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Abstract:

In 2009 [4,5], S. Gun, M. R. Murty, P. Rath studied transcendental values of

the logarithm of the gamma function. They showed that for any rational number z with

0<z<i,

the number logI'(z) +1log'(1 — ) is transcendental with at most one possible

exception. In this paper, we study transcendental values of log double sine function using their

method.
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1. Introduction. Recall that multiple sine
functions S, (z) are constructed as

Sy(z) = ]:[ (ng+-+n,+x)

Ny,e..,np >0
(_1)#1
oty — ;L‘)) ’

where J] denotes the regularized product of
Deninger [3]:
s—0>.

d
A=exp| —— AT°

We refer to [2,6-8] for the details of multiple sine
functions. We are interested with special values of
log multiple sine functions to investigate unknown
special values of zeta functions.

In [4,5](2009), S. Gun, M. R. Murty and P.
Rath investigated the transcendency of

logT'(z) +logT'(1 — x)

for any rational number z € (0,3).

5)- By Lerch’s
formula [9] we have
logI'(z) 4+ logI'(1 — z) = log ™ — log sin(mx)
= log(27m) — log Si(z).
Here we study an analogue of this result for double
sine function Sy (z). Using the definition of Sy(z) we
have

Sy(z) = Sp(2 — ).

Hence, we may restrict ourselves to the domain
0 < z < 1 for log S2(z). This domain corresponds to
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the domain 0 < z < § for logI'(z) + log'(1 — z) =
log 7 — log sin(mz).
Theorem 1.1.
rational number.
(1) For any positive integer k, the number

log |Sa(a + k)|

Let ae(0,1)—{},2} be a

is transcendental with at most one possible excep-
tional k.
(2) For any non-positive integer k, the number

log |Ss(a + k)|

is transcendental with at most one possible excep-
tional k.
Remark 1.2. Let G be the Catalan con-

stant, that is, G=> (2(;)17)2 =0.9159--- > 0.

Then Kurokawa and Koyama [7, Example 2.9 (a)]

obtained
1 3 G
S <Z> = 28 exp < %) .

Corollary 1.3. (1) Let k be any positive
integer. Then the number

1 3_ 4k G
log 1Sy =+ k)| = log2 — —
o8| 2(4+ ) g Bt on

is transcendental with at most one possible excep-
tional k.
(2) Let k be any non-positive integer. Then the
number

(1.1)

1 3+ 4k G
log|Sg(Z+k>|= S log2 — —

21’
is transcendental with at most one possible excep-
tional k.
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2. Proofs.

We prepare the following lemma:

Lemma 2.1 ([7, (a) of Theorem 2.1]).
xz € R. We have

Let

(2.1)

where we put
S()({E) = —1.

Lemma 2.2. Let k; be distinct positive inte-

gers fori=1,2 and a € (0,1) — %,%} be a rational

number. Put g(k;) := log|Sa(a + k;)|. Then we have
g(k1) # g(ks).
Proof of Lemma 2.2. Assume k; > ko > 0 and
g(k1) = g(kq). Since by (2.1)
g(k;) :=log |Sa(a + ki)| = log [S:2(ar)]|

ki—1

=) "log|Si(a+1)
=0

for 1 = 1,2, we have

ki—1
Z log [Si(a+1)| =0
1=k
from g(k1) = g(kz). Since a € (0,1)—{§,2} is a
rational number and
ki1 k-1
[T 1S+ 01 =[] 12sin(r(a +1)]
I=ky I=ky
= (2sin(am)" R £1,
we have a contradiction. So g(k1) # g(ka). O

Proof of Theorem 1.1. Now we prove (1) of
Theorem 1.1. Suppose otherwise, namely, there
exist positive integers ki, ko (k1 > ko) such that
both values g(k;) and g(ks) are algebraic. Then
using Lemma 2.2 we see that the algebraic number
g(k1) — g(ko) is expressed as

-1
(22) 0#g(k) — g(ks) = > log|Si(a +1)].
1=k

We recall a famous result of Baker.

[Vol. 90(A),

Lemma 2.3 ([1, Theorem 2.2]). Any non-
vanishing linear combination of logarithms of alge-
braic numbers with algebraic coefficients is tran-
scendental.

From (2.2) and Lemma 2.3 g(k1) — g(k2) is
transcendental. This gives a contradiction. Next
we prove (2) of Theorem 1.1. By the definition we
have

$1(2—7) = Sy(x) 7",
so that for ae€(0,1)—{§,2} and for positive
integer k
Sy(a+k) ™ =552 — (a+k)) = So(e/ + &),
where o/ =1—«a and ¥ =1—k. Hence, (2) of

Theorem 1.1 is given by (1) of Theorem 1.1. O
Proof of Corollary 1.3. Corollary 1.3 is given

by Theorem 1.1, (1.1) and (2.1). O
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