A_{∞} constants between $B M O$ and weighted $B M O$

By Yohei Tsutsui
Department of Mathematics, Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

(Communicated by Masaki Kashiwara, M.J.A., Dec. 12, 2013)
Abstract: In this short article, we consider estimates of the ratio

$$
\|f\|_{B M O(w)} /\|f\|_{B M O}
$$

from above and below, where w belongs to Muckenhoupt class A_{∞}. The upper bound of the ratio was proved by Hytönen and Pérez in [6] with the optimal power. We establish the lower bound of the ratio and give two other proofs of the upper bound.

Key words: BMO; Muckenhoupt classes.

1. Introduction. In this paper, we are interested in estimates of the ratio

$$
\|f\|_{B M O(w)} /\|f\|_{B M O}
$$

with respect to the weight w belonging to Muckenhoupt class A_{∞}. Our purposes are to establish the lower bound of the ratio and to give two other proofs of the upper bound due to Hytönen and Pérez in [6].

In [9], Muckenhoupt and Wheeden proved that for any $w \in A_{\infty}$, it holds $B M O(w)=B M O$. Recently, Hytönen and Pérez [6] gave the upper bound of the ratio;

$$
\begin{equation*}
\|f\|_{B M O(w)} \leq c_{n}\|w\|_{A_{\infty}}\|f\|_{B M O} \tag{1.1}
\end{equation*}
$$

where $\|w\|_{A_{\infty}}$ is Wilson's A_{∞} constant, see Definition 2.6. Moreover, they [6] proved that the power 1 of $\|w\|_{A_{\infty}}$ cannot be replaced by any smaller quantity. Main result in this paper is the following lower bound of the ratio.

Theorem 1.1. There exists $c_{n}>0$ such that for any $w \in A_{\infty}$,

$$
\begin{equation*}
\|f\|_{B M O} \leq c_{n} \log \left(2[w]_{A_{\infty}}\right)\|f\|_{B M O(w)} \tag{1.2}
\end{equation*}
$$

Remark 1.2.

(a) We do not know whether the order $\log \left(2[w]_{A_{\infty}}\right)$ is optimal or not.
(b) If the inequality

$$
\|f\|_{B M O} \leq c_{n}\|f\|_{B M O(w)}
$$

is true, the exponent 0 of $[w]_{A_{\infty}}$ is optimal. In

[^0]fact, for $w(x)=t \chi_{E}(x)+\chi_{E^{c}}(x) \in A_{1}$ with a compact set $E \subset \mathbf{R}^{n}$ and large t, it follows
$$
\|\log w\|_{B M O}=\|\log w\|_{B M O(w)}=\frac{1}{2} \log t
$$

We will give two other proofs of the upper bound (1.1). To verify (1.1) in [6], they used the reverse Hölder inequality;

$$
\left\langle w^{r_{w}}\right\rangle_{Q}^{1 / r_{w}} \leq 2\langle w\rangle_{Q}
$$

for a cube $Q \subset \mathbf{R}^{n}$ and $r_{w}=1+\left(c_{n}\|w\|_{A_{\infty}}\right)^{-1}$. Our proofs of (1.1) are not based on this type inequality. Our main tools are a dual inequality with the sharp maximal operator M_{λ}^{\sharp} due to Lerner [7] and another representation of $\|w\|_{A_{\infty}}$.

These estimates are related to the sharp weighted inequalities for Calderón-Zygmund operators. The sharp weighted inequality for an operator T means the inequality

$$
\begin{equation*}
\|T f\|_{L^{p}(w)} \leq c_{n, p, T} \Phi\left([w]_{A_{p}}\right)\|f\|_{L^{p}(w)} \tag{1.3}
\end{equation*}
$$

with the optimal growth function Φ on $[1, \infty)$ in the sense that Φ cannot be replaced by any smaller function. Recently, Hytönen [5] solved so-called A_{2} conjecture i.e., for any Calderón-Zygmund operator T (1.3) holds with $\Phi(t)=t$. By combining this with the extrapolation theorem in [1], we can see that for $p \in(1, \infty)$ (1.3) with $\Phi(t)=t^{\max (1,1 /(p-1))}$ holds and the exponent $\max (1,1 /(p-1))$ is optimal. From the upper bound (1.1), it immediately follows

$$
\|T f\|_{B M O(w)} \leq c_{n}\|T\|_{L^{\infty} \rightarrow B M O}\|w\|_{A_{\infty}}\|f\|_{L^{\infty}(w)}
$$

which corresponds to (1.3) with $p=\infty$. Further,
they [6] showed the optimality of the exponent 1 of $\|w\|_{A_{\infty}}$. On the other hand, our lower bound (1.2) yields that

$$
\begin{aligned}
& \|T\|_{B M O(w) \rightarrow B M O(w)} \leq \\
& \quad c_{n}\|T\|_{B M O \rightarrow B M O}\|w\|_{A_{\infty}} \log \left(2[w]_{A_{\infty}}\right) .
\end{aligned}
$$

2. Preliminaries. We say w a weight if w is a non-negative and locally integrable function. For a subset $E \subset \mathbf{R}^{n}, \chi_{E}$ means the characteristic function of E and $|E|$ denotes the volume of E. By a "cube" Q we mean a cube in \mathbf{R}^{n} with sides parallel to the coordinate axes. Throughout this article we use the following notations; $w(Q)=\int_{Q} w d x,\langle f\rangle_{Q}=$ $\frac{1}{|Q|} \int_{Q} f d x$ and $\langle f\rangle_{Q ; w}=\frac{1}{w(Q)} \int_{Q} f w d x$.

Firstly, we recall definitions of Muckenhoupt classes A_{p} and $B M O$ spaces.

Definition 2.1. A weight w is said to be in the Muckenhoupt class if the following A_{p} constant $[w]_{A_{p}}$ is finite;

$$
\begin{gathered}
{[w]_{A_{1}}:=\sup _{Q}\langle w\rangle_{Q}\left\|w^{-1}\right\|_{L^{\infty}(Q)},} \\
{[w]_{A_{p}}:=\sup _{Q}\langle w\rangle_{Q}\left\langle w^{1-p^{\prime}}\right\rangle_{Q}^{p-1}, \text { for } p \in(1, \infty)}
\end{gathered}
$$

and

$$
[w]_{A_{\infty}}:=\sup _{Q}\langle w\rangle_{Q} \exp \left(\left\langle\log w^{-1}\right\rangle_{Q}\right) .
$$

Remark 2.2.

(a) $[w]_{A_{p}} \geq 1$ and $p<q \Rightarrow A_{p} \subset A_{q}$.
(b) Because $\left.\left.\lim _{r \backslash 0}\langle | f\right|^{r}\right\rangle_{Q}^{1 / r}=\exp \langle\log | f| \rangle_{Q}$, it follows $\lim _{p / \infty}[w]_{A_{p}}=[w]_{A_{\infty}}$.
Definition 2.3. With a weight w, one defines $B M O(w)$ as the space of locally integrable functions f with respect to w such that

$$
\|f\|_{B M O(w)}=\sup _{Q}\langle | f-\langle f\rangle_{Q ; w}| \rangle_{Q ; w}<\infty .
$$

Remark 2.4. There is another weighted $B M O, B M O_{w}$, which is defined by

$$
\|f\|_{B M O_{w}}=\sup _{Q} \inf _{c \in \mathbf{C}} \frac{1}{w(Q)} \int_{Q}|f-c| d x<\infty .
$$

It is known that for $w \in A_{\infty}$, this space is the dual space of the weighted Hardy space $H^{1}(w)$, i.e., $B M O_{w}=\left(H^{1}(w)\right)^{*}$, see [3].

The definition of Wilson's constant $\|w\|_{A_{\infty}}$ uses the restricted Hardy-Littlewood maximal operator.

Definition 2.5. For any measurable subset $E \subset \mathbf{R}^{n}$, Hardy-Littlewood maximal operator M_{E}
restricted to E is defined by

$$
M_{E} f(x)=\sup _{E \supset R \ni x}\langle | f| \rangle_{R},
$$

where the supremun is taken over all cubes R containing x and included in E. When $E=\mathbf{R}^{n}$, we write $M=M_{E}$.

Definition 2.6.

$$
\|w\|_{A_{\infty}}=\sup _{Q} \frac{1}{w(Q)} \int_{Q} M_{Q} w d x
$$

Remark 2.7.

(a) $w \in A_{\infty} \Longleftrightarrow\|w\|_{A_{\infty}}<\infty$, and $\|w\|_{A_{\infty}} \leq c_{n}[w]_{A_{\infty}}$.
(b) There are several equivalent quantities to $\|w\|_{A_{\infty}} ;$

$$
\begin{aligned}
\|w\|_{A_{\infty}} & \approx \sup _{Q} \frac{1}{w(Q)} \int_{Q} w \log \left(e+\frac{1}{\langle w\rangle_{Q}}\right) d x \\
& \approx \sup _{Q} \frac{1}{\langle w\rangle_{Q}}\|w\|_{L \log L(Q)} \\
& \approx \sup _{Q} \frac{1}{w(Q)} \int_{2 Q} M\left(\chi_{Q} w\right) d x \\
& \approx \sup _{Q} \frac{1}{w(Q)} \int_{2 Q}\left|R_{j}\left(\chi_{Q} w\right)\right| d x
\end{aligned}
$$

where $j=1, \cdots, n,\|f\|_{L \log L(Q)}$ is defined by

$$
\inf \left\{\lambda>0 ;\left\langle\frac{|f|}{\lambda} \log \left(e+\frac{|f|}{\lambda}\right)\right\rangle_{Q} \leq 1\right\}
$$

and R_{j} is the j-th Riesz transformation. The first and second equivalences are proved by $L \log L$ theory due to Stein [10]. The third and fourth ones were proved by Fujii [2]. From the third representation, we obtain an inequality

$$
M\left(\chi_{Q} w\right)(2 Q) \leq c_{n}\|w\|_{A_{\infty}} w(Q)
$$

which should be compared with the doubling inequality with $[w]_{A_{\infty}}$;

$$
w(2 Q) \leq 2^{2^{n}}[w]_{A_{\infty}}^{2^{n}} w(Q)
$$

see for example [4].
3. Lower bound. Owing to a version of John-Nirenberg inequality in the context of nondoubling measures in [8], one obtains a variant of the equivalence

$$
\begin{equation*}
\|f\|_{B M O} \approx \sup _{Q}\left\|f-\langle f\rangle_{Q}\right\|_{\exp L(Q)} \tag{3.1}
\end{equation*}
$$

with constants independent of weights.
Lemma 3.1. There exist constants $c_{1}, c_{2}>0$ such that for any $w \in A_{\infty}$, it follows

$$
\begin{aligned}
& c_{1} \sup _{Q}\left\|f-\langle f\rangle_{Q ; w}\right\|_{\exp L(Q ; w)} \leq\|f\|_{B M O(w)} \\
& \quad \leq c_{2} \sup _{Q}\left\|f-\langle f\rangle_{Q ; w}\right\|_{\exp L(Q ; w)},
\end{aligned}
$$

where $\|f\|_{\exp L(Q ; w)}$ is defined by

$$
\inf \left\{\lambda>0 ;\left\langle\exp \left(\frac{|f|}{\lambda}\right)-1\right\rangle_{Q ; w} \leq 1\right\}
$$

With this lemma, we give a proof of our lower bound, Theorem 1.1.

Proof of Theorem 1.1. From the definition of $\|f\|_{\exp L(Q ; w)}$ above, it follows

$$
\left\langle\exp \left(\frac{|f|}{\|f\|_{\exp L(Q ; w)}}\right)\right\rangle_{Q ; w} \leq 2
$$

By using the version of Jensen's inequality

$$
\begin{equation*}
\exp \langle g\rangle_{Q} \leq[w]_{A_{\infty}}\langle\exp (g)\rangle_{Q ; w} \tag{3.2}
\end{equation*}
$$

one obtains

$$
\langle | f\left\rangle_{Q} \leq \log \left(2[w]_{A_{\infty}}\right)\|f\|_{\exp L(Q ; w)}\right.
$$

The proof is completed by this inequality and Lemma 3.1 as follows:

$$
\begin{aligned}
\langle | f-\langle f\rangle_{Q}| \rangle_{Q} & \leq 2\langle | f-\langle f\rangle_{Q ; w}| \rangle_{Q} \\
& \leq 2 \log \left(2[w]_{A_{\infty}}\right)\left\|f-\langle f\rangle_{Q ; w}\right\|_{\exp L(Q ; w)} \\
& \leq c_{n} \log \left(2[w]_{A_{\infty}}\right)\|f\|_{B M O(w)}
\end{aligned}
$$

Remark 3.2. The inequality (3.2) is equivalent to

$$
\begin{equation*}
\left.\exp \langle\log | f\left\rangle_{Q} \leq[w]_{A_{\infty}}\langle | f\right|\right\rangle_{Q ; w}, \tag{3.3}
\end{equation*}
$$

which should be compared with (4.1). (3.3) can be verified by taking $p \nearrow \infty$ in

$$
\left.\left.\langle | f\right|^{1 / p}\right\rangle_{Q}^{p} \leq[w]_{A_{p}}\langle | f| \rangle_{Q ; w},
$$

see 2 in Remark 2.2.
4. Two other proofs of the upper bound. Here, we give two other proofs of the upper bound without reverse Hölder inequality.
4.1. Method based on a dual inequality. The key inequality in this method is the following dual inequality with local sharp maximal operator due to Lerner [7];

Proposition 4.1. There exists $c_{n}>0$ so that for any $\lambda<c_{n}$

$$
\frac{1}{|Q|} \int_{Q}\left|f-\langle f\rangle_{Q}\right| g d x \leq c_{n} \int_{Q} M_{\lambda}^{\sharp} f M_{Q} g d x,
$$

where $\quad M_{\lambda}^{\sharp} f(x)=\sup _{Q \ni x} \inf _{c \in \mathbf{C}}\left(\chi_{Q}(f-c)\right)^{*}(\lambda|Q|), \quad(0<$ $\lambda<1)$ and g^{*} means the non-increasing rearrangement of g.

Using this proposition, we can immediately show the optimal upper bound (1.1) as follows:

Proof of (1.1).

$$
\begin{aligned}
\langle | f-\langle f\rangle_{Q ; w}| \rangle_{Q ; w} & \leq 2\langle | f-\langle f\rangle_{Q}| \rangle_{Q ; w} \\
& \leq c_{n} \frac{1}{w(Q)} \int_{Q} M_{\lambda}^{\sharp} f M_{Q} w d x \\
& \leq c_{n}\|f\|_{B M O}\|w\|_{A_{\infty}} .
\end{aligned}
$$

4.2. Method based on another representation of $\|\boldsymbol{w}\|_{A_{\infty}}$. Next, we give a proof of (1.1) by using another representation of $\|w\|_{A_{\infty}}$.

Proposition 4.2.

$$
\|w\|_{A_{\infty}} \approx \sup _{Q, f} \frac{\langle | f| \rangle_{Q ; w}}{\|f\|_{\exp L(Q)}}
$$

where $\|f\|_{\exp L(Q)}$ is defined by

$$
\inf \left\{\lambda>0 ;\left\langle\exp \left(\frac{|f|}{\lambda}\right)-1\right\rangle_{Q} \leq 1\right\}
$$

Remark 4.3. This form should be compared with

$$
[w]_{A_{\infty}}=\sup _{Q, f} \frac{\exp \langle\log | f| \rangle_{Q}}{\langle | f| \rangle_{Q ; w}}
$$

see for example [3].
We show this proposition and then give a proof of (1.1).

Proof. By Hölder inequality in the context of Orlicz spaces, we have

$$
\begin{aligned}
\langle | f\left\rangle_{Q ; w}\right. & \leq c_{n} \frac{|Q|}{w(Q)}\|f\|_{\exp L(Q)}\|w\|_{L \log L(Q)} \\
& \leq c_{n}\|w\|_{A_{\infty}}\|f\|_{\exp L(Q)}
\end{aligned}
$$

On the other hand, for a cube Q, from the duality, we can find a function $g \in \exp L(Q)$ such that

$$
\begin{aligned}
\|w\|_{L \log L(Q)}\|g\|_{\exp L(Q)} & \leq c_{n} \frac{1}{|Q|}\left|\int_{Q} w g d x\right| \\
& \leq c_{n}\langle w\rangle_{Q}\langle | g| \rangle_{Q ; w},
\end{aligned}
$$

and then, by using the representation of $\|w\|_{A_{\infty}}$ in Remark 2.7, one obtains

$$
\|w\|_{A_{\infty}} \leq c_{n} \sup _{Q} \frac{1}{\langle w\rangle_{Q}}\|w\|_{L \log L(Q)}
$$

$$
\begin{aligned}
& \leq c_{n} \sup _{Q} \frac{\langle | g| \rangle_{Q ; w}}{\|g\|_{\exp L(Q)}} \\
& \leq c_{n} \sup _{Q, f} \frac{\langle\mid f\rangle_{Q ; w}}{\|f\|_{\exp L(Q)}}
\end{aligned}
$$

Proof of (1.1). From Proposition 4.2, it holds

$$
\begin{equation*}
\langle | f\left\rangle_{Q ; w} \leq c_{n}\|w\|_{A_{\infty}}\|f\|_{\exp L(Q)}\right. \tag{4.1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\langle | f-\langle f\rangle_{Q ; w}| \rangle_{Q ; w} & \leq 2\langle | f-\langle f\rangle_{Q}| \rangle_{Q ; w} \\
& \leq c_{n}\|w\|_{A_{\infty}}\left\|f-\langle f\rangle_{Q}\right\|_{\exp L(Q)} \\
& \leq c_{n}\|w\|_{A_{\infty}}\|f\|_{B M O} .
\end{aligned}
$$

Acknowledgments. This paper was completed during his stay in Friedrich-Schiller University Jena. The author would like to thank Profs. H.-J. Schmeißer, D. D. Haroske and H. Triebel for their hospitality. The author is grateful to Prof. Y. Komori-Furuya for having checked the manuscript carefully. The author is also grateful to the referee for reading this manuscript carefully and giving him some comments.

References

[1] O. Dragičevic, L. Grafakos, M. C. Pereyra and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73-91.
[2] N. Fujii, Weighted bounded mean oscillation and singular integrals, Math. Japon. 22 (1977/78), no. 5, 529-534.
[3] J. García-Cuerva, Weighted H^{p}-spaces, Disertationes Math. (Rozprawy Mat.) 162 (1979), 63pp.
[4] L. Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, 250, Springer, New York, 2009.
[5] T. P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473-1506.
[6] T. Hytönen and C. Pérez, Sharp weighted bounds involving A_{∞}, Anal. PDE 6 (2013), no. 4, 777818.
[7] A. K. Lerner, Weighted rearrangement inequalities for local sharp maximal functions, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2445-2465 (electronic).
[8] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. J. 102 (2000), no. 3, 533-565.
[9] B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1975/76), no. 3, 221237.
[10] E. M. Stein, Note on the class $L \log L$, Studia Math. 32 (1969), 305-310.

[^0]: 2010 Mathematics Subject Classification. Primary 42B35.

