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Abstract: In this paper, we prove a mean ergodic theorem for an almost surely bounded

strongly continuous semigroup of random linear operators on a random reflexive random normed

module, which generalizes and improves several known important results.
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1. Introduction. The notion of a random

normed module (briefly, an RN module), which was

first introduced in [6] and subsequently elaborated

in [7], is a random generalization of that of a

normed space. Since an RN module is often

endowed with a natural topology, called the

ð"; �Þ–topology, it is not a locally convex space in

general and in particular the theory of classical

conjugate spaces universally fails to serve the

theory of RN modules. The theory of random

conjugate spaces for RN modules has been devel-

oped in order to overcome the obstacle [6,7].

Subsequently, the theory of RN modules together

with their random conjugate spaces has obtained

a systematic and deep development in the direction

of functional analysis [3–5,8–12], in particular the

random reflexivity based on the theory of random

conjugate spaces and the study of semigroups of

random linear operators have also obtained some

substantial advances in [8,10,12,14,18]. The pur-

pose of this paper is to further study the mean

ergodicity of semigroups of random linear operators

on a random reflexive RN module.

Motivated by the works of Muštari and

Taylor [15,17], we have recently begun to study

the mean ergodic theorem under the framework of

RN modules [18] to obtain the mean ergodic

theorem in the sense of convergence in probability,

where we proved the mean ergodic theorem for a

strongly continuous semigroup of random unitary

operators defined on complete random inner prod-

uct modules (briefly, complete RIP modules).

It is clear that a strongly continuous semigroup of

random unitary operators is almost surely bounded

and a complete RIP module is random reflexive.

Since every bounded strongly continuous semigroup

of linear operators on a reflexive Banach space is

mean ergodic [2], this motivates us, in this paper, to

further prove a mean ergodic theorem for an almost

surely bounded strongly continuous semigroup of

random linear operators on a random reflexive

random normed module, so that results in this

paper considerably generalize and improve those

in [18]. It should be pointed out the connection

between random reflexivity of a complete RN

module ~IIAS and the reflexivity of the Banach space

Lpð~IIASÞ ð1 < p <1Þ will play a crucial role in

this paper, where ~IIAS denotes the A-stratification

of S (see [11] or see Section 3 for the notion of

A-stratification) and Lpð~IIASÞ the Banach space

generated by ~IIAS.

The remainder of this paper is organized as

follows: In Section 2 we briefly recall some neces-

sary basic notions and facts; in Section 3 we present

our main result and its proof.

2. Preliminaries. Throughout this paper,

ð�;F ; P Þ denotes a probability space, K the scalar

field R of real numbers or C of complex numbers,
�LL0ðF ; RÞ the set of equivalence classes of extended

real-valued F -measurable random variables on �,

L0ðF ; KÞ the algebra of equivalence classes of

K-valued F -measurable random variables on �

under the ordinary addition, scalar multiplica-

tion and multiplication operations on equivalence

classes.

It is well known from [1] that �LL0ðF ; RÞ is a

complete lattice under the ordering 6: � 6 � if

and only if �0ð!Þ � �0ð!Þ for P -almost all ! in
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� (briefly, a.s.), where �0 and �0 are arbitrarily

chosen representatives of � and �, respectively.

Furthermore, every subset A of �LL0ðF ; RÞ has a

supremum, denoted by _A, and an infimum,

denoted by ^A, and there exist two sequences

fan; n 2 Ng and fbn; n 2 Ng in A such that _n>1

an ¼ _A and ^n>1 bn ¼ ^A. Finally, L0ðF ; RÞ,
as a sublattice of �LL0ðF ; RÞ, is complete in the

sense that every subset with an upper bound has a

supremum.

As usual, we denote L0
þ ¼ f� 2 L0ðF ; RÞ j

� > 0g.
Definition 2.1[7,3]. An ordered pair ðS; k � kÞ

is called an RN module over K with base ð�;F ; P Þ if

S is a left module over the algebra L0ðF ;KÞ and k � k
is a mapping from S to L0

þ such that the following

three axioms are satisfied:

(1) k�xk ¼ j�jkxk; 8� 2 L0ðF ; KÞ and x 2 S;

(2) kxþ yk � kxk þ kyk; 8x; y 2 S;

(3) kxk ¼ 0 implies x ¼ � (the null vector of S),

where k � k is called the L0–norm on S and kxk is

called the L0–norm of a vector x 2 S.

It should be pointed out that the following idea

of introducing the ð"; �Þ–topology is due to B.

Schweizer and A. Sklar [16].

Let ðS; k � kÞ be an RN module over K with

base ð�;F ; P Þ. For any positive real numbers " and

� such that � < 1, let N�ð"; �Þ ¼ fx 2 S j Pf! 2
� j kxkð!Þ < "g > �g, then fN�ð"; �Þ j " > 0; 0 <

� < 1g is a local base at the null vector � of some

Hausdorff linear topology. The linear topology is

called the ð"; �Þ–topology. In this paper, given an

RN module ðS; k � kÞ over K with base ð�;F ; P Þ, it

is always assumed that ðS; k � kÞ is endowed with the

ð"; �Þ–topology. One only needs to notice that a

sequence fxn; n 2 Ng in S converges to x 2 S in the

ð"; �Þ–topology if and only if fkxn � xk; n 2 Ng
converges to 0 in probability P .

Example 2.1. Define the mapping k � k :

L0ðF ; KÞ ! L0
þ by kxk ¼ jxj for any x 2 L0ðF ; KÞ,

where jxj is the equivalence class of the composite

function jx0j : �! ½0;þ1Þ defined by jx0jð!Þ ¼
jx0ð!Þj for any ! 2 �, while x0 is an arbitrary

chosen representative of x. Then k � k is an L0–norm

on L0ðF ; KÞ and ðL0ðF ; KÞ; k � kÞ is an RN module

over K with base ð�;F ; P Þ.
Definition 2.2[14,13]. Let ðS1; k � k1Þ and

ðS2; k � k2Þ be two RN modules over K with base

ð�;F ; P Þ. A linear operator T from S1 to S2 is called

a random linear operator, further, the random

linear operator T is called a.s. bounded if there

exists a � 2 L0
þ such that kTxk2 � � � kxk1 for any

x 2 S1. Denote by BðS1; S2Þ the linear space of a.s.

bounded random linear operators from S1 to S2,

define k � k : BðS1; S2Þ ! L0
þ by kTk :¼ ^f� 2 L0

þ j
kTxk2 � � � kxk1; 8x 2 S1g for any T 2 BðS1; S2Þ,
then it is easy to see that ðBðS1; S2Þ; k � kÞ is an RN

module over K with base ð�;F ; P Þ.
Specially, denote ðBðS1; S2Þ; k � kÞ by ðS�; k � k�Þ

when ðS1; k � k1Þ is a given RN module ðS; k � kÞ over

K with base ð�;F ; P Þ and S2 ¼ L0ðF ; KÞ, then

ðS�; k � k�Þ is called the random conjugate space of

ðS; k � kÞ. Let ðS��; k � k��Þ be the random conjugate

space of ðS�; k � k�Þ. The canonical embedding map-

ping J : S ! S�� defined by ðJxÞðfÞ ¼ fðxÞ for any

x 2 S and f 2 S�, is random–norm preserving. If J

is surjective, then S is called random reflexive [12].

The Definition 2.3 below is essentially from [10].

Definition 2.3. Let ðS; k � kÞ be an RN mod-

ule over K with base ð�;F ; P Þ, BðSÞ the set of a.s.

bounded random linear operators on S. A family

fBðtÞ : t � 0g � BðSÞ is called a semigroup of ran-

dom linear operators if

Bð0Þ ¼ I and BðsÞBðtÞ ¼ Bðsþ tÞ

for all s; t � 0, where I denotes the identity operator

on S. Further, if the mapping Bð�Þx : ½0;þ1Þ ! S,

t 7! BðtÞx is continuous w.r.t. the ð"; �Þ–topology

for every x 2 S, then the semigroup of random

linear operators fBðtÞ : t � 0g is said to be strongly

continuous. Besides, if _t�0kBðtÞk 2 L0
þ, then

fBðtÞ : t � 0g is called an a.s. bounded strongly

continuous semigroup of random linear operators.

Proposition 2.1[14,13]. Let ðS1; k � k1Þ and

ðS2; k � k2Þ be two RN modules over K with base

ð�;F ; P Þ. Then we have the following statements:

(1) T 2 BðS1; S2Þ if and only if T is a contin-

uous module homomorphism;

(2) If T 2 BðS1; S2Þ, then kTk ¼ _fkTxk2 : x 2
S1 and kxk1 � 1g, where 1 denotes the identity

element in L0ðF ; RÞ.
3. The main result and its proof. The

main result of this paper is Theorem 3.1 below,

whose proof needs Lemma 3.1 as well as

Propositions 3.2 and 3.3. For the reader’s conven-

ience, let us first recall the definition of Riemann

integral for abstract-valued functions from a finite

real interval to an RN module and a sufficient

condition for such a function to be Riemann-

integrable [10].
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Let ½a; b� be a finite real interval and P ¼
fx1; x2; . . . ; xk; . . . ; xng a finite partition into ½a; b�,
namely, a ¼ x1 < x2 < . . . < xn�1 < xn ¼ b and
�ðPÞ ¼ max

1�i�n
f�xig, where �xi ¼ xi � xi�1 ði ¼

1; . . . ; nÞ. Besides, from now on we always suppose

that ðS; k � kÞ denotes a complete RN module over

K with base ð�;F ; P Þ.
Definition 3.1[10]. Let f be a function from

½a; b� to S. f is called Riemann integrable on ½a; b� if
there exists some I in S with the following property:

for any positive numbers " and � with � < 1 there is

a positive number �ð"; �Þ such that

P ! 2 �

�����
Xn
i¼1

fð�iÞ�xi � I
�����

�����ð!Þ < "

( )
> 1� �

for any finite partition P ¼ fx1; x2; . . . ; xk; . . . ; xng
and arbitrarily chosen �i 2 ½xi�1; xi� ð1 � i � nÞ
whenever �ðPÞ < �ð"; �Þ. Further I is called the

Riemann integral of f in the ð"; �Þ–topology over

½a; b�, denoted by
R b
a fðtÞdt.

Proposition 3.1[10]. Let f be a continuous

function from ½a; b� to S such that _t2½a;b�kfðtÞk 2 L0
þ,

then f is Riemann integrable in the ð"; �Þ–topology

on ½a; b�.
We can now introduce Definition 3.2 below.

Definition 3.2. Let fBðtÞ : t � 0g be an a.s.

bounded strongly continuous semigroup of random

linear operators on an RN module S. We denote

by

CðrÞx :¼
1

r

Z r

0

BðsÞxds; 8x 2 S; r > 0ð1Þ

the Cesàro means of fBðtÞ : t � 0g. For any

x 2 S, if fCðrÞx; r > 0g converges to some point

in S as r!1, then fBðtÞ : t � 0g is called mean

ergodic.

Remark 3.1. In Definition 3.2, for any

fixed x 2 S and r > 0, Let fðtÞ ¼ BðtÞx for any

t 2 ½0; r�, then f is an abstract function from ½0; r�
to S and _t2½0;r�kfðtÞk 2 L0

þ, thus f is Riemann

integrable in the ð"; �Þ–topology on ½0; r� by

Proposition 3.1, which shows that the equation (1)

is well defined.

Based on the above preliminaries, we can now

state Theorem 3.1 as follows:

Theorem 3.1. Let ðS; k � kÞ be a complete

RN module over K with base ð�;F ; P Þ. If S is

random reflexive, then every a.s. bounded strongly

continuous semigroup of random linear operators

on S is mean ergodic.

In this paper we distinguish random variables

from their equivalence classes by means of symbols:

for example, IA denotes the characteristic function

of the F–measurable set A, then we use ~IIA for its

equivalence class. Besides, let A ¼ f! 2 � j �0ð!Þ >
�0ð!Þg, where �0 and �0 are arbitrarily chosen

representatives of � and � in L0ðF ; RÞ, respectively,

then we always use ½� > �� for the equivalence class

of A and often write I½�>�� for ~IIA, one can also

understand such notations as I½����, I½� 6¼�� and I½�¼��.
In the sequel of this section, Let ðS; k � kÞ

be a complete RN module over K with base

ð�;F ; P Þ, p a given positive number such that 1 <

p <1 and LpðSÞ ¼ fx 2 S j ½
R

� kxk
pdP �

1
p < þ1g.

Define the mapping k � kp : LpðSÞ ! ½0;þ1Þ by

kxkp ¼ ½
R

� kxk
pdP �

1
p for any x 2 LpðSÞ, then

ðLpðSÞ; k � kpÞ is an ordinary Banach space. Let

BðLpðSÞÞ denote the set of bounded linear operators

on LpðSÞ. Obviously, for an F -measurable subset

A of � and an L0ðF ; KÞ-module S, ~IIAS :¼
f~IIAx j x 2 Sg, called the A-stratification of S, is a

left module over the algebra ~IIAL
0ðF ; KÞ :¼ f~IIA� j

� 2 L0ðF ; KÞg and ðLpð~IIASÞ; k � kpÞ is an ordinary

Banach space.

Now let fBðtÞ : t � 0g be an a.s. bounded

strongly continuous semigroup of random linear

operators on S and � ¼ _t�0kBðtÞk, then � 2 L0
þ. Let

Ei ¼ ½i� 1 � � < i� for each i 2 N, then fEi; i � 1g
is a sequence of pairwise disjoint F–measurable sets

such that
P1

i¼1 Ei ¼ �. Further, if we take BiðtÞ ¼
IEi � BðtÞ for any i 2 N and t � 0, then Lemma 3.1

below holds.

Lemma 3.1. fBiðtÞ : t � 0g is a bounded

strongly continuous semigroup of linear operators

on the Banach space LpðIEiSÞ.
Proof. Since

kBiðtÞxkp ¼
Z

�

kBiðtÞxkpdP
� �1

p

ð2Þ

�
Z

�

kBiðtÞkp � kxkpdP
� �1

p

� i �
Z

�

kxkpdP
� �1

p

¼ i � kxkp
for any x 2 LpðIEiSÞ, i 2 N and t � 0, it follows

that the restriction of BiðtÞ to LpðIEiSÞ, namely

BiðtÞjLpðIEiSÞ (still denoted by BiðtÞ) 2 BðLpðIEiSÞÞ
and jjjBiðtÞjjj � i, where jjjBiðtÞjjj denotes the ordi-

nary operator norm of BiðtÞ. Thus it is easy to see
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that supt�0 jjjBiðtÞjjj <1 for each fixed i 2 N.

Furthermore,

Bið0Þx ¼ Bð0ÞðIEixÞ ¼ IEix ¼ x

for any x 2 LpðIEiSÞ and

BiðtÞBiðsÞ ¼ IEiBðtþ sÞ ¼ Biðtþ sÞ

for any t; s � 0. Since

kBiðtÞx� Bið0Þxkp � ð2iÞp � kxkp 2 L1ðIEiSÞ

for any x 2 LpðIEiSÞ and it is easy to see that

kBiðtÞx� Bið0Þxkp ! 0 ðt! 0Þ in probability P , it

follows from Lebesgue’s dominated convergence

theorem that

kBiðtÞx� Bið0Þxkpð3Þ

¼
Z

�

kBiðtÞx�Bið0ÞxkpdP
� �1

p

! 0; as t! 0:

Consequently, fBiðtÞ : t � 0g is a bounded strongly

continuous semigroup of linear operators on the

Banach space LpðIEiSÞ for each fixed i 2 N . �

Proposition 3.2[12]. An RN module S is

random reflexive if and only if LpðSÞ is reflexive for

any given p such that 1 < p <1.

Proposition 3.3[2]. Let X be a Banach

space. If X is reflexive, then every bounded strongly

continuous semigroup of linear operators on X is

mean ergodic.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. For each i 2 N and

x 2 S, let xi ¼ IEix, then xi 2 IEiS. Let Fi
j ¼ ½j�

1 � kxik < j� for each j 2 N , then fFi
j ; j � 1g is a

sequence of pairwise disjoint F–measurable sets

such that
P1

j¼1 F
i
j ¼ �. Let xij ¼ IFi

j
� xi for each

j 2 N , then xij 2 LpðIEiSÞ for each j 2 N. Since

ðS; k � kÞ is random reflexive, it is clear that

IEiS is random reflexive. Thus it follows from

Proposition 3.2 that LpðIEiSÞ is a reflexive Banach

space. Further, by Lemma 3.1, we have fBiðtÞ : t �
0g is a bounded strongly continuous semigroup of

linear operators on LpðIEiSÞ. Consequently, for each

fixed i 2 N , 1
r

R r
0 BiðsÞxijds is mean ergodic on

LpðIEiSÞ for each r > 0 by Proposition 3.3, namely,

for each j 2 N, there exists a yij 2 LpðIEiSÞ such

that 1
r

R r
0 BiðsÞxijds converges to yij in k � kp as

r!1, and hence 1
r

R r
0 BiðsÞxijds also converges to

yij in the ð"; �Þ–topology as r!1. Observe that

yij ¼ IFi
j
� yij and xij ¼ IFi

j
� xij

for each j 2 N and we can suppose P ðFi
j Þ > 0 for

each j 2 N (otherwise such an Fi
j is automatically

omitted). Moreover, sinceX1
j¼1

P ðFi
j Þ ¼ P

X1
j¼1

Fi
j

 !
¼ P ð�Þ ¼ 1;

it follows that f
Pm

j¼1 y
i
j; m 2 Ng is a Cauchy

sequence in S. Since S is complete, it follows

that there exists some yi in S such that

f
Pm

j¼1 y
i
j; m 2 Ng converges to yi as m!1,

namely, for any "; � > 0 such that � < 1, there

exists an Mð"; �Þ 2 N such that m �Mð"; �Þ
implies that P ½k

Pm
j¼1 y

i
j � yik � "

3� < �
3. Choose an

m1 �Mð"; �Þ such that P ½k
Pm1

j¼1 y
i
j � yik � "

3� < �
3.

Obviously, f
Pm

j¼1
1
r

R r
0 BiðsÞxijds, m 2 Ng converges

to 1
r

R r
0 BiðsÞxids as m!1 for each r > 0.

Similarly, for the same "; � > 0, we can choose

an m2 2 N such that P ½k
Pm2

j¼1
1
r

R r
0 BiðsÞxijds�

1
r

R r
0 BiðsÞxidsk � "

3� < �
3 for each r > 0. Let m0 ¼

m1 _m2, we have

P
Xm0

j¼1

yij � yi
�����

����� � "

3

" #
<
�

3
ð4Þ

and

P
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds�
1

r

Z r

0

BiðsÞxids
�����

����� � "

3

" #
ð5Þ

<
�

3

for each r > 0. It is easy to see thatPm0

j¼1
1
r

R r
0 BiðsÞxijds converges to

Pm0

j¼1 y
i
j in the

ð"; �Þ–topology as r!1, namely, for the same

"; � > 0 above, there exists an Nð"; �Þ 2 N such that

r � Nð"; �Þ implies that

P
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds�
Xm0

j¼1

yij

�����
����� � "

3

" #
<
�

3
:ð6Þ

Since

1

r

Z r

0

BiðsÞxids� yi
����

����ð7Þ

�
1

r

Z r

0

BiðsÞxids�
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds
�����

�����
þ
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds�
Xm0

j¼1

yij

�����
�����

þ
Xm0

j¼1

yij � yi
�����

�����
for each r > 0, it follows that
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1

r

Z r

0

BiðsÞxids� yi
����

���� � "
� �

ð8Þ

�
1

r

Z r

0

BiðsÞxids�
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds
�����

����� � "

3

" #

[
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds�
Xm0

j¼1

yii

�����
����� � "

3

" #

[
Xm0

j¼1

yij � yi
�����

����� � "

3

" #

for each r > 0. Thus, according to (4), (5) and (6),

(8) gives

P
1

r

Z r

0

BiðsÞxids� yi
����

���� � "
� �

ð9Þ

� P 1

r

Z r

0

BiðsÞxids�
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds
�����

����� � "

3

" #

þ P
Xm0

j¼1

1

r

Z r

0

BiðsÞxijds�
Xm0

j¼1

yij

�����
����� � "

3

" #

þ P
Xm0

j¼1

yij � yi
�����

����� � "

3

" #

<
�

3
þ
�

3
þ
�

3
¼ �

as r � Nð"; �Þ, which implies that 1
r

R r
0 BiðsÞxids

converges to yi as r!1 in the ð"; �Þ–topology for

each fixed i 2 N .

Since

yi ¼ IEi � yi and BiðtÞxi ¼ IEi � BiðtÞxi

for each i 2 N, t � 0 andX1
i¼1

P ðEiÞ ¼ P
X1
i¼1

Ei

 !
¼ P ð�Þ ¼ 1;

let y ¼
P1

i¼1 y
i, similar to the above proof, one can

obtain that 1
r

R r
0 BðsÞxds converges to y as n!1 in

the ð"; �Þ–topology.

This completes the proof. �

One of the main results of [18] is Corollary 3.1

below, whose proof was long in [18], whereas based

on Theorem 3.1 we can give it a concise proof.

Corollary 3.1[18]. Let S be a complete

random inner product module over C with base

ð�;F ; P Þ, fUðtÞ : t � 0g a strongly continuous

semigroup of random unitary operators on S

and P0 the random orthogonal projection onto

the submodule S0 ¼ fx 2 S j UðtÞx ¼ x; 8t � 0g.
Then

lim
r!1

1

r

Z r

0

UðtÞxdt ¼ P0x; 8x 2 S:

Proof. Since every complete random inner

product module is random reflexive, it follows from

Theorem 3.1 that there exists some y 2 S such that
1
r

R r
0 UðtÞxdt converges to y as r!1 in the ð"; �Þ–

topology. Thus it remains to prove that UðtÞy ¼ y
for each t � 0.

Since

1

r

Z rþs

s

UðtÞxdtð10Þ

¼
1

r

Z rþs

0

UðtÞxdt�
1

r

Z s

0

UðtÞxdt

¼
rþ s
r

1

rþ s

Z rþs

0

UðtÞxdt

�
1

r

Z s

0

UðtÞxdt

for any r, s > 0 and x 2 S, fix s and x, letting r!
1 in (10) yields that 1

r

R rþs
s UðtÞxdt converges to y.

Observe that

UðsÞ
1

r

Z r

0

UðtÞxdt
� �

ð11Þ

¼
1

r

Z r

0

Uðsþ tÞxdt

¼
1

r

Z rþs

s

UðtÞxdt;

and the desired result follows.

This complete the proof. �

Remark 3.2. Since Corollary 3.1 was

proved by using Stone’s representation theorem

on the complete complex random inner product

module S in [10], S must be required to be on C.

Whereas if C is taken the place of K in

Corollary 3.1, by Theorem 3.1, it still holds.

Acknowledgements. The author would like

to express his sincere gratitude to Prof. Guo Tiexin

for his invaluable directions. This work was sup-

ported by the National Natural Science Foundation

of China (No. 11171015).

References

[ 1 ] N. Dunford and J. T. Schwartz, Linear operators,
part I, Interscience, New York, 1957.

[ 2 ] K.-J. Engel and R. Nagel, One-parameter semi-
groups for linear evolution equations, Grad.
Texts. in Math., 194, Springer-Verlag, New
York-Berlin-Heidelberg-Barcelona-Hong Kong-
London-Milan-Paris-Singapore-Tokyo, 2000.

No. 4] On mean ergodic semigroups of random linear operators 57



[ 3 ] T. Guo, Relations between some basic results
derived from two kinds of topologies for a
random locally convex module, J. Funct. Anal.
258 (2010), no. 9, 3024–3047.

[ 4 ] T. Guo, Recent progress in random metric
theory and its applications to conditional risk
measures, Sci. China Math. 54 (2011), no. 4,
633–660.

[ 5 ] T. Guo and X. Zeng, Random strict convexity and
random uniform convexity in random normed
modules, Nonlinear Anal. 73 (2010), no. 5,
1239–1263.

[ 6 ] T. Guo, Extension theorems of continuous random
linear operators on random domains, J. Math.
Anal. Appl. 193 (1995), no. 1, 15–27.

[ 7 ] T. Guo, Some basic theories of random normed
linear spaces and random inner product spaces,
Acta Anal. Funct. Appl. 1 (1999), no. 2, 160–
184.

[ 8 ] T. Guo and S. Li, The James theorem in complete
random normed modules, J. Math. Anal. Appl.
308 (2005), no. 1, 257–265.

[ 9 ] T. Guo and G. Shi, The algebraic structure of
finitely generated L0ðF ; KÞ-modules and the
Helly theorem in random normed modules, J.
Math. Anal. Appl. 381 (2011), no. 2, 833–842.

[ 10 ] T. Guo and X. Zhang, Stone’s representation
theorem of a group of random unitary operators
on complete complex random inner product
modules, Sci. Sin. Math. 42 (2012), no. 3, 181–
202. (in Chinese).

[ 11 ] T. Guo, The relation of Banach-Alaoglu theorem
and Banach-Bourbaki-Kakutani-Šmulian theo-
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