
A note on the relative class number of the cyclotomic

Zp-extension of Qð ffiffiffiffiffiffiffiffi�pp Þ, II

By Humio ICHIMURA

Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan

(Communicated by Shigefumi MORI, M.J.A., Jan. 15, 2013)

Abstract: Let p be a prime number with p � 3 mod 4, and let k ¼ Qð ffiffiffiffiffiffiffi�pp Þ. Denote by h�n
the relative class number of the nth layer of the cyclotomic Zp-extension over k. Let q ¼ ðp� 1Þ=2
and dp be the largest divisor of q with dp < q. Let ‘ be a prime number with ‘ 6¼ p. We show that

‘ - h�n for all n � 0 if ‘ � q � 2dp and ‘ is a primitive root modulo p2.
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1. Introduction. Let p be an odd prime

number with p � 3 mod 4. Let k ¼ Qð ffiffiffiffiffiffiffi�pp Þ and

k1=k be the cyclotomic Zp-extension. For an

integer n � 0, we denote by kn the nth layer of

k1=k with k0 ¼ k. Let h�n be the relative class

number of kn. Let ‘ be a prime number with

‘ 6¼ p. By a well known theorem of Washington

[7, Theorem 16.12], the ‘-part of h�n is stable for

sufficiently large n. Horie [2, Theorem 2] showed

that ‘ - h�n =h
�
n�1 for all n � 1 if ‘ is a primitive

root modulo p2 and ‘ is larger than an explicit

but complicated constant depending on p. Let

q ¼ ðp� 1Þ=2. In the previous paper [4, Proposition

1(I)], we obtained the following simple result. (See

Remark 1.)

Proposition 1. If ‘ � q � 2 and ‘ is a prim-

itive root modulo p2, then ‘ - h�n for all n � 0.

In this paper, we show the following stronger

version (when q is a composite). In what follows, we

assume that p � 7, so that q > 1. We denote by dp
the largest divisor of q with dp < q. Clearly, dp > 1 if

and only if q is a composite.

Proposition 2. If ‘ � q � 2dp and ‘ is a

primitive root modulo p2, then ‘ - h�n for all n � 0.

When p ¼ 3, it is shown in Horie [1,

Proposition 3] that ‘ - h�n for all n if ‘ is a primitive

root modulo p2. For p ¼ 7; 11; 19, we obtain the

following assertion using Proposition 2.

Proposition 3. When p ¼ 7, 11 or 19, ‘ does

not divide h�n for all n � 0 if ‘ is a primitive root

modulo p2.

Remark 1. The statement of [4, Proposition

1(I)] is that ‘‘If ‘ � q � 2 and ‘ is a primitive root

modulo p2, then ‘ - h�n =h
�
n�1 for all n � 1’’. Since

‘ - h�0 when ‘ � q � 2 (see Lemma 5), this implies

that ‘ - h�n for all n.

Remark 2. In the previous paper [3,

Theorem 2], it is shown that when p � 509,

h�n =h
�
n�1 is odd for all n � 1.

2. Lemmas. Let p and q be as in Section 1.

We write d ¼ dp for brevity. As q is odd (and q > 1),

we have

d �
q

3
:ð1Þ

Let �q be the group of qth roots of unity in the ring

Zp of p-adic integers. For a p-adic integer x 2 Zp,

denote by snðxÞ 2 Z the unique integer such that

snðxÞ � xmod pnþ1 and 0 � snðxÞ < pnþ1. For each

integer b with 0 � b � p� 1 and � 2 Zp with � �
1 mod p, we put

yn;b;� ¼
1

pnþ1

X
�2�q

snð��ð1þ pnbÞÞ;

where � runs over the qth roots of unity. As q > 1,

we see that yn;b;� is an integer.

Lemma 1. We have d � yn;b;� � q � d.

Proof. Let r ¼ q=d. As d < q, we have r > 1.

Let �r be the group of rth roots of unity in Zp. We

put

zn;b;� ¼
1

pnþ1

X
�2�r

snð��ð1þ pnbÞÞ;

where � runs over the rth roots of unity. As r > 1,

zn;b;� is an integer. Since ��ð1þ pnbÞ is a unit of Zp,

we have snð��ð1þ pnbÞÞ > 0. It follows that
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1 � zn;b;� � r� 1:ð2Þ
Let �1; � � � ; �d be a complete set of representatives of

the quotient �q=�r. Then we easily see that

yn;b;� ¼
Xd
i¼1

zn;b;�i�:

Hence, it follows from (2) that

d � yn;b;� � dðr� 1Þ ¼ q � d: �

The following three lemmas are shown in [4].

Lemma 2 ([4, Lemma 1]). For any n � 1

and �, we have

Xp�1

b¼0

yn;b;� ¼ yn�1;0;� þ q2:

Lemma 3 ([4, Lemma 2]). For any n � 1

and �, yn;b;� 6¼ yn;0;� for some b with 1 � b � p� 1.

Lemma 4 ([4, Lemma 4]). Assume that ‘

divides h�n =h
�
n�1 and that ‘ is a primitive root

modulo p2. Then, for each � 2 Zp with � �
1 mod p, we have

yn;b;� � yn;0;� mod ‘

for all b with 0 � b � p� 1.

Lemma 5. Let p be a prime number with

p � 3 mod 4. Let ‘ be a prime number with ‘ �
q � 2d. Then ‘ does not divide h�0 .

Proof. By Corollary to Narkiewicz [5, Theorem

4.10], we have

h�0 �
1

�
þ

0:35

log p

� � ffiffiffi
p
p

log p:

As ‘ � q � 2d, it follows from (1) that ‘ � ðp� 1Þ=6.

When p > 350, we can show

p� 1

6
> 0:38

ffiffiffi
p
p

log p >
1

�
þ 0:35

log 350

� � ffiffiffi
p
p

log p

in an elementary way. Hence, the assertion holds

when p > 350. When 11 � p < 350, we see that q �
2d > h�0 from the table of Wada and Saito [6] on

class groups of imaginary quadratic fields, and

obtain the assertion in this case. When p ¼ 7, the

assertion is obvious as h�0 ¼ 1. �

3. Proof of propositions.

Proof of Proposition 2. Let ‘ be a prime

number with ‘ � q � 2d which is a primitive root

modulo p2. By Lemma 5, it suffices to show that

‘ - h�n =h
�
n�1 for all n � 1. First, we deal with the case

‘ > q � 2d. As dþ ‘ > q � d, we have d � yn;b;� <

dþ ‘ by Lemma 1. Hence, if ‘ divides h�n =h
�
n�1, then

it follows from Lemma 4 that with any �, yn;b;� ¼
yn;0;� for all 0 � b � p� 1. However, this is impos-

sible by Lemma 3.

Next, let ‘ ¼ q � 2d. Then, by Lemma 1, we

have d � yn;b;� � dþ ‘. Assume that ‘ divides

h�n =h
�
n�1. Then we see by Lemmas 3 and 4 that

with any �, we have yn;b;� � dmod ‘ for all b. From

Lemma 2 and q ¼ ‘þ 2d, it follows that

yn�1;0;� ¼
Xp�1

b¼0

yn;b;� � q2 � pd� q2 � dmod ‘:

Noting that yn�1;0;ð1þpn�1bÞ� ¼ yn�1;b;�, we observe

that yn�1;b;� � dmod ‘ for any � and b. Repeating

this process, we finally obtain y0;0;1 � dmod ‘. By

the class number formula for imaginary quadratic

fields, we have

h�0 ¼ �2y0;0;1 þ q:

(For this, see the formula (7) of [4].) Then we obtain

h�0 � 0 mod ‘, which is impossible by Lemma 5. �

Proof of Proposition 3. Because of Remark 2,

we may as well assume that ‘ is odd as h�0 ¼ 1 for

p ¼ 7; 11; 19. For p ¼ 7, we see that q � 2dp ¼ 1

and hence the assertion follows immediately from

Proposition 2. For p ¼ 11 (resp. 19), we see that

q � 2dp ¼ 3 and that an odd prime number ‘ is a

primitive root modulo p2 when ‘ ¼ 7; 13; � � � (resp.

‘ ¼ 3; 13; � � �). Thus, we obtain the assertion in this

case. �

Remark 3. Let p ¼ 23 (resp. 31). Then q �
2dp ¼ 9 (resp. 5), and an odd prime number ‘ is a

primitive root modulo p2 when ‘ ¼ 5; 7; 11; � � � (resp.

‘ ¼ 3; 11; � � �). Thus, we can not apply Proposition 2

for small ‘.

Corrigenda. The previous paper [4] contains

some quite minor missprints. Change  to  n in the

lines 6, 17 and 22 of the right column of page 17 and

the line 26 of the left column of page 18. Change

the right hand side of the formula (6) in page 18 as

follows:

p
Y
 n

�
1

2
B1;� n

� �
)
Y
 n

�
1

2
B1;� n

� �
:
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