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Abstract: In this paper, we use the variational methods to study the following problem

��BN u ¼ ðdðxÞÞ�jujp�2u; u 2 H1
r ðBNÞð1Þ

in Hyperbolic space BN , where � > 0, dðxÞ ¼ dBN ð0; xÞ, and H1
r ðBNÞ denote the Sobolev space of

radial H1ðBNÞ function on the disc model of the Hyperbolic space BN and �BN denotes the

Laplace-Beltrami operator on BN , N � 3. Unlike the corresponding problem in Euclidean space

RN , we prove that there exists a positive solution of problem (1) provided that p 2 ð2; 2Nþ2�
N�2
Þ

which will be contrasted with a result due to Gidas and Spruck [6].

Key words: Hénon equation; mountain pass theorem; hyperbolic symmetry solution;
hyperbolic space.

1. Introduction and main result. In this

paper, we study the existence of positive solution

for the following problem

��BN u ¼ ðdðxÞÞ�jujp�2u; u 2 H1
r ðBNÞð2Þ

where � > 0, p 2 ð2; 2Nþ2�
N�2 Þ, dðxÞ ¼ dBN ð0; xÞ, and

H1
r ðBNÞ denote the Sobolev space of radial H1ðBNÞ

function on the disc model of the Hyperbolic space

BN and �BN denotes the Laplace-Beltrami operator

on BN , N � 3.

When posed in Euclidean space RN , problem

(2) has two features. First it is the following

problem

��u ¼ jxj�jujp�2u in RN:ð3Þ

Attention was focused on the existence and

Liouville-type theorem for solutions of problem

(3). There is a host of later important contributions

to the subject, among them we must mention the

famous paper [6] where the Liouville-type theorem

of problem (3) was obtained. They proved that the

only non-negative solution of (3) is u ¼ 0 when

2 < p <
2N þ 2�

N � 2
; N � 3:

Second, problem (3) is known as the Hénon equation

��u ¼ jxj�jujp�2u; x 2 �; u ¼ 0; x 2 @�;ð4Þ

where � is a unit ball in RN . Equation (4) was

proposed by M. Hénon in [8] when he studied

rotating stellar structures and is called Hénon

equation. A standard compactness argument show

that the infimum

inf
u2H1

0
ð�Þnf0g

R
� jruj

2 dx

ð
R

� jxj
�jujp dxÞ

2
p

ð5Þ

is achieved for any 2 < p < 2� and � > 0. In 1982,

Ni proved in [10] that the infimum

inf
u2H1

0;rad
ð�Þnf0g

R
� jruj

2 dx

ð
R

� jxj
�jujp dxÞ

2
p

ð6Þ

is achieved for any p 2 ð2; 2Nþ2�
N�2 Þ by a function in

H1
0;radð�Þ, the space of radial H1

0ð�Þ functions.

Thus, radial solutions of (3) exist also for (Sobolev)

supercritical exponents p.

A natural question is whether any minimizer of

(5) must be radially symmetric in the range 2 <

p < 2N
N�2 and � > 0. For � > 0, Since the function

r 7! r� is increasing, neither rearrangement argu-

ments nor the moving plane techniques of [7] can

be applied. Therefore nonradial solutions could be

expected. Smets et al. also proved in [13] some

symmetry-breaking results for (4). They proved
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that minimizers of (5) (the so-called ground-state

solutions, or least energy solutions) cannot be radial

for � large enough. As a consequence, (4) has at

least two solutions when � is large (see also [14]).

Further results on problem (4) can be found

in [3–5,14] for residual symmetry properties and

asymptotic behavior of ground states (for p! 2N
N�2,

or �!1) and in [1,11,12] for existence and

multiplicity of nonradial solutions for critical,

supercritical and slightly subcritical growth.

It is also of interest to study problem (3) and

(4) with respect to different ambient geometries in

particular to see how curvature properties affect

the existence and nature of solutions. A recent paper

by He and Wang [9] have studied the existence or

nonexistence and asymptotic behavior of ground

state solution of the following elliptic equation

��BNu ¼ dðxÞ�jujp�2u in �; u 2 H1
0ð�Þ;ð7Þ

where � � BN is geodesic ball with radial 1. They

proved that the ground state solution of problem

(7) is nonradial as p! 2N
N�2.

However, for problem (2), there exists some

difference from Euclidean space. Firstly, we are

working in BN which is a noncompact manifold, so

it means that H1ðBNÞ ,! LpðBNÞ is not compact for

any 2 � p � 2N
N�2. Secondly, the weight function dðxÞ

depends on the Riemannian distance r from a pole

o, we have some difficulties in proving thatZ
BN
dðxÞ�juðxÞjp dVBN <1; 8u 2 H1ðBNÞ:

So the functional of problem (2) is not well defined

and cannot satisfy the ðPSÞc condition for all c > 0.

Below we will show that we can overcome this

difficulty by restricting to the radial situation.

Our main result is as follows:

Theorem 1.1. Problem (2) has at least one

positive solution provided that p 2 ð2; 2Nþ2�
N�2 Þ, where

� > 0.
The proof of this result will be given in

section 3. In section 2, we give some basic facts
about hyperbolic space and prove that the map
u 7! ðdðxÞÞ

�
p u from H1

r ðBNÞ to LpðBNÞ is compact
for p 2 ð2; x 2N

N�2�2�
p

Þð2 < p < 2Nþ2�
N�2 Þ. Finally, in

section 4, a generalization to the generally elliptic
problem is presented.

2. Preliminaries. Hyperbolic space HN is a

complete simple connected Riemannian manifold

which has constant sectional curvature equal to �1.

There are several models for HN and we will use the

Poincaré ball model BN in this paper.

The Poincaré ball model for the hyperbolic

space is:

BN ¼ fx ¼ ðx1; x2; � � � ; xnÞ 2 RN j jxj < 1g

endowed with Riemannian metric g given by gij ¼
ðpðxÞÞ2�ij where pðxÞ ¼ 2

1�jxj2 . We denote the hyper-

bolic volume by dVBN and is given by dVBN ¼
ðpðxÞÞN dx. The hyperbolic gradient and the

Laplace Beltrami operator are:

�BN ¼ ðpðxÞÞ�NdivððpðxÞÞN�2ruÞÞ; rBNu ¼
ru
pðxÞ

where r and div denote the Euclidean gradient and

divergence in RN , respectively.

The hyperbolic distance dBN ðx; yÞ between

x; y 2 BN in the Poincaré ball model is given by

the formula:

dBN ðx; yÞ ¼ Arccosh 1þ
2jx� yj2

ð1� jxj2Þð1� jyj2Þ

 !
:

From this we immediately obtain for x 2 BN ,

dðxÞ ¼ dBN ð0; xÞ ¼ log
1þ jxj
1� jxj

� �
:

Let u 2 H1ðBNÞ, we can not prove thatR
BN dðxÞ�jujpdVBN

¼
R
Bð0;1Þ log 1þjxj

1�jxj

� �h i�
jujp 2

1�jxj2
� �N

dx <1:

It implies that for u 2 H1ðBNÞ, the functional

IðuÞ ¼
1

2

Z
BN
jrBN uj2dVBNð8Þ

�
1

p

Z
BN
dðxÞ�ðuþÞpdVBN ;

corresponding to (2) is not well defined. We also

know that the embedding H1ðBNÞ ,! LpðBNÞ is not

compact for any 2 � p � 2N
N�2. Thus the functional of

problem (2) cannot satisfy the ðPSÞc condition for

all c > 0. Below we can overcome this difficulty by

restricting to the radial situation.

Let H1
r ðBNÞ denotes the subspace

H1
r ðBNÞ ¼ fu 2 H1ðBNÞ : u is radialg:

Since the hyperbolic sphere with central 0 2 BN

is also a Euclidean sphere with central 0 2 BN ,

H1
r ðBNÞ can also be seen as the subspace consisting

of hyperbolic radial functions.
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Lemma 2.1. Let u 2 H1
r ðBNÞ, then

juðxÞj

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!N�1ðN�2Þ
p 1�jxj2

2

� �N�2
2 1

jxj
N�2

2

kukH1ðBN Þ;

or

juðxÞj � 1ffiffiffiffiffiffiffiffiffiffiffi
!N�1
p

1� jxj2

2

 !N�1
2 1

jxj
N
2

kukH1ðBN Þ;

where !N�1 is the surface area of SN�1.

Proof. Let u 2 H1
r ðBNÞ, then uðxÞ ¼ uðjxjÞ, we

have

!N�1

R 1
0 u
0ðsÞ2 2

1�s2

� �N�2
sN�1 ds

¼
R

BN jrBNuj2 dVBN <1;
where !N�1 is the surface area of SN�1. Thus for

u 2 H1
r ðBNÞ,

uðjxjÞ

¼ �
R 1
jxj u

0ðsÞ ds

�
R 1

0 ðu0ðsÞÞ
2 2

1�s2

� �N�2
sN�1 ds

� �1
2

�
R 1
jxj
�

1�s2

2

�N�2
s�ðN�1Þ ds

� �1
2

� !�
1
2

N�1kukH1ðBN Þ
�1�jxj2

2

�N�2
2 1

jxj
N
2

R 1
jxj s ds

� �1
2

� !�
1
2

N�1kukH1ðBN Þ
�1�jxj2

2

�N�1
2 1

jxj
N
2

or

uðjxjÞ
¼ �

R 1
jxj u

0ðsÞ ds

� !�
1
2

N�1kukH1ðBN Þ
�1�jxj2

2

�N�2
2
R 1
jxj s

�ðN�1Þ ds
� �1

2

� ð!N�1ðN � 2ÞÞ�
1
2kukH1ðBN Þ

�1�jxj2
2

�N�2
2 1

jxj
N�2

2

:

�

Lemma 2.2. The map u 7! ðdðxÞÞmu from

H1
r ðBNÞ to LpðBNÞ is compact for p 2 ð2; ~mmÞ, where

m > 0, and

~mm ¼
2N

N � 2� 2m
; if m <

N � 2

2
;

1 otherwise:

8<
:

Proof. By Lemma 2.1, we have that

R
BN ðdðxÞÞmpjuðxÞjp dVBN

¼ !N�1

R 1
0 ln 1þr

1�r
� �mpjuðrÞjprN�1 2

1�r2

� �N
dr

� !1�p2
N�1kuk

p

H1ðBN Þ

�
R 1

2
0 ln 1þr

1�r
� �mp�1�r2

2

� N�2
2 p�Nð Þ

rN�1�N�2
2 p dr

	

þ
R 1

1
2

ln 1þr
1�r

� �mp�1�r2

2

� N�1
2 p�Nð Þ

rN�1�N2 p dr



� Ckukp

H1ðBN Þ:

Indeed, for ln 1þr
1�r � 2r

1�r2 , p > 2, we haveR 1
2
0 ln 1þr

1�r
� �mp�1�r2

2

� N�2
2 p�Nð Þ

rN�1�N�2
2 p dr

� C
R 1

2
0 r

N�1�N�2
2 pþmp dr � C;

and R 1
1
2

ln 1þr
1�r

� �mp�1�r2

2

� N�1
2 p�Nð Þ

rN�1�N2 p dr

� C
R 1

1
2

ln 1þr
1�r

� �mp�1�r2

2

� N�1
2 p�Nð Þ

dr

� C
R1

ln 3 s
mp 2es

ðesþ1Þ2
� � N�1

2 p�Nþ1ð Þ
ds � C:

This show the map is continuous, for all p 2
ð2; 2N

N�2�2mÞ. Now we will show it is compact.

From [2], we know that H1
r ðBNÞ ,! LqðBNÞ is

compact for all q 2 ð2; 2N
N�2Þ. Then, by the Hölder

inequality for a 2 ð0; 1Þ,R
BN dðxÞmpjuðxÞjp dVBN

¼
R

BN dðxÞmpjujp�qajujqa dVBN

� ð
R

BN jujq dVBN Þa

�
R

BN ðdðxÞmpjujp�qaÞ
1

1�a dVBN

h i1�a
:

Now, we only need to check that

p� ¼
p� qa
1� a <

2N

N � 2� 2 mp
p�qa

;ð9Þ

if m < N�2
2 . It is easy to check that (9) holds if and

only if

pðN � 2� 2mÞ < 2Nð1� aÞ þ qaðN � 2Þ:ð10Þ

Thus for a fixed p < 2N
N�2�2m, (10) may easily be

achieved by choosing a sufficiently small.

Hence, we have

kjdðxÞjmukLpðBN Þ � kuk
a
p

LqðBN Þkuk
1�a
p

H1ðBN Þ

where a > 0 and is small. It is easy to see that this

Lemma holds. �
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3. Proof of Theorem 1.1. Let us denote

the energy functional corresponding to (2) by

IðuÞ ¼
1

2

Z
BN
jrBNuj2dVBNð11Þ

�
1

2�

Z
BN
dðxÞ�ðuþÞpdVBN

defined on H1
r ðBNÞ. By Lemma 2.2, we know thatR

BN ðdðxÞÞ�juðxÞjp dVBN

¼
R

BN ½ðdðxÞÞ
�
p juðxÞj�p dVBN <1; u 2 H1

r ðBNÞ:
Then we see that (11) is well defined and it is

known that critical points of the functional I 2
C1ðH1

r ðBNÞ;RÞ correspond to solutions of problem

(2).

Now, we will prove Theorem 1.1.

Proof of Theorem 1.1. Define T : H1
r ðBNÞ!

H1
r ðBNÞ by

hTu; viH1
r ðBN Þ ¼

Z
BN
ðdðxÞÞ�jujp�1v dVHN ;

then, h��BNTu; viL2 ¼ hðdðxÞÞ�jujp�1; viL2 ; Tu ¼
���1

BN ððdðxÞÞ�jujp�1Þ. Thus, T may be decomposed

as follows:

T : H1
r ! L

2Nðp�1Þ
Nþ2 ! L

2N
Nþ2 ! ðH1

r Þ
�1 ! H1

r

u 7! ðdðxÞÞ
�
p�1 juj 7! ððdðxÞÞ

�
p�1 jujÞp�1

7! ðdðxÞÞ�jujp�1 7! Tu:

By Lemma 2.2 and 2Nðp�1Þ
Nþ2 < 2N

N�2� 2�
p�1

if �
p�1 <

N�2
2

(from the hypothesis p < 2Nþ2�
N�2 ), then T is compact

from H1
r ðBNÞ to H1

r ðBNÞ, then I : H1
r ðBNÞ �! R

satisfies the Palais-Smale condition as [10] and

using the Mountain Pass theorem similarly as [10],

we can get a radial solution of problem (2). Multi-

plying the equation by u� and integrating over BN ,

we find u� ¼ 0, and u is a solution of the equation

(2). �

4. Further result. The method used in the

proof of Theorem 1.1 can be applied to study the

following problem

��BNu ¼ KðdðxÞÞfðuÞ;
u 2 H1

r ðBNÞ;

�
ð12Þ

where r ¼ dðxÞ, KðrÞ and fðuÞ satisfy the following

hypothesis:

(i) KðrÞ is a nonnegative continuous function with

Kð0Þ ¼ 0 and K 6	 0 in BN .

(ii) KðrÞ ¼ Oðr�Þ at r ¼ 0 and KðrÞ ¼ Oðr�Þ as r!
1 for some � > 0.

(iii) f is a continuous function, fðuÞ � 0 for all

u > 0, fðuÞ ¼ oðuÞ at u ¼ 0 and fðuÞ
u !1 as u!1.

(iv) jfðuÞj � Cð1þ jujÞp�1, where p < 2Nþ2�
N�2 for u

large.

(v) There exists constants � 2 ð0; 1
2Þsuch that

F ðuÞ ¼
R u

0 fðtÞ dt � �ufðuÞ for u 2 R.

Replace ðuþÞp with ~FF where ~FF ðuÞ ¼
R u

0
~ffðtÞ dt

and ~ffðuÞ ¼ 0 for all u � 0 and ~ffðuÞ ¼ fðuÞ for all

u > 0. Then similarly as the proof of Theorem 1.1,

we can also get the following result.

Theorem 4.1. Under the hypotheses (i)–(v),

problem (12) possesses a positive solution.

Proof. By (iii) and (iv), we have that IðuÞ ¼
1
2 kuk

2 þ oðkuk2Þ as u! 0. Then there exists r > 0
such that

b :¼ inf
kuk¼r

IðuÞ > 0:

By (v), we have that for any u 2 H1
r ðBNÞ n f0g,

IðtuÞ �
1

t2
kuk2 � t

1
�C

Z
BN
KðdðxÞÞ�juj

1
� dVBN

! �1
as t!1. Then there exists e ¼ tu such that kek ¼
r and IðeÞ � 0.

Now, we want to prove that I satisfies the

Palais-Smale condition. Let fung be a sequence with

fIðunÞg �M and I 0ðunÞ ! 0, then

M þ �kunk
� IðunÞ � �hI 0ðunÞuni
¼ ð12� �Þkunk

2

þ
R

BN KðdðxÞÞ�½� ~ffðunÞun � ~FF ðunÞ� dVBN

� ð12� �Þkunk
2:

It follows that kunk is bounded.

From (i) and (ii), we have that KðrÞ � Cr�
for all 0 < r <1 for some constant C > 0, and

by Lemma 2.2, we have that the map: u 7!
ðKðrÞÞ

�
p u from H1

r ðBNÞ to LpðBNÞ is compact if

p 2 ð2; 2N
N�2�2�

p

Þð2 < p < 2Nþ2�
N�2 Þ. Then we can also

prove that J 0ðuÞ is compact where JðuÞ ¼R
BN ðKðdðxÞÞÞ� ~FF ðuÞ dVBN . This, together with fung

being bounded and I 0ðunÞ ¼ un � J 0ðunÞ ! 0 as

n! 0 implies that fung has a convergent subse-

quence. Thus, we know that I satisfies the Palais-

Smale condition. Using the Mountain pass theorem,

we obtain that there exists a positive solution of

problem (12). �
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