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Abstract: We give a complete classification of the pairs ðL;HÞ of Levi subgroups of

compact simple Lie groups G such that the L-action on a generalized flag variety G=H is strongly

visible (or equivalently, the H-action on G=L or the diagonal G-action on ðG�GÞ=ðL�HÞ). The

notion of visible actions on complex manifolds was introduced by T. Kobayashi, and a

classification was accomplished by himself for the type A groups [J. Math. Soc. Japan, 2007]. A

key step is to classify the pairs ðL;HÞ for which the multiplication mapping L�G� �H ! G is

surjective, where � is a Chevalley–Weyl involution of G. We then see that strongly visible

actions, multiplicity-free restrictions of representations (c.f. Littelmann, Stembridge), the

decomposition G ¼ LG�H and spherical actions are all equivalent in our setting.

Key words: Multiplicity-free representation; semisimple Lie group; flag variety; visible
action; Cartan decomposition; herringbone stitch.

1. Introduction.

1.1. Classification problem of visible

actions. Let G be a connected compact Lie group

and L;H Levi subgroups of G. Then, the homoge-

neous spaces G=H and G=L are generalized flag

varieties. In this article, we give a classification of

triples ðG;L;HÞ such that the following three

group-actions are strongly visible:

Ly G=H;

H y G=L;

Gy ðG�GÞ=ðL�HÞ:
Here, a holomorphic action of a group H on a

complex manifold D is called strongly visible

([Ko2]) if the following two conditions are satisfied:

. There exists a real submanifold S (slice) such

that D0 :¼ H � S is an open subset of D.

. There exists an anti-holomorphic diffeomor-

phism � of D0 such that �jS ¼ idS and

�ðH � xÞ ¼ H � x for any x 2 S.

Classification problem of visible actions was dis-

cussed previously in some other settings, see

[Ko2, Ko4, Ko5, Sa] for example.

1.2. Multiplicity-free representations. The

above problem is closely related to the multiplicity-

freeness property of finite dimensional representa-

tions. Various examples of multiplicity-free repre-

sentations have been obtained by many people. For

finite dimensional cases, typical approaches are:

(a) (Sphericity) Verify the existence of an open

orbit of a Borel subgroup.

(b) (Combinatorics) Using character formulas.

A new approach has been introduced by T.

Kobayashi, i.e., the propagation theorem of

multiplicity-freeness property ([Ko3, Theorem 4.3])

using the notion of visible actions on complex

manifolds ([Ko1]). The advantage of this approach

is that not only finite dimensional cases but also

infinite dimensional (both discrete and continuous

spectra) cases can be applied by this method

(c.f. [Ko2, Ko6]).

1.3. Relation between a normalization

theory of matrices and visible actions. A theory

of normal forms is often connected with a decom-

position theory of groups. A prototype is the

diagonalization of symmetric matrices by orthogo-

nal groups, which is equivalent to the Cartan

decomposition G ¼ KAK for G ¼ GLðn;RÞ. A

similar type of the decomposition theorem of

the form G ¼ KBH or its variants has been well-

established by the work of É. Cartan, M.

Flensted–Jensen [Fl], B. Hoogenboom [Ho] and T.

Matsuki [Ma] under the assumption that both

ðG;HÞ and ðG;LÞ are symmetric pairs. As explained

below, we find an analogous decomposition in the
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strongly visible setting where ðG;HÞ and ðG;LÞ are

not necessarily symmetric pairs.

1.4. Classification problem of a generalized

Cartan decomposition. Suppose that Levi sub-

groups L and H contain the same maximal torus T

of G, and let � be a Chevalley–Weyl involution of G

with respect to T in the sense that �ðtÞ ¼ t�1 for any

t 2 T . We consider the following

Problem 1. Classify triples ðG;L;HÞ such

that the multiplication mapping

 : L�G� �H ! Gð1Þ

is surjective.

The Chevalley–Weyl involution � induces an

anti-holomorphic involution on the flag variety

G=H, and G�=ðG� \HÞ is a totally real submanifold

of the complex manifold G=H. Therefore if the

multiplication mapping (1) is surjective then every

L-orbits on G=H meets the totally real submanifold

G�=ðG� \HÞ, and hence the L-action on G=H is

strongly visible. Likewise the other two group-

actions H y G=L and Gy ðG�GÞ=ðL�HÞ are

strongly visible ([Ko1]). It is noteworthy that our

classification results show that the converse is also

true in the setting here (see Corollary 5.1).

2. Statement of the main result.

Throughout this article, G is a connected compact

simple Lie group, and we fix a simple system � of

the root system �ðgC; tCÞ, and denote by Lj ðj ¼
1; 2Þ the Levi subgroup whose root system is

generated by a subset �j of �. We say that

ð�1;�2Þ is of ‘Hermitian type’ when both G=L1

and G=L2 are Hermitian symmetric spaces, other-

wise ð�1;�2Þ is said to be of ‘Non-Hermitian type’.

We know as a special case of [Ko5] that G ¼
L1G

�L2 if ð�1;�2Þ is of Hermitian type. Here is a

complete answer to Problem 1.

Main Theorem. Let G be a connected

compact simple Lie group, T a maximal torus of

G, � a Chevalley–Weyl involution and � a simple

system with respect to T . Then G ¼ L1G
�L2 holds if

and only if the pair ð�1;�2Þ of proper subsets of � is

an entry of the tables below (we label the Dynkin

diagrams following [Bo]).

2.1. Classification for type An ([Ko4]).

α1 α2 α3 αn−2 αn−1 αn

Hermitian type:

I. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�jg:
Non-Hermitian type:

I. ð�1Þc ¼ f�i; �jg; ð�2Þc ¼ f�kg:
min
p¼i;j
fp; nþ 1� pg ¼ 1; or i ¼ j� 1:

II. ð�1Þc ¼ f�i; �jg; ð�2Þc ¼ f�kg;
minfk; nþ 1� kg ¼ 2:

III. ð�1Þc ¼ f�ig;�2 : anything; i ¼ 1 or n:
Here, i; j; k satisfy 1 � i; j; k � n:

2.2. Classification for type Bn.

α1 α2 α3 αn−2 αn−1 αn

Hermitian type:
I. ð�1Þc ¼ f�1g; ð�2Þc ¼ f�1g:

Non-Hermitian type:

I. ð�1Þc ¼ f�ng; ð�2Þc ¼ f�ng:
II. ð�1Þc ¼ f�1g; ð�2Þc ¼ f�ig; 2 � i � n:

2.3. Classification for type Cn.

α1 α2 α3 αn−2 αn−1 αn

Hermitian type:
I. ð�1Þc ¼ f�ng; ð�2Þc ¼ f�ng:

Non-Hermitian type:

I. ð�1Þc ¼ f�1g; ð�2Þc ¼ f�ig; 1 � i � n:
2.4. Classification for type Dn.

α1 α2 αn−3 αn−2

αn

αn−1

Hermitian type:

I. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�jg;
i; j 2 f1; n� 1; ng:
Non-Hermitian type:

I. ð�1Þc ¼ f�1g; ð�2Þc ¼ f�jg;
j 6¼ 1; n� 1; n:

II. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�jg;
i 2 fn� 1; ng; j 2 f2; 3g:

III. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�j; �kg;
i 2 fn� 1; ng; j; k 2 f1; n� 1; ng:

IV. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�1; �2g;
i 2 fn� 1; ng:

V. ð�1Þc ¼ f�1g; ð�2Þc ¼ f�j; �kg;
j 2 fn� 1; ng or k 2 fn� 1; ng:

VI. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�2; �jg;
n ¼ 4; ði; jÞ ¼ ð3; 4Þ or ð4; 3Þ:

2.5. Classification for type E6.

α1 α3 α4 α5 α6

α2

Hermitian type:

I. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�jg; i; j 2 f1; 6g:
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Non-Hermitian type:

I. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�1; �6g; i ¼ 1 or 6:
II. ð�1Þc ¼ f�ig; ð�2Þc ¼ f�jg;

i ¼ 1 or 6; j 6¼ 1; 4; 6:

2.6. Classification for type E7.

α1 α3 α4 α5 α6 α7

α2

Hermitian type:
I. ð�1Þc ¼ f�7g; ð�2Þc ¼ f�7g:

Non-Hermitian type:

I. ð�1Þc ¼ f�7g; ð�2Þc ¼ f�ig; i ¼ 1 or 2:
2.7. Classification for type E8, F4, G2.

There is no pair ð�1;�2Þ such that G ¼ L1G
�L2

holds.

For the convenience of the reader, we state an

equivalent form of the classification of the triples

ðg; l1; l2Þ of the Lie algebras in Main Theorem.

2.10. Classification of ðl1; l2Þ for g ¼ uðnÞ
([Ko4]).

Hermitian type:

I. ðR2 � suðiÞ � suðn� iÞ,
R2 � suðjÞ � suðn� jÞÞ.
Non-Hermitian type:

I. ðR3 � suðiÞ � suðn� i� 1Þ,
R2 � suðjÞ � suðn� jÞÞ.

II. ðR3 � suðiÞ � suðjÞ � suðn� i� jÞ,
R2 � suð2Þ � suðn� 2ÞÞ.

III. l1 : R2 � suðn� 1Þ, l2 : anything.

Here, i; j satisfy 1 � i; j � n.

2.20. Classification of ðl1; l2Þ for g ¼ soð2nþ 1Þ:
Hermitian type:

I. ðR� soð2n� 1Þ, R� soð2n� 1Þ.
Non-Hermitian type:

I. ðuðnÞ, uðnÞÞ.
II. ðR� soð2n� 1Þ,

R� suðiÞ � soð2n� 2iþ 1ÞÞ,
2 � i � n.

2.30. Classification of ðl1; l2Þ for g ¼ spðnÞ:
Hermitian type:

I. ðuðnÞ, uðnÞÞ.
Non-Hermitian type:

I. ðR� spðn� 1Þ, R� suðiÞ � spðn� iÞÞ,
1 � i � n.

2.40. Classification of ðl1; l2Þ for g ¼ soð2nÞ:
Hermitian type:

I. ðR� soð2n� 2Þ, R� suðnÞÞ,

ðR� soð2n� 2Þ, R� soð2n� 2ÞÞ,
ðR� suðnÞ, R� suðnÞÞ.
Non-Hermitian type:

I. ðR� soð2n� 2Þ, R� suðjÞ � soð2n� 2jÞÞ,
j 6¼ 1; n.

II. ðR� suðnÞ, R� suðjÞ � soð2n� 2jÞÞ,
j ¼ 2 or 3.

III. ðR� suðnÞ, R2 � suðn� 1ÞÞ.
IV. ðR� suðnÞ, R2 � soð2n� 4ÞÞ.
V. ðR� soð2n� 2Þ, R2 � suðjÞ � suðn� jÞÞ,

1 � j � n� 1.

VI. ðR� suð4Þ, R2 � suð2Þ � suð2ÞÞ,
for n ¼ 4 only.

2.50. Classification of ðl1; l2Þ for g ¼ e6:

Hermitian type:

I. ðR� soð10Þ, R� soð10ÞÞ.
Non-Hermitian type:

I. ðR� soð10Þ, R2 � soð8ÞÞ.
II. ðR� soð10Þ, R� suð2Þ � suð5ÞÞ,
ðR� soð10Þ, R� suð6ÞÞ.

2.60. Classification of ðl1; l2Þ for g ¼ e7:

Hermitian type:

I. ðR� e6, R� e6Þ.
Non-Hermitian type:

I. ðR� e6, R� soð12ÞÞ,
ðR� e6, R� suð7ÞÞ.

2.70. Classification of ðl1; l2Þ for g ¼ e8, f4 or g2.

There is no pair ðl1; l2Þ such that G ¼ L1G
�L2 holds.

3. On the proof of sufficiency. For the

proof of sufficiency of Main Theorem, we give a

stronger result, namely, find an analogue of the

Cartan decomposition G ¼ L1BL2 where B is some

subset of G�. (In fact, this is the Cartan decom-

position in the symmetric setting.) For this, we use

the herringbone stitch method ([Ko4]) which re-

duces unknown decompositions to the known de-

composition in the symmetric case. This method

enables us to obtain a generalized Cartan decom-

position G ¼ L1BL2 with B � G� for almost all of

the pairs ðL1; L2Þ listed in the above. (The only

exception is Case I of Non-Hermitian type for

soð2nþ 1Þ, and in this case our proof is analogous

to that of KAK decomposition for reductive

groups.)

4. On the proof of necessity. In this

section, we explain an idea of the proof of necessity

of Main Theorem.

4.1. Classical cases. As in [Ko4], we can

prove that G 6¼ L1G
�L2 for any pair ð�1;�2Þ which

is not in the tables in Main Theorem by using
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invariant theory for quivers associated to Levi

subgroups. Let us explain briefly its idea.

Let G be a classical compact simple Lie group.

We choose a suitable embedding of G into the

unitary group UðNÞð� MðN;CÞÞ so that G has a

maximal torus consisting of diagonal matrices (we

give an example of such embedding below). The

point here is that it enables us to take the complex

conjugation with respect to the real matrices

MðN;RÞ as a Chevalley–Weyl involution of G,

and Levi subgroups consisting of block diagonal

matrices. Let � be the complex conjugation and L,

H Levi subgroups of G. Suppose that the subgroup

H is of the form H ¼ fx 2 G : xJ ¼ Jxg for some

J 2 MðN;RÞ. Then, we can find easily that

AdðG�HÞJ is contained in MðN;RÞ. Therefore if

there exists g 2 G such that

AdðLgÞJ \MðN;RÞ ¼ ?;ð2Þ

then we obtain

G 6¼ LG�H:ð3Þ

In order to consider (1) infinitesimally, we fix a

concrete realization of the classical compact Lie

algebras as follows.

(A) uðnÞ :¼ fX 2 glðn;CÞ : tX þX ¼ Og,
(B) soð2nþ 1Þ :¼ fX 2 uð2nþ 1Þ : tXJ2nþ1 þ

J2nþ1X ¼ Og,
(C) spðnÞ :¼ fX 2 uð2nÞ : tXJ 0n þ J 0nX ¼ Og,
(D) soð2nÞ :¼ fX 2 uð2nÞ : tXJ2n þ J2nX ¼ Og,

where Jm is the m�m anti-diagonal matrix whose

non-zero entries consist only of 1, and J 0m is the

2m� 2m anti-diagonal matrix whose non-zero en-

tries in the upper half part consist only of 1, and that

in the lower half part only of �1. Then, let n ¼
n1 þ � � � þ nk be the partition with ni > 0 ði 6¼ kÞ,
nk 	 0, which corresponds to the Levi subgroup L,

and X be an element of the Lie algebra of G. We

express X in the block matrix form as follows.

(A) Write X ¼ ðXijÞ1�i;j�k correspondingly to the

partition n ¼ n1 þ � � � þ nk.
(B) Write X ¼ ðXijÞ1�i;j�2k�1 correspondingly

to the partition 2nþ 1 ¼ n1 þ � � � þ nk�1 þ
ð2nk þ 1Þ þ nk�1 þ � � � þ n1.

(C) Write X ¼ ðXijÞ1�i;j�2k�1 correspondingly to

the partition 2n ¼ n1 þ � � � þ nk�1 þ 2nk þ
nk�1 þ � � � þ n1.

(D) Write X ¼ ðXijÞ1�i;j�2k�1 correspondingly to

the partition 2n ¼ n1 þ � � � þ nk�1 þ 2nk þ
nk�1 þ � � � þ n1.

Let i0 ! i1 ! � � � ! ir ¼ i0 be a loop with is 2
f1; . . . ; pg, is 6¼ isþ1 ð0 � s � r� 1Þ and r 	 2, where

p is the square root of the number of blocks of X (for

instance, p ¼ k if G is of type An�1). Then we define

a non-linear mapping Ai0i1���ir in the following way.

(A)

Mðn;CÞ �!
Ai0 ���ir

Mðni0 ;CÞ;
P 7�! ~PPi0i1

~PPi1i2 � � � ~PPir�1ir ;

where the matrix ~PPij is defined by

~PPij :¼
Pij ði < jÞ,
tP ji ði > jÞ.

�

(B)

Mð2nþ 1;CÞ �!
Ai0 ���ir Mðni0 ;CÞ ði0 6¼ kÞ,

Mð2ni0 þ 1;CÞ ði0 ¼ kÞ,

�

P 7�! ~PPi0i1
~PPi1i2 � � � ~PPir�1ir ;

where the matrix ~PPij is defined by

~PPij :¼

Pij ðiþ j � 2kÞ,
Jni

tP2k�j;2k�iJnj ðiþ j > 2k; i; j 6¼ kÞ,
J2nkþ1

tP2k�j;kJnj ði ¼ k; j > kÞ,
Jni

tPk;2k�iJ2nkþ1 ði > k; j ¼ kÞ.

8>>><
>>>:

(C)

Mð2n;CÞ �!
Ai0 ���ir Mðni0 ;CÞ ði0 6¼ kÞ,

Mð2ni0 ;CÞ ði0 ¼ kÞ,

�

P 7�! ~PPi0i1
~PPi1i2 � � � ~PPir�1ir ;

where the matrix ~PPij is defined by

~PPij :¼

Pij ðiþ j � 2kÞ,
Jni

tP2k�j;2k�iJnj ðiþ j > 2k; i; j 6¼ kÞ,
J 0nk

tP2k�j;kJnj ði ¼ k; j > kÞ,
Jni

tPk;2k�iJ
0
nk

ði > k; j ¼ kÞ.

8>>>><
>>>>:

(D)

Mð2n;CÞ �!
Ai0 ���ir Mðni0 ;CÞ ði0 6¼ kÞ,

Mð2ni0 ;CÞ ði0 ¼ kÞ,

�

P 7�! ~PPi0i1
~PPi1i2 � � � ~PPir�1ir ;

where the matrix ~PPij is defined by

~PPij :¼

Pij ðiþ j � 2kÞ,
Jni

tP2k�j;2k�iJnj ðiþ j > 2k; i; j 6¼ kÞ,
J2nk

tP2k�j;kJnj ði ¼ k; j > kÞ,
Jni

tPk;2k�iJ2nk ði > k; j ¼ kÞ.

8>>><
>>>:

In any of these four cases, we have

Ai0���irðAdðlÞXÞ ¼ li0Ai0���irðXÞl�1
i0
;ð4Þ
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for any l ¼ ðl1; . . . ; lkÞ 2 L ¼ Uðn1Þ � � � �Uðnk�1Þ �
GðnkÞ. Here, GðnkÞ denotes UðnkÞ, SOð2nk þ 1Þ,
SpðnkÞ or SOð2nkÞ. From the equality (4), we can

find that the determinant is an invariant of the

conjugation by L. Therefore, there exists an ele-

ment g 2 G satisfying (2) if there are a loop i0 !
i1 ! � � � ! ir ¼ i0 and an element X of the Lie

algebra of G such that the characteristic polynomial

of the matrix Ai0���irð½X; J 
Þ is not of real coefficients.

The proof of the necessity part of Main Theorem

(classical cases) can be carried out by finding such a

loop and an element of the Lie algebra for each of

pairs ð�1;�2Þ which are not listed in the tables in

Main Theorem.

4.2. Exceptional cases. For the proof in

the exceptional cases, we use the propagation

theorem of multiplicity-freeness property ([Ko3])

and Stembridge’s classification of multiplicity-free

tensor products ([St]).

5. Applications. Let G be a connected

compact Lie group and Lj ðj ¼ 1; 2Þ be the Levi

subgroup corresponding to the subset �j of the

simple system as in Section 2. In this section, we

write Pj ¼ G=Lj for the generalized flag variety

corresponding to �j, and ðLjÞC for the complex-

ification of Lj. We say an irreducible representation

� of G belongs to a Pj-series if the highest weight of

� is given by a linear sum of fundamental weights

corresponding to �c
j with coefficients in non-

negative integers. In other words, � is obtained by

a holomorphically induced representation from a

unitary character of Lj.

Corollary 5.1. Let G be a connected com-

pact simple Lie group. The following eleven con-

ditions on the pair of Levi subgroups L1; L2 are

equivalent.

(i) The multiplication mapping L1 �G� � L2 !
G is surjective.

(ii) The natural action L1 y P2 is strongly visible.

(iii) The natural action L2 y P1 is strongly visible.

(iv) The diagonal action Gy P1 � P2 is strongly

visible.

(v) Any irreducible representation of G, which

belongs to P2-series is multiplicity-free when

restricted to L1.

(vi) Any irreducible representation of G, which

belongs to P1-series is multiplicity-free when

restricted to L2.

(vii) The tensor product of arbitrary two irredu-

cible representations �j ðj ¼ 1; 2Þ of G belong-

ing to Pj-series is multiplicity-free.

(viii) P2 is a spherical variety of ðL1ÞC.

(ix) P1 is a spherical variety of ðL2ÞC.

(x) P1 � P2 is a spherical variety of ðGÞC.

(xi) The pair ð�1;�2Þ is one of the entries listed in

Main Theorem up to switch of the factors.

Proof. We prove that Main Theorem implies

this corollary. The strategy of the proof is summa-

rized in the below diagram.

(vii) multiplicity-free

⇔

(xi) classification of (L1 , L2)

⇔

(i) Cartan decomposition

⇐ ⇐ ⇒
(ii) (iv) (iii) visible action

⇐ ⇐ ⇐

(v) ⇔ (vii) ⇔ (vi) multiplicity-free
⇔ ⇔ ⇔

(viii) (ix)(x) spherical action.

The implication (vii) ) (xi) can be verified by com-

paring Stembridge’s classification ([St]) with Main

Theorem. The converse implication (xi) ) (vii)

follows from the propagation theorem of multi-

plicity-freeness property ([Ko3, Theorem 4.3]). The

equivalence (xi) , (i) is our Main Theorem. The

implications (i) ) (ii), (i) ) (iii) and (i) ) (iv)

are the triunity of visibility ([Ko1]). Each of

the three implications (ii) ) (v), (iii) ) (vi) and

(iv) ) (vii) is followed by the propagation theorem

of multiplicity-freeness property. As in the proof

of [Ko2, Corollary 15], we see that Vinberg and

Kimel’fel’d [VK, Corollary 1] implies the three

equivalences (v) , (viii), (vi) , (ix) and (vii) ,
(x). The equivalence (v) , (vii) , (vi) on multi-

plicity-freeness of representations follows from

Stembridge [St, Corollary 2.5]. This completes the

proof of the corollary. �

Remark 5.2. For the pioneer work for

Corollary 5.1, see [Ko4] for the type A case, and

[Ko5] for the Hermitian case.

Remark 5.3. We note that Lj is maximal if

and only if �c
j is a singleton. Under the assumption

that both L1 and L2 are maximal, P. Littelmann [Li]

proved (x) , (xi). Our proof gives a new approach

without the assumption of maximality.

The details of the proof of Main Theorem will

appear elsewhere.
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