The Shi arrangement of the type D_ℓ

By Ruimei GAO,*) Donghe PEI*) and Hiroaki TERAO**)

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 13, 2012)

Abstract: In this paper, we give a basis for the derivation module of the cone over the Shi arrangement of the type D_{ℓ} explicitly.

Key words: Hyperplane arrangement; Shi arrangement; free arrangement.

1. Introduction. Let V be an ℓ -dimensional vector space. An affine arrangement of hyperplanes \mathcal{A} is a finite collection of affine hyperplanes in V. If every hyperplane $H \in \mathcal{A}$ goes through the origin, then \mathcal{A} is called to be central. When \mathcal{A} is central, for each $H \in \mathcal{A}$, choose $\alpha_H \in V^*$ with $\ker(\alpha_H) = H$. Let S be the algebra of polynomial functions on V and let Der_S be the module of derivations

$$Der_S := \{\theta : S \to S \mid \theta(fg) = f\theta(g) + g\theta(f), f, g \in S, \theta \text{ is } \mathbf{R}\text{-linear}\}.$$

For a central arrangement A, recall

$$D(A) := \{ \theta \in \mathrm{Der}_S \mid \theta(\alpha_H) \in \alpha_H S \text{ for all } H \in A \}.$$

We say that \mathcal{A} is a free arrangement if $D(\mathcal{A})$ is a free S-module. The freeness was defined in [8]. The Factorization Theorem [9] states that, for any free arrangement \mathcal{A} , the characteristic polynomial of \mathcal{A} factors completely over the integers.

Let $E = \mathbf{R}^{\ell}$ be an ℓ -dimensional Euclidean space with a coordinate system x_1, \ldots, x_{ℓ} , and Φ be a crystallographic irreducible root system. Fix a positive root system $\Phi^+ \subset \Phi$. For each positive root $\alpha \in \Phi^+$ and $k \in \mathbf{Z}$, we define an affine hyperplane

$$H_{\alpha,k} := \{ v \in V \mid (\alpha, v) = k \}.$$

In [5], J.-Y. Shi introduced the Shi arrangement

$$S(A_{\ell}) := \{ H_{\alpha,k} \mid \alpha \in \Phi^+, \ 0 \le k \le 1 \}$$

when the root system is of the type A_{ℓ} . This definition was later extended to the generalized Shi arrangement (e.g., [1])

$$\mathcal{S}(\Phi) := \{ H_{\alpha,k} \mid \alpha \in \Phi^+, \ 0 \le k \le 1 \}.$$

Embed E into $V = \mathbf{R}^{\ell+1}$ by adding a new coordinate z such that E is defined by the equation z = 1 in V. Then, as in [3], we have the cone $\mathbf{c}\mathcal{S}(\Phi)$ of $\mathcal{S}(\Phi)$

$$\mathbf{c}S(\Phi) := {\mathbf{c}H_{\alpha,k} \mid \alpha \in \Phi^+, \ 0 \le k \le 1} \cup {\{z = 0\}\}}.$$

In [10], M. Yoshinaga proved that the cone $\mathbf{c}\mathcal{S}(\Phi)$ is a free arrangement with exponents $(1, h, \dots, h)$ $(h \text{ appears } \ell \text{ times})$, where h is the Coxeter number of Φ . (He actually verified the conjecture by P. H. Edelman and V. Reiner in [1], which is far more general.) He proved the freeness without finding a basis.

In [6], for the first time, the authors gave an explicit construction of a basis for $D(\mathbf{c}\mathcal{S}(A_{\ell}))$. Then D. Suyama constructed bases for $D(\mathbf{c}\mathcal{S}(B_{\ell}))$ and $D(\mathbf{c}\mathcal{S}(C_{\ell}))$ in [7]. In this paper, we will give an explicit construction of a basis for $D(\mathbf{c}\mathcal{S}(D_{\ell}))$. A defining polynomial of the cone over the Shi arrangement of the type D_{ℓ} is given by

$$Q := z \prod_{1 \le s < t \le \ell} \prod_{\epsilon \in \{-1,1\}} (x_s + \epsilon x_t - z)(x_s + \epsilon x_t).$$

Note that the number of hyperplanes in $\mathbf{c}\mathcal{S}(D_{\ell})$ is equal to $2\ell(\ell-1)+1$. Our construction is similar to the construction in the case of the type B_{ℓ} . The essential ingredients of the recipe are the Bernoulli polynomials and their relatives.

2. The basis construction.

Proposition 2.1. For $(p,q) \in \mathbb{Z}_{\geq -1} \times \mathbb{Z}_{\geq 0}$, consider the following two conditions for a rational function $B_{p,q}(x)$:

1.
$$B_{p,q}(x+1) - B_{p,q}(x)$$

= $\frac{(x+1)^p - (-x)^p}{(x+1) - (-x)} (x+1)^q (-x)^q$,

2.
$$B_{p,q}(-x) = -B_{p,q}(x)$$
.

²⁰¹⁰ Mathematics Subject Classification. Primary 32S22; Secondary 05E15.

^{*)} School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P. R. China.

^{**)} Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

Then such a rational function $B_{p,q}(x)$ uniquely exists. Morever, the $B_{p,q}(x)$ is a polynomial unless (p,q)=(-1,0) and $B_{-1,0}(x)=-(1/x)$.

Proof. Suppose $(p,q) \neq (-1,0)$. Since the right hand side of the first condition is a polynomial in x, there exists a polynomial $B_{p,q}(x)$ satisfying the first condition. Note that $B_{p,q}(x)$ is unique up to a constant term. Define a polynomial $F(x) = B_{p,q}(x) + B_{p,q}(-x)$. Since

$$B_{p,q}(-x) - B_{p,q}(-x-1)$$

$$= \frac{(-x)^p - (x+1)^p}{(-x) - (x+1)} (-x)^q (x+1)^q$$

$$= \frac{(x+1)^p - (-x)^p}{(x+1) - (-x)} (x+1)^q (-x)^q$$

$$= B_{p,q}(x+1) - B_{p,q}(x),$$

we have F(x+1) = F(x) for any x. Therefore F(x) is a constant function. Then the polynomial $B_{p,q}(x) - (F(0)/2)$ is the unique solution satisfying the both conditions. Next we suppose (p,q) = (-1,0). Then we compute

$$B_{-1,0}(x+1) - B_{-1,0}(x)$$

$$= \frac{(x+1)^{-1} - (-x)^{-1}}{(x+1) - (-x)} = -\frac{1}{x+1} + \frac{1}{x}.$$

Thus $B_{-1,0}(x) = -(1/x)$ is the unique solution satisfying the both conditions.

Definition 2.2. Define a rational function $\overline{B}_{p,q}(x,z)$ in x and z by

$$\overline{B}_{p,q}(x,z) := z^{p+2q} B_{p,q}(x/z).$$

Then $\overline{B}_{p,q}(x,z)$ is a homogeneous polynomial of degree p+2q except the two cases: $\overline{B}_{-1,0}(x,z)=-(1/x)$ and $\overline{B}_{0,q}(x,z)=0$.

For a set
$$I := \{y_1, ..., y_m\}$$
 of variables, let $\sigma_n^I := \sigma_n(y_1, ..., y_m), \ \tau_{2n}^I := \sigma_n(y_1^2, ..., y_m^2),$

where σ_n stands for the elementary symmetric function of degree n.

Definition 2.3. Define derivations

$$\varphi_j := (x_j - x_{j+1} - z) \sum_{i=1}^{\ell} \sum_{\substack{K_1 \cup K_2 \subseteq J \\ K_1 \cup K_2 = \emptyset}} \left(\prod K_1 \right) \left(\prod K_2 \right)^2$$

$$(-z)^{|K_1|} \sum_{\substack{0 \le n_1 \le |J_1| \\ 0 \le n_2 \le |J_b|}} (-1)^{n_1 + n_2} \sigma_{n_1}^{J_1} \tau_{2n_2}^{J_2} \overline{B}_{k,k_0}(x_i, z) \frac{\partial}{\partial x_i}$$

for
$$j = 1, \ldots, \ell - 1$$
 and

$$\varphi_{\ell} := \sum_{i=1}^{\ell} \sum_{\substack{K_1 \cup K_2 \subseteq J \\ K_1 \cap K_2 = \emptyset}} \left(\prod K_1 \right) \left(\prod K_2 \right)^2 (-z)^{|K_1|}$$
$$(-x_{\ell}) \overline{B}_{-1,k_0}(x_i, z) \frac{\partial}{\partial x_i}$$

for $j = \ell$, where

$$J := \{x_1, \dots, x_{j-1}\}, \ J_1 := \{x_j, x_{j+1}\},$$

$$J_2 := \{x_{j+2}, \dots, x_{\ell}\},$$

$$\prod K_p := \prod_{x_i \in K_p} x_i \ (p = 1, 2),$$

$$k_0 := |J \setminus (K_1 \cup K_2)| \ge 0,$$

$$k := (|J_1| - n_1) + 2(|J_2| - n_2) - 1 \ge -1.$$

Note that $\varphi_j(z) = 0$ $(1 \le j \le \ell)$. In the rest of the paper, we will give a proof of the following theorem:

Theorem 2.4. The derivations $\varphi_1, \ldots, \varphi_\ell$, together with the Euler derivation

$$\theta_E := z \frac{\partial}{\partial z} + \sum_{i=1}^{\ell} x_i \frac{\partial}{\partial x_i},$$

form a basis for $D(\mathbf{c}\mathcal{S}(D_{\ell}))$.

Note that $\theta_E(x_i) = x_i (1 \le i \le \ell)$ and $\theta_E(z) = z$. **Lemma 2.5.** Let $1 \le i \le \ell$ and $1 \le j \le \ell$. Suppose $\varphi_j(x_i)$ is nonzero. Then $\varphi_j(x_i)$ is a homogeneous polynomial of degree $2(\ell-1)$.

Proof. Define

$$\begin{split} F_{ij} &:= (x_j - x_{j+1} - z) \Big(\prod K_1 \Big) \Big(\prod K_2 \Big)^2 z^{|K_1|} \\ & \sigma_{n_1}^{J_1} \tau_{2n_2}^{J_2} \overline{B}_{k,k_0}(x_i, z) \qquad (1 \le j \le \ell - 1), \\ F_{i\ell} &:= \Big(\prod K_1 \Big) \Big(\prod K_2 \Big)^2 z^{|K_1|} x_\ell \overline{B}_{-1,k_0}(x_i, z) \end{split}$$

when K_1, K_2, n_1, n_2 are fixed. Then $\varphi_j(x_i)$ is a linear combination of the F_{ij} 's over \mathbf{R} .

Note that $\overline{B}_{k,k_0}(x_i,z)$ is a polynomial unless $(k,k_0)=(-1,0)$.

Assume that $1 \leq j \leq \ell - 1$ and $(k, k_0) = (-1, 0)$. Then $J = K_1 \cup K_2$, $n_1 = |J_1|$, $n_2 = |J_2|$, and $\overline{B}_{-1,0}(x_i, z) = -1/x_i$. Therefore each F_{ij} is a polynomial. Thus $\varphi_j(x_i)$ is a nonzero polynomial and there exists a nonzero polynomial F_{ij} . Compute

$$\deg \varphi_j(x_i) = \deg F_{ij}$$

$$= 1 + |K_1| + 2|K_2| + |K_1| + n_1 + 2n_2$$

$$+ \deg \overline{B}_{k,k_0}(x_i, z)$$

$$= 1 + 2|K_1| + 2|K_2| + n_1 + 2n_2 + (2k_0 + k)$$

$$= 1 + 2|K_1| + 2|K_2| + n_1 + 2n_2$$

$$+ 2(|J| - |K_1| - |K_2|) + |J_1| - n_1$$

$$+ 2(|J_2| - n_2) - 1$$

$$= 2(|J| + |J_1| + |J_2|) - |J_1| = 2\ell - 2.$$

Next consider $\varphi_{\ell}(x_i)$. If $k_0 = 0$, then J = $K_1 \cup K_2$. Therefore each $F_{i\ell}$ is a polynomial. Thus so is $\varphi_{\ell}(x_i)$. Compute

$$\deg \varphi_{\ell}(x_i)$$
= $|K_1| + 2|K_2| + |K_1| + 1 + \deg \overline{B}_{-1,k_0}(x_i, z)$
= $2(|K_1| + |K_2|) + 1 + (2k_0 - 1)$
= $2(|K_1| + |K_2| + k_0) = 2(\ell - 1)$.

Let < denote the pure lexicographic order of monomials with respect to the total order

$$x_1 > x_2 > \dots > x_\ell > z.$$

When $f \in S = \mathbf{C}[x_1, x_2, \dots, x_{\ell}, z]$ is a nonzero polynomial, let in(f) denote the *initial monomial* (e.g., see [2]) of f with respect to the order <.

Proposition 2.6. Suppose $\varphi_i(x_i)$ is nonzero. Then

(1)
$$\operatorname{in}(\varphi_j(x_i)) \le x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i}$$

(2)
$$\operatorname{in}(\varphi_j(x_i)) < x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i} \text{ for } i < j,$$

(1)
$$\operatorname{in}(\varphi_{j}(x_{i})) \leq x_{1}^{2} \cdots x_{i-1}^{2} x_{i}^{2\ell-2i},$$

(2) $\operatorname{in}(\varphi_{j}(x_{i})) < x_{1}^{2} \cdots x_{i-1}^{2} x_{i}^{2\ell-2i} \text{ for } i < j,$
(3) $\operatorname{in}(\varphi_{i}(x_{i})) = x_{1}^{2} \cdots x_{i-1}^{2} x_{i}^{2\ell-2i} \text{ for } 1 \leq i \leq \ell.$

Proof. Recall F_{ij} $(1 \le j \le \ell - 1)$ and $F_{i\ell}$ from the proof of Lemma 2.5 when K_1, K_2, n_1, n_2 are fixed. Let $\deg^{(x_i)} f$ denote the degree of f with respect to x_i when $f \neq 0$.

(1) Since, for every nonzero F_{ij} , we obtain

$$\deg^{(x_p)} F_{ij} \le 2 \ (1 \le p < i), \quad \deg(F_{ij}) = 2\ell - 2.$$

Hence we may conclude

$$\operatorname{in}(F_{ij}) \le x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i}$$

and thus

$$\operatorname{in}(\varphi_j(x_i)) \le \max\{\operatorname{in}(F_{ij})\} \le x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i}.$$

(2) Suppose $i < j < \ell$. Since $x_i > x_j > z$, one has

$$\inf(\sigma_{n_1}^{J_1}\tau_{2n_2}^{J_2}\overline{B}_{k,k_0}(x_i,z))
\leq x_i^{n_1+2n_2+2k_0+k} = x_i^{2\ell-2j+2k_0-1}$$

when $B_{k,k_0}(x_i,z)$ is nonzero. The equality holds if and only if $n_1 = n_2 = 0$.

Suppose that F_{ij} is nonzero. For $1 \le i < j \le$ $\ell - 1$, we have

$$\inf(F_{ij}) = \inf(x_j - x_{j+1} - z) \inf\left(\left(\prod K_1\right) \left(\prod K_2\right)^2 (-z)^{|K_1|}\right) \\
\inf(\sigma_{n_1}^{J_1} \tau_{2n_2}^{J_2} \overline{B}_{k,k_0}(x_i, z)) \\
\leq x_j \inf\left(\left(\prod K_1\right) \left(\prod K_2\right)^2 (-z)^{|K_1|}\right) x_i^{2\ell - 2j + 2k_0 - 1} \\
= x_j \inf\left(\left(\prod K_1\right) \left(\prod K_2\right)^2 (-z)^{|K_1|} x_i^{2k_0}\right) x_i^{2\ell - 2j - 1} \\
\leq x_j (x_1^2 \cdots x_{i-1}^2 x_i^{2j - 2i}) x_i^{2\ell - 2j - 1} \quad (*) \\
= x_1^2 \cdots x_{i-1}^2 x_i^{2\ell - 2i - 1} x_j < x_1^2 \cdots x_{i-1}^2 x_i^{2\ell - 2i}.$$

$$\operatorname{in}(\varphi_i(x_i)) < x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i}.$$

For
$$1 \leq i < j = \ell$$
,
 $\operatorname{in}(F_{i\ell})$

$$= x_{\ell} \operatorname{in}\left(\left(\prod K_{1}\right)\left(\prod K_{2}\right)^{2}(-z)^{|K_{1}|}\right) \operatorname{in}(\overline{B}_{-1,k_{0}}(x_{i},z))$$

$$= x_{\ell} \operatorname{in}\left(\left(\prod K_{1}\right)\left(\prod K_{2}\right)^{2}(-z)^{|K_{1}|}\right) x_{i}^{2k_{0}-1}$$

$$= x_{\ell} \operatorname{in}\left(\left(\prod K_{1}\right)\left(\prod K_{2}\right)^{2}(-z)^{|K_{1}|} x_{i}^{2k_{0}}\right) x_{i}^{-1}$$

$$\leq x_{\ell}(x_{1}^{2} \cdots x_{i-1}^{2} x_{i}^{2\ell-2i}) x_{i}^{-1} \quad (**)$$

$$= x_{1}^{2} \cdots x_{i-1}^{2} x_{i}^{2\ell-2i-1} x_{\ell} < x_{1}^{2} \cdots x_{i-1}^{2} x_{i}^{2\ell-2i}.$$

This proves (2).

Now we only need to prove (3). Let $i = j < \ell$ in (*). Then the equality

$$in(F_{ii}) = x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i}$$

holds if and only if

$$K_1 = \emptyset$$
, $K_2 = J$, $n_1 = n_2 = k_0 = 0$, $k = 2\ell - 2i - 1$

because the leading term of $\overline{B}_{2\ell-2i-1,0}(x_i,z)$ is equal

$$\frac{x_i^{2\ell-2i-1}}{2\ell-2i-1}.$$

Next let $i = \ell$ in (**). Then the equality

$$\operatorname{in}(F_{\ell\ell}) = x_1^2 \cdots x_{\ell-1}^2$$

holds if and only if

$$K_1 = \emptyset, \ K_2 = J = \{x_1, \dots, x_{\ell-1}\}, \ k_0 = 0.$$

Therefore, for $1 \leq i \leq \ell$,

$$\operatorname{in}(\varphi_i(x_i)) = x_1^2 \cdots x_{i-1}^2 x_i^{2\ell-2i}$$

From Proposition 2.6, we immediately obtain the following Corollary:

Corollary 2.7.

(1)
$$\operatorname{in}(\det[\varphi_j(x_i)]) = \prod_{i=1}^{\ell} \operatorname{in}(\varphi_i(x_i)) = \prod_{i=1}^{\ell-1} x_i^{4(\ell-i)}.$$

(2) Moreover, the leading term of $det[\varphi_j(x_i)]$ is equal to

$$\frac{1}{(2\ell-3)!!} \prod_{i=1}^{\ell-1} x_i^{4(\ell-i)}.$$

(3) In particular, $det[\varphi_i(x_i)]$ does not vanish.

Next, we will prove $\varphi_j \in D(\mathbf{c}\mathcal{S}(D_\ell))$ for $1 \leq j \leq \ell$. We denote $\mathbf{c}\mathcal{S}(D_\ell)$ simply by \mathcal{S}_ℓ from now on. Before the proof, we need the following two lemmas:

Lemma 2.8. Fix $1 \le j \le \ell - 1$ and $\epsilon \in \{-1, 1\}$. Then (1)

$$\prod_{x_i \in J} (x_i - x_s)(x_i - \epsilon x_t) = \sum_{\substack{K_1 \cup K_2 \subseteq J \\ K_1 \cap K_2 = \emptyset}} \left(\prod K_1 \right)$$

$$\times \left(\prod K_2\right)^2 \left[-(x_s+\epsilon x_t)\right]^{|K_1|} (\epsilon x_s x_t)^{k_0}.$$

(2)
$$\sum_{\substack{0 \le n_1 \le |J_1| \\ 0 \le n_2 \le |J_2|}} (-1)^{|J_1|+|J_2|-n_1-n_2} \sigma_{n_1}^{J_1} \tau_{2n_2}^{J_2} (\epsilon x_s)^{k+1}$$

$$= \prod_{x_i \in J_1} (x_i - \epsilon x_s) \prod_{x_i \in J_2} (x_i^2 - x_s^2).$$

Proof. (1) is easy because the left hand side is equal to

$$\prod_{x_i \in J} (x_i^2 - (x_s + \epsilon x_t)x_i + \epsilon x_s x_t).$$

(2) The left handside is equal to

$$\sum_{0 \leq n_1 \leq |J_1|} (-\epsilon x_s)^{|J_1|-n_1} \sigma_{n_1}^{J_1} \sum_{0 \leq n_2 \leq |J_2|} (-x_s^2)^{|J_2|-n_2} \tau_{2n_2}^{J_2}$$

which is equal to the right handside.

Lemma 2.9.

(1) The polynomial

$$x_s \overline{B}_{k,k_0}(x_s,z) - x_t \overline{B}_{k,k_0}(x_t,z)$$

is divisible by $x_s^2 - x_t^2$,

(2) For $\epsilon \in \{-1, 1\}$, the polynomial

$$(x_s - \epsilon x_t)\epsilon x_s x_t [\overline{B}_{k,k_0}(x_s, z) + \epsilon \overline{B}_{k,k_0}(x_t, z)]$$

$$- (x_s + \epsilon x_t)(\epsilon x_s x_t)^{k_0} [\epsilon x_t x_s^{k+1} - x_s(\epsilon x_t)^{k+1}]$$

is divisible by $x_s + \epsilon x_t - z$.

Proof. (1) follows from the fact that $-\overline{B}_{k,k_0}(x,z) = \overline{B}_{k,k_0}(-x,z)$ in Proposition 2.1.

(2) follows from the following congruence relation of polynomials modulo the ideal $(x_s + \epsilon x_t - z)$:

$$(x_{s} - \epsilon x_{t})\epsilon x_{s}x_{t}[\overline{B}_{k,k_{0}}(x_{s}, z) + \epsilon \overline{B}_{k,k_{0}}(x_{t}, z)]$$

$$= (x_{s} - \epsilon x_{t})\epsilon x_{s}x_{t}z^{k+2k_{0}}\left[B_{k,k_{0}}\left(\frac{x_{s}}{z}\right) - B_{k,k_{0}}\left(\frac{-\epsilon x_{t}}{z}\right)\right]$$

$$\equiv (x_{s} - \epsilon x_{t})\epsilon x_{s}x_{t}(x_{s} + \epsilon x_{t})^{k+2k_{0}}$$

$$\left[B_{k,k_{0}}\left(\frac{x_{s}}{x_{s} + \epsilon x_{t}}\right) - B_{k,k_{0}}\left(\frac{-\epsilon x_{t}}{x_{s} + \epsilon x_{t}}\right)\right]$$

$$= (x_{s} - \epsilon x_{t})\epsilon x_{s}x_{t}(x_{s} + \epsilon x_{t})^{k+2k_{0}}$$

$$\frac{\left(\frac{x_{s}}{x_{s} + \epsilon x_{t}}\right)^{k} - \left(\frac{\epsilon x_{t}}{x_{s} + \epsilon x_{t}}\right)^{k}\left(\frac{\epsilon x_{t}}{x_{s} + \epsilon x_{t}}\right)^{k_{0}}\left(\frac{x_{s}}{x_{s} + \epsilon x_{t}}\right)^{k_{0}}}{\left(\frac{x_{s}}{x_{s} + \epsilon x_{t}}\right) - \left(\frac{\epsilon x_{t}}{x_{s} + \epsilon x_{t}}\right)^{k}\left(\frac{\epsilon x_{t}}{x_{s} + \epsilon x_{t}}\right)^{k_{0}}}$$

$$= (x_{s} + \epsilon x_{t})(\epsilon x_{s}x_{t})^{k_{0}}[\epsilon x_{t}x_{s}^{k+1} - x_{s}(\epsilon x_{t})^{k+1}].$$

Proposition 2.10. Every φ_j lies in $D(S_\ell)$.

Proof. For $1 \le j \le \ell - 1, 1 \le s < t \le \ell$, and $\epsilon \in \{-1,1\}$, by Lemma 2.9 and Lemma 2.8, we have the following congruence relation of polynomials modulo the ideal $(x_s + \epsilon x_t - z)$:

$$\begin{split} &(x_{s}-\epsilon x_{t})\epsilon x_{s}x_{t}[\varphi_{j}(x_{s}+\epsilon x_{t}-z)]\\ &=(x_{j}-x_{j+1}-z)\sum_{\substack{K_{1}\cup K_{2}\subseteq J\\K_{1}\cap K_{2}=\emptyset}}\left(\prod K_{1}\right)\left(\prod K_{2}\right)^{2}\\ &\times(-z)^{|K_{1}|}\sum_{\substack{0\leq n_{1}\leq |J_{1}|\\0\leq n_{2}\leq |J_{2}|}}\left(-1\right)^{n_{1}+n_{2}}\sigma_{n_{1}}^{J_{1}}\tau_{2n_{2}}^{J_{2}}\\ &\times(x_{s}-\epsilon x_{t})\epsilon x_{s}x_{t}[\overline{B}_{k,k_{0}}(x_{s},z)+\epsilon\overline{B}_{k,k_{0}}(x_{t},z)]\\ &\equiv(x_{j}-x_{j+1}-z)(x_{s}+\epsilon x_{t})\\ &\times\sum_{K_{1},K_{2}}\left(\prod K_{1}\right)\left(\prod K_{2}\right)^{2}[-(x_{s}+\epsilon x_{t})]^{|K_{1}|}(\epsilon x_{s}x_{t})^{k_{0}}\\ &\times\sum_{n_{1},n_{2}}\left(-1\right)^{n_{1}+n_{2}}\sigma_{n_{1}}^{J_{1}}\tau_{2n_{2}}^{J_{2}}[\epsilon x_{t}x_{s}^{k+1}-x_{s}(\epsilon x_{t})^{k+1}]\\ &=(x_{j}-x_{j+1}-z)(x_{s}+\epsilon x_{t})\prod_{x_{i}\in J}(x_{i}-x_{s})(x_{i}-\epsilon x_{t})\\ &\times(-1)^{|J_{2}|}\left[\epsilon x_{t}\prod_{x_{i}\in J_{1}}(x_{i}-x_{s})\prod_{x_{i}\in J_{2}}(x_{i}^{2}-x_{s}^{2})\\ &-x_{s}\prod_{x_{i}\in J_{1}}(x_{i}-\epsilon x_{t})\prod_{x_{i}\in J_{2}}(x_{i}^{2}-x_{t}^{2})\right] \quad (\dagger). \end{split}$$

Case 1. When $x_s \in J$, $(\dagger) = 0$. Case 2. When $x_s \in J_2$ and $x_t \in J_2$, $(\dagger) = 0$.

Case 3. When $x_s \in J_1$ and $x_t \in J_2$, $(\dagger) = 0$. Case 4. When $x_s \in J_1$, $x_t \in J_1$ and $\epsilon = 1$, $(\dagger) = 0$. Case 5. If $x_s \in J_1$, $x_t \in J_1$ and $\epsilon = -1$, then s = j < t = j + 1. So (\dagger) is divisible by $x_s + \epsilon x_t - z$.

We also have the following congruence relation of polynomials modulo the ideal $(x_s + \epsilon x_t - z)$:

$$(x_s - \epsilon x_t)\epsilon x_s x_t [\varphi_{\ell}(x_s + \epsilon x_t - z)]$$

$$= \sum_{\substack{K_1 \cup K_2 \subseteq J \\ K_1 \cap K_2 = \emptyset}} \left(\prod_i K_1\right) \left(\prod_i K_2\right)^2 (-z)^{|K_1|} (-x_{\ell})$$

$$(x_s - \epsilon x_t)\epsilon x_s x_t [\overline{B}_{-1,k_0}(x_s, z) + \epsilon \overline{B}_{-1,k_0}(x_t, z)]$$

$$\equiv (x_s + \epsilon x_t)(-x_{\ell})(\epsilon x_t - x_s)$$

$$\sum_{K_1, K_2} \left(\prod_i K_1\right) \left(\prod_i K_2\right)^2 [-(x_s + \epsilon x_t)]^{|K_1|} (\epsilon x_s x_t)^{k_0}$$

$$= (x_s^2 - x_t^2) x_{\ell} \prod_{x_i \in J} (x_i - x_s)(x_i - \epsilon x_t) \quad (\dagger \dagger).$$

Since $s < t \le \ell$, we have $x_s \in J = \{x_1, \dots, x_{\ell-1}\}$. Thus $(\dagger\dagger) = 0$. Therefore $\varphi_j(x_s + \epsilon x_t - z)$ is divisible by $x_s + \epsilon x_t - z$ for $1 \le j \le \ell, 1 \le s < t \le \ell$. For $1 \le j \le \ell$,

$$\varphi_j(x_s^2 - x_t^2) = 2x_s\varphi_j(x_s) - 2x_t\varphi_j(x_t)$$

is divisible either by $x_s\overline{B}_{k,k_0}(x_s,z) - x_t\overline{B}_{k,k_0}(x_t,z)$ or by $x_s\overline{B}_{-1,k_0}(x_s,z) - x_t\overline{B}_{-1,k_0}(x_t,z)$, we have

$$\varphi_i(x_s^2 - x_t^2) \equiv 0 \mod (x_s^2 - x_t^2)$$

by Lemma 2.9 (1). This implies $\varphi_i \in D(\mathcal{S}_{\ell})$.

Applying Saito's lemma [4] [3, Theorem 4.19], we complete our proof of Theorem 2.4 thanks to Lemma 2.5, Corollay 2.7 (3) and Proposition 2.10. Theorem 2.4 implies that $\det[\varphi_j(x_i)]$ is a nonzero multiple of (Q/z). By Corollary 2.7 (2) one obtains

Corollary 2.11.

 $\det[\varphi_j(x_i)]$

$$= \frac{1}{(2\ell - 3)!!} \prod_{1 \le s < t \le \ell} \prod_{\epsilon \in \{-1, 1\}} (x_s + \epsilon x_t - z)(x_s + \epsilon x_t).$$

Acknowledgements. R. Gao and D. Pei are partially supported by NSF (10871035) of China. H. Terao is partially supported by JSPS KAKENHI (21340001).

References

- [1] P. H. Edelman and V. Reiner, Free arrangements and rhombic tilings, Discrete Comput. Geom. 15 (1996), no. 3, 307–340.
- 2] J. Herzog and T. Hibi, Monomial ideals, Grad. Texts in Math., 260, Springer, London, 2011.
- [3] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer, Berlin, 1992.
- [4] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265– 291.
- [5] J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Math., 1179, Springer, Berlin, 1986.
- [6] D. Suyama and H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. London Math. Soc. (to appear). arXiv:1103.3214v3.
- [7] D. Suyama, On the Shi arrangements of types B_{ℓ} , C_{ℓ} , F_4 and G_2 . (in preparation).
- [8] H. Terao, Arrangements of hyperplanes and their freeness. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 293–320.
- 9] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math. **63** (1981), no. 1, 159–179.
- [10] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449–454.