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Introduction. As is well known, for two odd

prime numbers p and q, the Legendre symbol ðpqÞ
describes the decomposition law of q in the quad-

ratic extension Qð ffiffiffipp Þ=Q. Here we note that the

number field Qð ffiffiffipp Þ for p � 1 (mod 4Þ is charac-

terized as the unique quadratic extension of Q

where only p is ramified.

In 1939, L. Rédei ([R]) introduced a certain

triple symbol with the intension of a generalization

of the Legendre symbol and Gauss’ genus theory.

For three prime numbers p1; p2; p3 � 1 (mod 4Þ
with ðpipjÞ ¼ 1 ð1 5 i 6¼ j 5 3Þ Rédei’s triple symbol

½p1; p2; p3� describes the decomposition law of p3 in a

dihedral extension K=Q of degree 8, (i.e., a Galois

extension K=Q with the Galois group GalðK=QÞ
being the dihedral group D8 of order 8) which is

constructed as follows. By the assumptions on p1

and p2, there are integers x; y; z such that

x2 � p1y
2 � p2z

2 ¼ 0; g:c:dðx; y; zÞ ¼ 1;

y � 0 (mod 2Þ; x� y � 1 (mod 4Þ:

Then Rédei’s extension K=Q is given by

K ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p
Þ; � ¼ xþ y ffiffiffiffiffi

p1
p

:

It can be shown that K=Q is a dihedral extension of

degree 8 such that only p1 and p2 are ramified

among all prime numbers. A meaning of Rédei’s

extension K=Q was explained by M. Morishita

([Mi]) from the viewpoint of the analogy with link

theory where Rédei’s triple symbol ½p1; p2; p3� is

interpreted as a triple linking number.

In this note we give an arithmetic character-

ization of Rédei’s dihedral extension as follows (see

Theorem 2.1):

Theorem. Let p1 and p2 be prime number

such that

pi � 1 (mod 4Þ ði¼ 1; 2Þ;
pi

pj

� �
¼ 1 ð1 5 i 6¼ j 5 2Þ:

Let K be a dihedral extension over Q such that all

prime numbers ramified in K=Q are only p1 and p2

with ramification index 2. Then, changing p1 and p2

if necessary, there are integers x; y; z satisfying

x2 � p1y
2 � p2z

2 ¼ 0; g:c:dðx; y; zÞ ¼ 1;

y � 0 (mod 2Þ; x� y � 1 (mod 4Þ;

such that

K ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p
Þ; � ¼ xþ y ffiffiffiffiffi

p1
p

:

We also give another simple proof of the reciprocity

law of Rédei’s triple symbol in Section 3.

Notation. For a number field k we denote by

Ok the ring of integers of k.

1. Rédei’s dihedral extension and its

uniqueness. In this section, we recall the con-

struction of Rédei’s dihedral extension ([R]). Since

Rédei’s account ([R]) was written in a rather

classical and complicated manner, we give here a

presentation by clarifying arguments using modern

algebraic number theory.

Let p1 and p2 be distinct prime number such

that p1; p2 � 1 (mod 4Þ and ðp1

p2
Þ ¼ ðp2

p1
Þ ¼ 1. We set

ki ¼ Qð ffiffiffiffipip Þ ði ¼ 1; 2Þ.
Lemma 1.1. There are integers x; y; z sat-

isfying the following condition:

(1) x2 � p1y
2 � p2z

2 ¼ 0,

(2) g:c:dðx; y; zÞ ¼ 1, y � 0 (mod 2Þ, x� y � 1

(mod 4Þ.
Furthermore, for a given prime ideal p of Ok1

lying

over p2, we can find integers x; y; z which satisfy

ð1Þ; ð2Þ and ðxþ y ffiffiffiffiffi
p1
p Þ ¼ pm for an odd positive

integer m.

Proof. Since ðp1

p2
Þ ¼ 1, p2 is decomposed in k1,
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say ðp2Þ ¼ pp0. Since p1 � 1 (mod 4Þ, the class

number, say c, of k1 is odd by genus theory ([O])

and hence pc ¼ ð�Þ for some � ¼ sþt ffiffiffiffip1
p

2 2
Ok1

; s; t 2 Z; s � t (mod 2Þ. Since Nðð�ÞÞ ¼ Npc ¼
pc2, Nk1=Qð�Þ ¼

s2�p1t
2

4 ¼ �pc2. Since p1 � 1 (mod 4Þ,
there is a unit � 2 O�k1

such that Nk1=Qð�Þ ¼ �1 and
so we may assume Nk1=Qð�Þ ¼ pc2.

(i) Case p1 � 1 (mod 8Þ: If s � t � 1 (mod 2Þ,
s2 � t2 � 1 (mod 8Þ and so s2 � p1t

2 � 0 (mod 8Þ.
Hence we have 2jpc2, which is a contradiction.

Therefore we have s � t � 0 (mod 2Þ. Putting x ¼
s
2, y ¼ t

2, � ¼ xþ y ffiffiffiffiffi
p1
p

and x2 � p1y
2 ¼ pc2 ¼ p2z

2,

z ¼ pðc�1Þ=2
2 . This implies y � 0 (mod 2Þ and we

can take a suitable sign of x if necessary so that

x� y � 1 (mod 4Þ.
(ii) Case p1 � 5 (mod 8Þ: If s � t � 0 (mod 2Þ, we

can find x; y; z 2 Z satisfying (1) and (2) as in the

case (i). Now assume that s � t � 1 (mod 2Þ. Then

we have s2 þ 3t2p1 � 3s2 þ t2p1 � 0 (mod 8Þ and so

�3 ¼
sþ t ffiffiffiffiffi

p1
p

2

� �3

¼
sðs2 þ 3t2p1Þ þ tð3s2 þ t2p1Þ

ffiffiffiffiffi
p1
p

8
¼ xþ y ffiffiffiffiffi

p1
p

;

where we put x ¼ sðs2þ3t2p1Þ
8 and y ¼ tð3s2þt2p1Þ

8 . There-

fore x2 � p1y
2 ¼ Nk1=Qð�3Þ ¼ p3c

2 , z ¼ pð3c�1Þ=2
2 . Then

y � 0 (mod 2Þ and we can take a suitable sign of x

so that x� y � 1 (mod 4Þ. �

Let a ¼ ðx; y; zÞ be a triple of integers satisfying

the conditions (1), (2) in Lemma 1.1. We let � ¼
xþ y ffiffiffiffiffi

p1
p

and set

Ka ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p
Þ:

Firstly, we have the following theorem due to

Rédei ([R]). (1) can be easily proved and (2) can

also be proved using the well-known Lemma 1.3

below on the ramification in a Kummer extension.

Theorem 1.2 ([R]). (1) The extension

Ka=Q is a Galois extension whose Galois group is

the dihedral group D8 of order 8.

(2) Let dðk1ð
ffiffiffiffi
�
p Þ=k1Þ be the relative discriminant

of the extension k1ð
ffiffiffiffi
�
p Þ=k1. Then we have

Nk1=Qðdðk1ð
ffiffiffiffi
�
p Þ=k1ÞÞ ¼ ðp2Þ.

In particular, all prime numbers which ramified

in Ka=Q are p1 and p2.

Lemma 1.3 ([B]). Let l be a prime number

and F a number field containing a primitive l-th root

of unity. Let L ¼ F ð ffiffiffialp Þ ða 2 OF Þ be a Kummer

extension over F of degree l.

(1) Suppose that the principal ideal ðaÞ of F is

decomposed as pha where p is a prime ideal in F ,

ðp; aÞ ¼ 1, h > 0 and ðh; lÞ ¼ 1. Then p is totally

ramified in K=F .

(2) Suppose ðaÞ ¼ qhb where q is a prime ideal in F

which does not divide l, ðq; bÞ ¼ 1 and ljh. Then q is

unramified in K=F .

The fact that Ka is independent of choice of a

was shown by Rédei ([R]). Here we give an alter-

native proof based on the proof communicated by

D. Vogel (a letter to M. Morishita, 2008, February).

Proposition 1.4. Let � be an algebraic in-

teger in k1 satisfying the following conditions:

(1) Nk1=Qð�Þ ¼ p2h
2 for some h 2 Z n f0g.

(2) dðk1ð
ffiffiffi
�
p
Þ=k1Þ ¼ q, for a prime ideal q of Ok1

lying

over p2.

Then k1ð
ffiffiffi
�
p
Þ is uniquely determined.

Proof. Let �0 be another algebraic integer so

that �0 satisfies the above conditions (1), (2) in

Proposition 1.4. We will show k1ð
ffiffiffi
�
p
Þ ¼ k1ð

ffiffiffiffi
�0
p
Þ.

First, note that the extension k1ð
ffiffiffi
�
p

;
ffiffiffiffi
�0
p
Þ=k1 is

unramified outside q and 1. Therefore

k1ð
ffiffiffiffiffiffiffiffiffi
�=�0

p
Þ=k1 is unramified outside 1. But, since

p1 � 1 (mod 4Þ, the narrow ideal class number of k1

is odd by genus theory ([O]). Therefore k1ð
ffiffiffiffiffiffiffiffiffi
�=�0

p
Þ ¼

k1, hence k1ð
ffiffiffi
�
p
Þ ¼ k1ð

ffiffiffiffi
�0
p
Þ. �

Corollary 1.5. The field Ka is independent

of a choice of a, namely depends only on an ordered

pair ðp1; p2Þ.
Proof. Let a0 ¼ ðx0; y0; z0Þ be another integers

satisfying the conditions (1), (2) in Lemma 1.1. We

let �0 ¼ xþ y ffiffiffiffiffi
p1
p

and �0 ¼ x� y ffiffiffiffiffi
p1
p

. By Theorem

1.2, we have

dðk1ð
ffiffiffiffi
�
p
Þ=k1Þ ¼ dðk1ð

ffiffiffiffiffi
�0
p
Þ=k1Þ or dðk1ð

ffiffiffiffiffi
�0

p
Þ=k1Þ:

By Proposition 1.4, k1ð
ffiffiffiffi
�
p Þ ¼ k1ð

ffiffiffiffiffi
�0
p
Þ or k1ð

ffiffiffiffiffi
�0
p
Þ,

therefore Ka ¼ Ka0 . Hence Ka is independent of a

choice of a. �

By Corollary 1.5, we denote by kðp1;p2Þ the field

Ka. In fact, we show in the following theorem that

the field kðp1;p2Þ is independent of an order of p1 and

p2. We note that Morton showed a related result in

Lemma 11 of [Mt].

Theorem 1.6. We have

Kðp1;p2Þ ¼ Kðp2;p1Þ:

Proof. Let x2; y2; z2 be integers satisfying the

conditions ð1Þ x2 � p2y
2 � p1z

2 ¼ 0, ð2Þ ðx2; y2; z2Þ ¼
1, y2 � 0 (mod 2Þ, x2 � y2 � 1 (mod 4Þ in Lemma

1.1 so that
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Kðp2;p1Þ ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffiffi
�2
p Þ; �2 ¼ x2 þ y2

ffiffiffiffiffi
p2
p

:

We let �2 :¼ x2 � y2
ffiffiffiffiffi
p2
p

and �1 :¼ 2x2 þ 2z2
ffiffiffiffiffi
p2
p ¼

�2 þ �2 þ 2z2
ffiffiffiffiffi
p2
p ¼ ð ffiffiffiffiffi�2

p þ
ffiffiffiffiffi
�2

p
Þ2 2 k1. Since only

one prime ideal p of k1 is ramified in k1ð
ffiffiffiffiffi
�1
p Þ=k1

and p is one of prime ideal of k1 lying over p2, we

have

Nk1=Qð�1Þ ¼ ð2x2Þ2 � p1ð2z2Þ2 ¼ p2ð2y2Þ2;
dðk1ð

ffiffiffiffi
�
p
Þ=k1Þ ¼ dðk1ð

ffiffiffiffiffi
�1
p Þ=k1Þ or dðk1ð�1Þ=k1Þ:

Therefore, by Proposition 1.4, k1ð
ffiffiffiffi
�
p
Þ ¼ k1ð

ffiffiffiffiffi
�1
p Þ or

k1ð
ffiffiffiffiffi
�1

p
Þ. Hence we have

Kðp1;p2Þ ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p
Þ

¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffiffi
�1
p Þ

¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffiffi
�2
p Þ

¼ Kðp2;p1Þ:
�

Definition 1.7. By Theorem 1.6, we denote

by Kfp1;p2g the field Kðp1;p2Þ and call the extension

Kfp1;p2g=Q the Rédei extension associated to a set

fp1; p2g satisfying and p1; p2 � 1 (mod 4Þ and

ðp2

p1
Þ ¼ ðp1

p2
Þ ¼ 1.

2. A characterization of the Rédei exten-

sion. We keep the same notation as in Section 2.

Here is our main theorem.

Theorem 2.1. Let p1 and p2 be prime num-

bers such that

pi � 1 (mod 4Þ ði ¼ 1; 2Þ;
pi

pj

� �
¼ 1 ð1 5 i 6¼ j 5 2Þ:

For a number field K, the following conditions are

equivalent.

(1) K is the Rédei extension Kfp1;p2g.
(2) K is a dihedral extension of degree 8 over Q such

that prime numbers ramified in K=Q are only p1 and

p2 with ramification index 2.

Proof. (1) ) (2) is nothing but Rédei’s theo-

rem (Theorem 1.2). Therefore it suffice to show

(2) ) (1). Let ki ¼ Qð ffiffiffiffipip Þ ði ¼ 1; 2Þ and k12 ¼
Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p Þ. First, we show that k12 � K. Since

GalðK=QÞ ¼ D8 contains three distinct subgroups

of index 2, there are three distinct quadratic

subextensions in K=Q by Galois theory. Since all

prime numbers ramified in K=Q are only p1 and p2,

these three quadratic extensions must be k1, k2 and

Qð ffiffiffiffiffiffiffiffiffip1p2
p Þ. Therefore k12 ¼ k1k2 � K. By the struc-

ture of the group D8, we have three distinct

quadratic subextensions of K=k1.

Let L be one of these three fields which is

different from k12. Then there is � ¼ xþ y ffiffiffiffiffi
p1
p 2

k1ðx; y 2 ZÞ such that L ¼ k1ð
ffiffiffiffi
�
p Þ and K ¼

Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p Þ. By the assumption ðp1

p2
Þ ¼ 1, p2 is

decomposed into two prime ideals, say p1 and p2, in

k1. Then, by Lemma 1.3 and the assumption that

all of prime numbers ramified in K=Q is p1 and p2

with ramification index 2, we have the following

decomposition in k1:

ð�Þ ¼ p1
a1p2

a2a
2;

where a1; a2 are non-negative integers and a is an

integral ideal of k1 prime to p1 and p2. Then we have

Nk1=Qð�Þ ¼ ep
a1þa2

2 b2; e ¼ 1 or � 1;

b is a non-zero integer:

Here we show that e must be 1. Assume e ¼ �1. Let

� ¼ x� y ffiffiffiffiffi
p1
p

. Since K=Q is a Galois extension, � 2
K and so

K 3
ffiffiffiffi
�
p ffiffiffiffi

�
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nk1=Qð�Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pa1þa2

2 b2

q
:

Since b 2 Z;
ffiffiffiffiffi
p2
p 2 K, we have

ffiffiffiffiffiffiffi
�1
p

2 K, which

implies that 2 is ramified in K=Q. This contradicts

to the assumption (2). Therefore x2 � p1y
2 ¼

pa1þa2

2 b2. Let us define � 2 GalðK=QÞ by

� : ð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p Þ 7! ð ffiffiffiffiffip1

p
;� ffiffiffiffiffi

p2
p

;
ffiffiffiffi
�
p Þ so that the

subgroup generated by � corresponds to the subfield

k1ð
ffiffiffiffi
�
p Þ by Galois theory, and we have �ð

ffiffiffiffi
�
p
Þ ¼

�
ffiffiffiffi
�
p

. Then we have

�ð
ffiffiffiffi
�
p ffiffiffiffi

�
p
Þ ¼ �

ffiffiffiffi
�
p ffiffiffiffi

�
p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa1þa2

2 b2

q
:

On the other hand, we have

�ð
ffiffiffiffi
�
p ffiffiffiffi

�
p
Þ ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � p1y2

p
Þ ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa1þa2

2 b2

q
Þ

¼ ð�1Þa1þa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa1þa2

2 b2

q
:

Hence we have a1 þ a2 � 1 (mod 2Þ, and x2 �
p1y

2 � p2z
2 ¼ 0; z ¼ p

a1þa2�1
2

2 b. By Lemma 1.3, we

have dðk1ð
ffiffiffiffi
�
p Þ=k1Þ ¼ p1 or p2. Therefore, by

Proposition 1.4, K ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p Þ is a Rédei

extension. �

Remark 2.2. (1) The assumption on the

ramification indexes of p1 and p2 are necessary.

For example, let K ¼ Qð
ffiffiffi
5
p

;
ffiffiffiffiffiffiffiffi
101
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�35� 12

ffiffiffi
5
pp
Þ.

Then, K=Q is not a Rédei extension, although K is

a dihedral extension over Q of degree 8 where

p1 ¼ 5 and p2 ¼ 101 are all ramified prime numbers.

In fact, the ramification indexes of 5 and 101 are 4

and 2 respectively.
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(2) The ramification of the infinite prime in

Kfp1;p2g=Q is described in terms of the class number

h and the narrow class number hþ of Qð ffiffiffiffiffiffiffiffiffip1p2
p Þ. In

fact, since the cyclic extension Kfp1;p2g=Qð
ffiffiffiffiffiffiffiffiffi
p1p2
p Þ is

unramified at all finite primes, genus theory tells

the 2-part of the narrow ideal class group of

Qð ffiffiffiffiffiffiffiffiffip1p2
p Þ is a cyclic group of order � 4. Therefore,

if h ¼ hþ or hþ ¼ 2h and h � 0 (mod 4Þ, the

infinite prime is unramified in Kfp1;p2g=Q, and if

hþ ¼ 2h and h 6� 0 (mod 4Þ, the infinite prime are

ramified in Kfp1;p2g=Q.

3. A proof of the reciprocity law of the

triple symbol. In this section, we give another

simple proof of the reciprocity law of the Rédei

triple symbol. We keep the same notations as in the

previous sections.

Let p1, p2 and p3 be distinct prime numbers

satisfying the conditions

pi � 1 (mod 4Þ ði ¼ 1; 2; 3Þ;
pi

pj

� �
¼ 1 ð1 5 i 6¼ j 5 3Þ:

Definition 3.1. We define the Rédei triple

symbol by

½p1; p2; p3� :¼
1 if p3 is completely decomposed

in Kfp1;p2g=Q;

� 1 otherwise:

8><
>:

The reciprocity law of the Rédei triple symbol is

stated as follows:

Theorem 3.2 ([R]). For any permutation

i; j; k of 1; 2; 3, we have

½p1; p2; p3� ¼ ½pi; pj; pk�:

We shall give another proof of the above theorem of

Rédei. Firstly, by Theorem 1.6, we have immedi-

ately the following:

Theorem 3.3. ½p1; p2; p3� ¼ ½p2; p1; p3�.
Since the permutation group on 1 2 3 is generated by

the transpositions 1$ 2 and 2$ 3, in order to

prove Theorem 3.2, it suffices to prove the following:

Theorem 3.4. ½p1; p2; p3� ¼ ½p1; p3; p2�.
In the following we prove Theorem 3.4.

Let us write k for k1 ¼ Qð ffiffiffiffiffip1
p Þ for simplicity.

Let p2 (resp. p3) be one of the prime ideals of k lying

over p2 (resp. p3). Then there is a triple of integers

ðx2; y2; z2Þ with � ¼ x2 þ y2
ffiffiffiffiffi
p1
p

(resp. ðx3; y3; z3Þ
with � ¼ x3 þ y3

ffiffiffiffiffi
p1
p

) satisfying the conditions (1),

(2) in Lemma 1.1 with respect to the pair ðp1; p2Þ
(resp. ðp1; p3Þ) such that

ð�Þ ¼ p2
m2 ; ð�Þ ¼ p3

m3 ðm2;m3 being odd integersÞ;
Kfp1;p2g ¼ Qð ffiffiffiffiffip1

p
;
ffiffiffiffiffi
p2
p

;
ffiffiffiffi
�
p
Þ;

Kfp1;p3g ¼ Qð ffiffiffiffiffip1
p

;
ffiffiffiffiffi
p3
p

;
ffiffiffi
�

p
Þ:

Since p3 is unramified in kð ffiffiffiffi�p Þ=k by Theorem

1.2 (2), we have the Frobenius automorphism

ðkð
ffiffiffi
�
p
Þ=k

p3
Þ 2 Galðkð

ffiffiffiffi
�
p
Þ=kÞ. We note that the Rédei

triple symbol is rewritten as

½p1; p2; p3� ¼
1 if kð

ffiffiffi
�
p
Þ=k

p3

� �
¼ idkð

ffiffiffi
�
p
Þ;

�1 otherwise:

(

For a prime p of k, we denote by ð ;
p
Þ the Hilbert

symbol in the local field kp, namely,

ða; kpð
ffiffiffi
b
p
Þ=kpÞ

ffiffiffi
b
p
¼

a; b

p

� � ffiffiffi
b
p

ða; b 2 k�p Þ;

where ð ; kpð
ffiffiffi
b
p
Þ=kpÞ : k�p ! Galðkpð

ffiffiffi
b
p
Þ=kpÞ is the

norm residue symbol of local class field theory.

Lemma 3.5. We have

�; �

p3

� �
¼ ½p1; p2; p3�;

�; �

p2

� �
¼ ½p1; p3; p2�:

Proof. Let � be a prime element of kp3
and Up3

denote the unit group in k�p3
. We write � ¼

u�m3 ; u 2 Up3
. Noting that u, � 2 Up3

and m3 is

odd, we have

�; �

p3

� �
¼

�; �

p3

� �

¼ u; �

p3

� �
�m3 ; �

p3

� �

¼ �; �

p3

� �

¼
ð�; kp3

ð ffiffiffiffi�p Þ=kp3
Þ ffiffiffiffi�pffiffiffiffi

�
p

¼
kð ffiffiffiffi�p Þ=k

p3

� �
ð
ffiffiffiffi
�
p
Þ=

ffiffiffiffi
�
p

¼ ½p1; p2; p3�:

Similarly, we can show ð�;�
p2
Þ ¼ ½p1; p3; p2�. �

Now, the proof of Theorem 3.4 goes as follows:

By Lemma 3.5 and the product formula for the

Hilbert symbolY
p

�; �

p

� �
¼ 1 (p runs over all primes of k);
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we have only to proveY
p 6¼p2;p3

�; �

p

� �
¼ 1:

If p is prime to 2 or 1, we have

�; �

p

� �
¼ 1;

since �; � 2 Up. The real prime 1 is decomposed

into real primes 11;12 in k and so we have

obviously

�; �

11

� �
�; �

12

� �
¼ 1:

Let P be a prime ideal of k lying over 2. Noting that

2 is unramified in k=Q and that �; � 2 U ð2Þ
P
¼ 1þP

2

by the condition (2) of Lemma 1.1, we have find

ð�;�
P
Þ ¼ 1 ([FV]). This completes the proof of

Theorem 3.4.
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