the
height of a Z-motive M over a number field K
satisfying M§, = Myr and M(I;R =0, depending on
the choices of a, b.

We define the height of such M as the height of
the Weil restriction of M to Q. Hence we consider
Z-motives over Q.

3.3. Let M =(M,T) be a Z-motive over Q
such that M§, = Myr and MSR = 0. Let

L(M)Q = Qrez (detQ gI‘TMdR)@W.
We define a metric on L(M)g = R ®q L(M)q.
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Let Mp be the Betti realization which is a Q-
vector space. Then we have a Z-structure Mpgz of
MB by

MB,Z =MpNnT C MAf-

Via the canonical isomorphism Mpc = Mggc,
Mpc =C®gz Mpyz has a Hodge filtration F":=
C®q M, (reZ), and H= (Mpgz,F) is a pure
Hodge structure. Hence by Section 1, we have a
metric on L(H) = L(M)¢. By restricting to L(M)g,
we have a metric on L(M)g.

Next we define an integral structure L(M), on
L(M)gq. For each r € Z, let

L, (M)q = detq(Mar/Myg).

Then by Section 2, the p-adic component 7, of
T regarded as a representation of Gq, defines a
Z,-structure L,(T,) of L,,.(M)Qp. When p ranges,
this gives a Z-structure L,(M)y of Ay ®q L(M)q-
This follows from the fact that if (M,T)=
(H’"(X),H;’;(XQ,Z)) for a projective smooth
scheme X over Q and if X is a projective scheme
over Z such that X = X ® Q, then L,(T,) = Z, ®g
detz(H),(X/Z)/F"H},(X/Z)) for almost all p by
2.7. Let

L(M)y = L,(M)qN L (M), C Ay ®q L.(M)q.
We define

L(M)y = (Qacics Li(M)y ) @ Ly(M)z" ™V
C BucianLi(MG) @ Ly(M)G" ™ = L(M)q.

The reason why we do not take the simpler
definition

L(M)y = ®ez (L(M)z ™' ® L1 (M)z)*"

(independently of a and b) is that we are not sure
whether this is a finite tensor product.

3.4. For a Z-motive M over Q, we define its
multiplicative height H(M) and the logarithmic
height (M) as

H(M)=le|”, h(M)= ~log(le])

where e is a Z-basis of L(M), and || is the metric
of L(M)g.

3.5. If A is an abelian variety over a number
field K, for M = (H,(A),T(A)), the height of A
defined by Faltings coincides with our height for the
choice a = —1 and b = 1.

4. Some topics.

4.1. We fix the type ® = (w, (h"),.5) of mo-

reZ
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tives, where w is the weight and A" = dim gr};,. Take
a, b such that h” = 0 unless a < r < b and define the
height of a Z-motive by using these fixed a, b.

The following is a basic conjecture.

Conjecture 4.2. Let K be a number field
and let ¢ > 0. Then there are only finitely many
isomorphism classes of motives over K of type ® of
semi-stable reduction such that h(M) < c.

4.3. In [2], by using his heights of abelian
varieties, Faltings proved the Tate conjecture Z, ®
Hom(A, B) = Homg, (T,A,T,B) for abelian variet-
ies A and B over a number field K. A key point
was that the above finiteness is true for abelian
varieties. He proved this finiteness by using the fact
that his height of an abelian variety essentially
coincides with the height of the corresponding
point of the moduli space of abelian varieties. For
the above general conjecture, the difficulty is that
usually there is no moduli space of Z-motives of
type ®.

Proposition 4.4. Let M = (M,T) and M' =
(M',T") be Z-motives over a number field K of type
®. Letp be a prime number, and assume that M, and
M;/o are crystalline as representations of Gk, for any
place v of K lying over p, p is unramified in K/Q,
and that b < a+p — 1. Assume that Conjecture 4.2
is true. Then

Z, ©g Hom(M, M') = Homg, (T}, T.).

This proposition is proved in the following way.

Lemma 4.5. Let V be a finite dimensional
Q,-vector space endowed with a continuous action
of Gq. Assume that V is de Rham as a representa-
tion of Gq, and assume that there is an integer
w € Z such that for almost all prime numbers £, the
action of Gq, on'V is unramified and all eigen values
of the action of the geometric frobenius of £ on'V are
algebraic numbers whose all conjugates over Q are
of complex absolute value £*/%. Let

s(V) = Z r-dimgr"Dyr(V),

reZ

t(V) =w-dim(V)/2.

Then we have s(V) =¢(V).

Proof. This is reduced to the case dim(V) =1
by the facts s(V) = s(det(V)) and t(V) = t(det(V)).
If dim(V)) = 1, V is isomorphic to Q,(m) for some
integer m as a representation of G for some finite
extension K of Q, and hence s(V) = —m = (V).

O
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If we assume Conjecture 4.2, then by the
argument of Faltings in [2], the proof of Proposition
4.4 is reduced to

Proposition 4.6. Let M = (M,T) be as in
the hypothesis of Proposition 4.4. (We do not
assume Conjecture 4.2 here.) Let U be a free
Z,-module of finite rank endowed with an action of
Gk, and assume that we have a surjective homo-
morphism T, — U which is compatible with the
actions of Gg. For n >0, let TM = Ker(T —
U/p"U), and let M™ be the Z-motive over K which
is the same as M as a Q-motive over K but with the
Galois representation T over Z. Then h(M™) =
h(M) for any n > 0.

Proof. By Weil restriction, we may assume
K = Q. Let D be asin 2.7. We have exact sequences
0 — DI(T") — D¥(T,) — Di(U)/p"D'(U) — 0 for
all 7. From this, we have

LM, = =V L(3),
where V' = Q, ®z, U. On the other hand,
(dety, HYY)®" = p*V)(dety Hyz)™",

where H (resp. H™) is the Hodge structure
associated to M (resp. M™). Hence

H(M)/H(MW)) - pn(S(V)—t(V)) =1

by Lemma 4.5. O

4.7. Many questions arise concerning heights
of motives. For example, we have the following
analogue of abc conjecture (or Vojta conjecture [4])
for motives. For a motive M over a number field
K, let n(M) = 3", log N(v) where v ranges over all
finite places of K at which M has bad reduction and
N (v) denotes the order of the residue field of v.

Conjecture 4.8. There are constants ¢, >
0 such that

n(M) > ¢ h(M) —log(|Dxl|) — ¢ - [K : Q]

for any number field K and any Z-motive M over K
of type ® of semi-stable reduction. Here D denotes
the discriminant of K.
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