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The Shi arrangement of the type D,
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Abstract:
arrangement of the type D, explicitly.

Key words:

Let V be an ¢-dimensional
vector space. An affine arrangement of hyperplanes
A is a finite collection of affine hyperplanes in V. If
every hyperplane H € A goes through the origin,
then A is called to be central. When A is central, for
each H € A, choose ay € V* with ker(ay) = H. Let
S be the algebra of polynomial functions on V' and
let Derg be the module of derivations

Ders :={0:5— 5[0(fg) = f0(g9) + 90(f). f.9 € 5,
6 is R-linear}.

1. Introduction.

For a central arrangement A, recall
D(A) := {0 € Derg | 0(ap) € ayS for all H € A}.

We say that A is a free arrangement if D(A) is a
free S-module. The freeness was defined in [8]. The
Factorization Theorem [9] states that, for any free
arrangement A, the characteristic polynomial of A
factors completely over the integers.

Let E=R’ be an (-dimensional Euclidean
space with a coodinate system zi,...,xy, and
® be a crystallographic irreducible root system.
Fix a positive root system ®* C ®. For each
positive root o € &' and k € Z, we define an affine
hyperplane

Hyp={veV|(xv) =k}
In [5], J.-Y. Shi introduced the Shi arrangement
S(4y) := {Ha,k | a € T 0<Ek< 1}

when the root system is of the type Ay,. This
definition was later extended to the generalized Shi
arrangement (e.g., [1])
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In this paper, we give a basis for the derivation module of the cone over the Shi

Hyperplane arrangement; Shi arrangement; free arrangement.

S(®) :={Hpp|ae®", 0<k<1}

Embed E into V =R by adding a new coordi-
nate z such that E is defined by the equation z =1
in V. Then, as in [3], we have the cone c¢S(®) of
S(®)

cS(®) = {cHy [a€dt, 0<k<1}U{{z=0}}.

In [10], M. Yoshinaga proved that the cone cS(®) is
a free arrangement with exponenets (1,h,...,h)
(h appears ¢ times), where h is the Coxeter number
of ®. (He actually verified the conjecture by P. H.
Edelman and V. Reiner in [1], which is far more
general.) He proved the freeness without finding a
basis.

In [6], for the first time, the authors gave an
explicit construction of a basis for D(cS(Ay)). Then
D. Suyama constructed bases for D(cS(By)) and
D(cS(Cy)) in [7]. In this paper, we will give an
explicit construction of a basis for D(cS(Dy)). A
defining polynomial of the cone over the Shi
arrangement of the type Dy is given by

Q:=z H H (zs + exy — 2) (x5 + €xy).

1<s<t<lec{-1,1}

Note that the number of hyperplanes in ¢S(Dy) is
equal to 2¢(¢ — 1) + 1. Our construction is similar to
the construction in the case of the type B,;. The
essential ingredients of the recipe are the Bernoulli
polynomials and their relatives.

2. The basis construction.

Proposition 2.1. For (p,q) € Z>_1 X Z>y,
consider the following two conditions for a rational
function B 4(x):

L Byg(x +1) = Byy()
(z+1)" — (—=)"

T @t - (-2

2. Byy(—z) = —Bpg(x).

(z + 1) (=),
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Then such o rational function B,.(x) uniquely
exists. Morever, the B, () is a polynomial unless
(p.q) = (~1,0) and B_1(z) = —(1/2).

Proof. Suppose (p, q) # (—1,0). Since the right
hand side of the first condition is a polynomial in z,
there exists a polynomial B, ,(z) satisfying the first
condition. Note that B, ,(x) is unique up to a con-
stant term. Define a polynomial F(z) = B, (z) +

B, ,(—x). Since
By g(—2) = Bpy(—z — 1)
_(_x)p_(x_‘_l)p _qu q
o @t (—z)'(z+1)

R it o PP
=By4(x +1) — Byy(),

we have F(x + 1) = F(z) for any . Therefore F(z)
is a constant function. Then the polynomial
B, ,(z) — (F(0)/2) is the unique solution satisfying
the both conditions. Next we suppose (p,q) =
(—1,0). Then we compute

B_Lo(fE —+ 1) — B_Lo(fE)
@) () 1
T et () zt+ita

Thus B_jg(xz) = —(1/z) is the unique solution
satisfying the both conditions. (|

Definition 2.2. Define a rational function
B,,(z,2) in x and 2z by

B, y(z,2) = 2B, (v/z).

Then B, ,(z, 2) is a homogeneous polynomial of
degree p+2q except the two cases: B_jg(z,z) =
—(1/x) and By, (z,2) = 0.

For a set I :={y1,...,yn} of variables, let

I

g, = O-n(yh .. aym)a TQIn = O-’n,(y% s 7?/7271)7

where o0, stands for the elementary symmetric
function of degree n.
Definition 2.3. Define derivations

pj = (T — Tj11 — 2) i Z (HKl) (H K2>2

1=1 KjUK,CJ
K NKy=0)
| K| n+ne _J 0
(_Z) ( 1) UanQnZB/w ko (xla Z) 6—
0<ny <|Ji| Ti
0<na<|Js|

forj=1,...,/—1 and
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4

Pe ::Z Z (HK1)(HK2) )l

i=1 KiUK,CJ
KiNKy=0

0
(=) By gy (T, 2) 7—

ox;
for j = ¢, where
Ji=Az1,...,zj ), Jii=A{xj, x5}
Jo = {xjyo, ..., ze},
HKP = H z; (p=1,2),
wek,

ko :==|J\ (K1 UKy)| >0,
k= (|Ji] =n1) +2(]J2] =n2) =1 > —1.

Note that ¢;(z) =0 (1 < j < ¢). In the rest of
the paper, we will give a proof of the following
theorem:

Theorem 2.4. The derivations ¢1,...,py,
together with the Fuler derivation

o d
GE.:Z$+;:E¢8—%,

form a basis for D(cS(Dy)).

Note that Op(z;) = z;(1 <i < ¢) and fp(2) = =

Lemma 2.5. Let 1<i</{ and 1<j< /.
Suppose p;(z;) is nonzero. Then @;(x;) is a homo-
geneous polynomial of degree 2(¢ — 1).

Proof. Define

Fij=(vj—xj1 — 2 (H K1) (H KQ)zlel‘

0 T, Bia (@1, 2) 1<j<t-1),

Fuoe (1) (IT5) =

when K, K, ny, ng are fixed. Then ¢;(z;) is a linear
combination of the Fj;’s over R.

Note that By, (7;,2) is a polynomial unless
(k, ko) = (~1,0).

Assume that 1 < j < /¢ —1and (k, ko) =

lz/B_ Lk (@i, 2)

(—1,0).

Then J=K UKy, n;=/[|h], ny=|Jk|, and
B_1(z;,2) = —1/x;. Therefore each Fj; is a
polynomial. Thus ¢j(x;) is a mnonzero poly-
nomial and there exists a nonzero polynomial Fj;.
Compute

deg pj(z;) = deg Fy;

= 1+ K|+ 2/K| + K| +n + 20y
+ deg Ek.k?() ($17 Z)
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=14 2|Ki| 4 2|Ks| + n1 + 2ny + (2ko + k)
=14 2|Ky| + 2|Ksy| + ny + 2ns
+2(|J] = [ K| = [Ks]) + |1 = m
+2(]Jo] —ng) — 1

=2(|J] + |Jy| + | Jo|) = | ] = 20 — 2.

Next consider ¢g(x;). If ky =0, then J=
K U Ks. Therefore each Fj is a polynomial. Thus
s0 is w¢(z;). Compute
deg p¢(;)
= |K1| + 2|Ks| + |K1| + 1 + deg B_1 4, (2, 2)
=2(|K:1| + [Ka|) + 1+ (2ko — 1)
= 2(|Ky| + | Ka| + ko) = 2(£ — 1).
O

Let < denote the pure lexicographic order of
monomials with respect to the total order

X1 >Tg > >Typ > 2.

When f € S = Clzy,x9,...,2, 2| is a nonzero poly-
nomial, let in(f) denote the initial monomial (e.g.,
see [2]) of f with respect to the order <.

Proposition 2.6. Suppose p;(x;) is nonzero.
Then

(1) infgy(e:)) < -,

(2) in(pj(z:)) < a7 fori < g,

(3) in(pi(x;) = a3+ a2 2272 for 1 <i < /L.

Proof. Recall F;; (1<j</{—1) and Fj, from
the proof of Lemma 2.5 when Ki, Ky,n1,ny are
fixed. Let deg!™ f denote the degree of f with
respect to z; when f # 0.

(1) Since, for every nonzero Fj;, we obtain

deg(Fi;) = 20— 2.

20-2i
1T

2
T
:EZ

2

deg'™ Fy; <2 (1< p <),
Hence we may conclude

: 2.2 202
in(Fij) <y -2y,

and thus

in(pj(2;)) < max{in(Fy)} <a?---2? 222

3

(2) Suppose i < j < {. Since x; > x; > z, one
has

ln(Um TQnaBk ko (1'1’ Z))

ny+2no+2ko+k _ 20—25+2ky—1
< =

when By, (z;,2) is nonzero. The equality holds if
and only if ny = ny = 0.

Suppose that Fj; is nonzero. For 1 <i<j<
f — 1, we have
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in(Fy)
— in(e; — 201 — z)in(<H K1> (H K2>2(Z)K.I>

(Unl T2nf; Bk ko (J)“ Z))

<z 1n<(H Kl) (HKQ)
z; 1n<<H Kl) (H KQ) 2l ?’%)x?f—Zj—l

|Kl 20—2j+2kg—1
L

o2 9 2j-2i\ 20-2j-1
<aj(zywigxy ) (*)

_ .2 2 20-2i-1, 2 2 209
=27 T x; < xyeexpqxy

in(pj(x;)) < a?---a? a2

For1<i<j=4¢,
in(Fy)

o (TT3) (1)
: mn((n 1) ([1%2) -
rin( ([T (IT%) -2

K1|> (B (2, 2))

K| o —
\ 1)2322&0 1
K 2k

\ 1| u)xl 1

2 2 22y 1
G RRR AR L A E R )

22 221 22 20-2
=Ty X S R L

This proves (2).
Now we only need to prove (3). Let i = j < £ in
(). Then the equality

. 2 2 20-9
in(Fj;) =y a7,

holds if and only if
Klzw, KQZJ, nlzngzkgzO, k=20—-2i—1

because the leading term of Bos_2;10(7;, 2) is equal
to

x?lfﬁfl

20—2i—1°

Next let ¢ = £ in (*x). Then the equality

in(FM) = LL’% te $%71
holds if and only if
K =0, Ky =

J {1‘1, . ,LE/{,I}7 k[):O

Therefore, for 1 < i </,

in(p;(x;)) = o7 -2l 2] 7
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From Proposition 2.6, we immediately obtain
the following Corollary:
Corollary 2.7.

4 /-1
(1) 1n(det[90](x7)]) = H 901 1131 HLE
i=1 i=1

(2) Moreover, the leading term of det[p
equal to

j(xi)] is

-

2£3H

=1

(3) In particular, det]p;(z;)] does not vanish.

Next, we will prove ¢; € D(cS(Dy)) for
1<j<¥¢ We denote c¢S(Dy) simply by Sy from
now on. Before the proof, we need the following two
lemmas:

Lemma 2.8.
{=1,1}. Then
(1)

Fir 1<j<{—1 and €€

H (x; — xs)(x; — ext)

z;€J

- > (IIx)

KiUK,CJ
KlﬂKZ:U)

o« (T18) o+ e e

(_1)\'71\+\J2\ nlo‘,ﬁTé];o(Eics)kJrl
0<n <|.J;|
ngiéwil
T i e T 02 22
T €J) z;€Jy

Proof. (1) is easy because the left handside is
equal to

H (27 — (25 + €x) 7 + €x2y).

zi€J

(2) The left handside is equal to

J Jy|—
> ()Mol B ()t
0<n; <|Ji] 0<ny<|Js]
which is equal to the right handside. O

Lemma 2.9.
(1) The polynomial
T Bk, (5, 2) — 24 B, (1, 2)
is divisible by x? — x%,
(2) Fore € {—1,1}, the polynomial
(x5 — exy)exsay [Ek,ko (z, 2) + By, (71, 2)]
— (s + exy) (exszy) ™ [exy ahr (e

is divisible by xs + ex; — 2.

[Vol. 88(A),
Proof. (1) follows from the fact that
—Byg, (z,2) = Ek,ko(—x, z) in Proposition 2.1.

(2) follows from the following congruence rela-
tion of polynomials modulo the ideal (x5 + ex; — 2):

(w5 — €xt)€xs@e Bk (T, 2) + B, (w1, 2)]

T —ex
Fe+-2k s t
= (x5 — ex)emsmez 0 [BWO (;) — Bk, ( . )]

k+2ko

= (x5 — exy)exszy(xs + €xy)

B T B —exy
koko s + €xy koko Ts + €xy

)k+2k0

= (x5 — ex)ex sz (x5 + €xy

Ty k €Xy k
(xs + ext) B <xs + ext) €Ty ko T ko
Ty €Tt (a:s + ext> (zs + ext>
(935 + GIEt) - (335 + €$t)
k+1

= (24 + exy)(exymy) ™ [yt

— xs(ext)kﬂ].

O
Proposition 2.10. Every ¢, lies in D(S;).
Proof. For 1<j</{-1,1<s<t</¥ and
e€{-1,1}, by Lemma 2.9 and Lemma 2.8, we
have the following congruence relation of polyno-
mials modulo the ideal (x4 + ex; — 2):

(xs — exy)exsxi[pj(Ts + €xp — 2)]

= (zj —xjp1 — 2) Z (HKI)(HK2)2

KiUK,CJ
KiNKy=0

G R o Vit o

0<ny <[y
0<ny<|Js|

X (25 — €1)€x5w[Bi, (T, 2) + €Brg, (21, 2)]
= (z; 2)(zs + €xy)

3 (I1m) (I%) -

172

x Y (-1)

ny,n2

T
(x5 + €x1)] " (ezyz)™

nit+ny _Jy

k+1
o, T2772 [ex,xy

— a(exy)"™]

2)(xs + exy) H (x; — xs)(m; — €xy)

z;€J

X (—1)"7‘2| lext H (z; — xy) H (9022 - x%)

zi€Jy ;i €Jy

= (¢ = zjn —

—a, [[ @i —ex) [[ 7 =2d)| ().

T €J) z;€Jo

Case 1. When z5 € J, (1) =0.
Case 2. When x5 € Jy and a; € J, (1) = 0.
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Case 3. When z; € J; and z; € Jp, (1) =0.

Case 4. When z, € Jy, 2y € Jyand e =1, () = 0.

Caseb. If z;€ Jy, 4 € J; and e =—1, then s=

j<t=j+1. So () is divisible by z, + ex; — z.
We also have the following congruence relation

of polynomials modulo the ideal (z; + ex; — 2):

(x5 — exy)exsay[pe(xs + exy — 2)]

= 2 (HKI)(HKQ)QF@'K”(—M

Ki\UK,CJ
KiNKy=0

(s — ext)eajsxt[g_l% (zs,2) + GF_L]{;U(I}’ 2)]

= (zs + exy) (—x¢) (exy — )

KX}; <H Kl) (H K2>2[*($s + ex)] K (emyay) o
(2 —af)oe | ] @i = o) —er) - (1),

z;€J

Since s <t </¥, we have x,€ J={x1,..., 201}

Thus (t1) = 0. Therefore ¢;(zs + ex; — 2) is divisible

by zs+er; —zfor 1 <j<l1<s<t<U/.
For1<j</,

0(x} — a7) = 2wpj(s) — 2w0p5(21)
is divisible either by @By, (s, 2) — 24 Bk, (1, 2) or
by xsB_1 4, (s, 2) — 1 B_1 4, (21, 2), we have

—2) =0 2

il mod (x — )

by Lemma 2.9 (1). This implies ¢; € D(S). O

Applying Saito’s lemma [4] [3, Theorem 4.19],
we complete our proof of Theorem 2.4 thanks to
Lemma 2.5, Corollay 2.7 (3) and Proposition 2.10.
Theorem 2.4 implies that det[p;(z;)] is a non-
zero multiple of (Q/z). By Corollary 2.7 (2) one
obtains
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Corollary 2.11.

det[p;(z;)]
1
-t (zs + ez — 2) (s + €x).
(2¢=3)! 1§£[t§é 56{111}
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