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Abstract: In this short article, we consider estimates of the ratio

kfkBMOðwÞ=kfkBMO

from above and below, where w belongs to Muckenhoupt class A1. The upper bound of the ratio

was proved by Hytönen and Pérez in [6] with the optimal power. We establish the lower bound of

the ratio and give two other proofs of the upper bound.
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1. Introduction. In this paper, we are in-

terested in estimates of the ratio

kfkBMOðwÞ=kfkBMO

with respect to the weight w belonging to

Muckenhoupt class A1. Our purposes are to

establish the lower bound of the ratio and to give

two other proofs of the upper bound due to Hytönen

and Pérez in [6].

In [9], Muckenhoupt and Wheeden proved that

for any w 2 A1, it holds BMOðwÞ ¼ BMO. Recent-

ly, Hytönen and Pérez [6] gave the upper bound of

the ratio;

kfkBMOðwÞ � cnkwkA1kfkBMO;ð1:1Þ

where kwkA1 is Wilson’s A1 constant, see Defini-

tion 2.6. Moreover, they [6] proved that the power

1 of kwkA1 cannot be replaced by any smaller

quantity. Main result in this paper is the following

lower bound of the ratio.

Theorem 1.1. There exists cn > 0 such that

for any w 2 A1,

kfkBMO � cn logð2½w�A1ÞkfkBMOðwÞ:ð1:2Þ

Remark 1.2.

(a) We do not know whether the order logð2½w�A1Þ
is optimal or not.

(b) If the inequality

kfkBMO � cnkfkBMOðwÞ

is true, the exponent 0 of ½w�A1 is optimal. In

fact, for wðxÞ ¼ t�EðxÞ þ �EcðxÞ 2 A1 with a

compact set E � Rn and large t, it follows

klogwkBMO ¼ klogwkBMOðwÞ ¼
1

2
log t:

We will give two other proofs of the upper

bound (1.1). To verify (1.1) in [6], they used the

reverse Hölder inequality;

hwrwi1=rwQ � 2hwiQ;

for a cube Q � Rn and rw ¼ 1þ ðcnkwkA1Þ
�1. Our

proofs of (1.1) are not based on this type inequality.

Our main tools are a dual inequality with the sharp

maximal operator M]
� due to Lerner [7] and another

representation of kwkA1 .

These estimates are related to the sharp

weighted inequalities for Calderón-Zygmund oper-

ators. The sharp weighted inequality for an oper-

ator T means the inequality

kTfkLpðwÞ � cn;p;T�ð½w�Ap
ÞkfkLpðwÞð1:3Þ

with the optimal growth function � on ½1;1Þ in

the sense that � cannot be replaced by any smaller

function. Recently, Hytönen [5] solved so-called A2

conjecture i.e., for any Calderón-Zygmund operator

T (1.3) holds with �ðtÞ ¼ t. By combining this with

the extrapolation theorem in [1], we can see that for

p 2 ð1;1Þ (1.3) with �ðtÞ ¼ tmaxð1;1=ðp�1ÞÞ holds and

the exponent maxð1; 1=ðp� 1ÞÞ is optimal. From the

upper bound (1.1), it immediately follows

kTfkBMOðwÞ � cnkTkL1!BMOkwkA1kfkL1ðwÞ
which corresponds to (1.3) with p ¼ 1. Further,
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they [6] showed the optimality of the exponent 1 of

kwkA1 . On the other hand, our lower bound (1.2)

yields that

kTkBMOðwÞ!BMOðwÞ �
cnkTkBMO!BMOkwkA1 logð2½w�A1Þ:

2. Preliminaries. We say w a weight if w is

a non-negative and locally integrable function. For

a subset E � Rn, �E means the characteristic

function of E and jEj denotes the volume of E. By

a ‘‘cube’’ Q we mean a cube in Rn with sides parallel

to the coordinate axes. Throughout this article we

use the following notations; wðQÞ ¼
Z
Q

wdx, hfiQ ¼
1

jQj

Z
Q

fdx and hfiQ;w ¼
1

wðQÞ

Z
Q

fwdx.

Firstly, we recall definitions of Muckenhoupt

classes Ap and BMO spaces.

Definition 2.1. A weight w is said to be in

the Muckenhoupt class if the following Ap constant

½w�Ap
is finite;

½w�A1
:¼ sup

Q
hwiQkw�1kL1ðQÞ;

½w�Ap
:¼ sup

Q
hwiQhw1�p0 ip�1

Q ; for p 2 ð1;1Þ

and

½w�A1 :¼ sup
Q
hwiQ expðhlogw�1iQÞ:

Remark 2.2.

(a) ½w�Ap
� 1 and p < q) Ap � Aq.

(b) Because lim
r&0
hjf jri1=rQ ¼ exphlog jf jiQ, it follows

lim
p%1
½w�Ap

¼ ½w�A1 .

Definition 2.3. With a weight w, one de-

fines BMOðwÞ as the space of locally integrable

functions f with respect to w such that

kfkBMOðwÞ ¼ sup
Q
hjf � hfiQ;wjiQ;w <1:

Remark 2.4. There is another weighted

BMO, BMOw, which is defined by

kfkBMOw
¼ sup

Q
inf
c2C

1

wðQÞ

Z
Q

jf � cjdx <1:

It is known that for w 2 A1, this space is the dual

space of the weighted Hardy space H1ðwÞ, i.e.,

BMOw ¼ ðH1ðwÞÞ�, see [3].

The definition of Wilson’s constant kwkA1 uses

the restricted Hardy-Littlewood maximal operator.

Definition 2.5. For any measurable subset

E � Rn, Hardy-Littlewood maximal operator ME

restricted to E is defined by

MEfðxÞ ¼ sup
E�R3x

hjfjiR;

where the supremun is taken over all cubes R

containing x and included in E. When E ¼ Rn, we

write M ¼ME.

Definition 2.6.

kwkA1 ¼ sup
Q

1

wðQÞ

Z
Q

MQwdx:

Remark 2.7.

(a) w 2 A1 () kwkA1<1, and kwkA1 � cn½w�A1 .

(b) There are several equivalent quantities to

kwkA1 ;

kwkA1 	 sup
Q

1

wðQÞ

Z
Q

w log eþ
1

hwiQ

 !
dx

	 sup
Q

1

hwiQ
kwkL logLðQÞ

	 sup
Q

1

wðQÞ

Z
2Q

Mð�QwÞdx

	 sup
Q

1

wðQÞ

Z
2Q

jRjð�QwÞjdx;

where j ¼ 1; 
 
 
 ; n; kfkL logLðQÞ is defined by

inf � > 0;
jf j
�

log eþ
jf j
�

� �� �
Q

� 1

( )

and Rj is the j-th Riesz transformation. The

first and second equivalences are proved by

L logL theory due to Stein [10]. The third and

fourth ones were proved by Fujii [2]. From the

third representation, we obtain an inequality

Mð�QwÞð2QÞ � cnkwkA1wðQÞ;

which should be compared with the doubling

inequality with ½w�A1 ;

wð2QÞ � 22n ½w�2
n

A1
wðQÞ;

see for example [4].

3. Lower bound. Owing to a version of

John-Nirenberg inequality in the context of non-

doubling measures in [8], one obtains a variant of

the equivalence

kfkBMO 	 sup
Q
kf � hfiQkexpLðQÞð3:1Þ

with constants independent of weights.

Lemma 3.1. There exist constants c1; c2 > 0

such that for any w 2 A1, it follows
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c1 sup
Q
kf � hfiQ;wkexpLðQ;wÞ � kfkBMOðwÞ

� c2 sup
Q
kf � hfiQ;wkexpLðQ;wÞ;

where kfkexpLðQ;wÞ is defined by

inf � > 0; exp
jf j
�

� �
� 1

� �
Q;w

� 1

( )
:

With this lemma, we give a proof of our lower

bound, Theorem 1.1.

Proof of Theorem 1.1. From the definition of

kfkexpLðQ;wÞ above, it follows

exp
jfj

kfkexpLðQ;wÞ

 !* +
Q;w

� 2:

By using the version of Jensen’s inequality

exphgiQ � ½w�A1hexpðgÞiQ;w;ð3:2Þ

one obtains

hjf jiQ � logð2½w�A1ÞkfkexpLðQ;wÞ:

The proof is completed by this inequality and

Lemma 3.1 as follows:

hjf � hfiQjiQ � 2hjf � hfiQ;wjiQ
� 2 logð2½w�A1Þkf � hfiQ;wkexpLðQ;wÞ

� cn logð2½w�A1ÞkfkBMOðwÞ:

�

Remark 3.2. The inequality (3.2) is equiv-

alent to

exphlog jf jiQ � ½w�A1hjf jiQ;w;ð3:3Þ
which should be compared with (4.1). (3.3) can be

verified by taking p%1 in

hjfj1=pipQ � ½w�Ap
hjfjiQ;w;

see 2 in Remark 2.2.

4. Two other proofs of the upper

bound. Here, we give two other proofs of the

upper bound without reverse Hölder inequality.

4.1. Method based on a dual inequality.

The key inequality in this method is the following

dual inequality with local sharp maximal operator

due to Lerner [7];

Proposition 4.1. There exists cn > 0 so that

for any � < cn

1

jQj

Z
Q

jf � hfiQjgdx � cn
Z
Q

M]
�fMQgdx;

where M]
�fðxÞ ¼ sup

Q3x
inf
c2C
ð�Qðf � cÞÞ�ð�jQjÞ, ð0 <

� < 1Þ and g� means the non-increasing rearrange-

ment of g.

Using this proposition, we can immediately

show the optimal upper bound (1.1) as follows:

Proof of (1.1).

hjf � hfiQ;wjiQ;w � 2hjf � hfiQjiQ;w

� cn
1

wðQÞ

Z
Q

M
]
�fMQwdx

� cnkfkBMOkwkA1 :
�

4.2. Method based on another representa-

tion of kwkA1 . Next, we give a proof of (1.1) by

using another representation of kwkA1 .

Proposition 4.2.

kwkA1 	 sup
Q;f

hjfjiQ;w

kfkexpLðQÞ
;

where kfkexpLðQÞ is defined by

inf � > 0; exp
jf j
�

� �
� 1

� �
Q

� 1

( )
:

Remark 4.3. This form should be compared

with

½w�A1 ¼ sup
Q;f

exphlog jfjiQ
hjf jiQ;w

;

see for example [3].

We show this proposition and then give a proof

of (1.1).

Proof. By Hölder inequality in the context of

Orlicz spaces, we have

hjf jiQ;w � cn
jQj
wðQÞ kfkexpLðQÞkwkL logLðQÞ

� cnkwkA1kfkexpLðQÞ:

On the other hand, for a cube Q, from the duality,

we can find a function g 2 expLðQÞ such that

kwkL logLðQÞkgkexpLðQÞ � cn
1

jQj

Z
Q

wgdx

����
����

� cnhwiQhjgjiQ;w;

and then, by using the representation of kwkA1 in

Remark 2.7, one obtains

kwkA1 � cn sup
Q

1

hwiQ
kwkL logLðQÞ
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� cn sup
Q

hjgjiQ;w

kgkexpLðQÞ

� cn sup
Q;f

hjf jiQ;w

kfkexpLðQÞ
:

�

Proof of (1.1). From Proposition 4.2, it holds

hjfjiQ;w � cnkwkA1kfkexpLðQÞ:ð4:1Þ

Therefore,

hjf � hfiQ;wjiQ;w � 2hjf � hfiQjiQ;w

� cnkwkA1kf � hfiQkexpLðQÞ

� cnkwkA1kfkBMO:
�
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