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Abstract:

Concerning the Feit-Thompson conjecture, Stephens found an example for

primes 17 and 3313. In this paper, using the Artin map, these primes are common index divisors
of subfields of a cyclotomic field, and some results in [7,8] shall be again proved.

Key words:

Let p < ¢ be primes and we set

Feit and Thompson [3] conjectured that f
never divides t. If it would be proved, the proof of
their odd order theorem [4] would be greatly
simplified (see [1] and [5]).

Throughout this paper, we assume that r is a
common prime divisor of f and t. Using computer,
Stephens [10] found the example about r as follows:
for p =17 and ¢ = 3313, r = 112643 = 2pq + 1 is the
greatest common divisor of f and ¢. This example is
so far the only one.

In this paper, using the Artin map, we shall
show that both 17 and 3313 are common index
divisors (gemeinsamer ausserwesentlicher Discrim-
inantenteiler) of some subfields of a C}Qch_lotomic field
Q(¢) where r=112643 and ¢, = efl, and some
results in [7,8] shall be again proved.

The assumption on r yields from [7, Lemma, (1)
and (3)] that p and ¢ are orders of ¢ mod r and
p mod r, respectively and r = 1 mo;;}i 2pq.

We set ¢°fg:=r—1 and (=e+. Let n be a
divisor of ¢*, let L,, be a subfield of K = Q(({) with
[L, : Q] =n and let O,, be the algebraic integer ring
of L,,. The next exact sequence using the Artin map
a follows from [9,p. 99 and section 2.16] where
a=ar,q and afs) = (@) (the Artin symbol,
see [9, p. 96]).
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1 — Hy(r) — Ig(r) = G, — 1

where G, is the Galois group of L, over Q, Ig(r)
is the fractional ideal group of Q prime to r,
namely,

Ig(r) == {; ‘ 0<s,teZ,(st,r)= 1} and

H,(r) := {; € Ig(r)

We have d(p) = I(p)*d(L,) for pu € O, where
I(p) € Z, d(p) and d(L,,) are discriminants of y and
of the field L, respectively.

The example by Stephens shows from the next
Theorem that p =17 and ¢ = 3313 are common
index divisors of L3y and of Lggog, respectively,
because we can exchange p for q.

Theorem. Assume r is a common prime
divisor of f and t, and n is a divisor of q*, where
q¢'q=1—1. Then p splits completely in O, and if
there exists p € O, such that p does not divide I(p),
then n < p.

In particular, for n > p, p is a common index
divisor of O, namely, p divides I1(7) for all v € O,,.

Proof. First we show p splits completely in O,,.

It is well known that ¢ = p mod r is solvable
in Z from p? =1 mod r (see [6,p. 45]). Thus p €
H,(r) and a(p) =1. Hence v =v*?) =? mod P
for all v € O,, where P is a prime ideal in O,
containing p. This means degree of P is 1. Hence p
has the prime ideal decomposition p =P P,--- P,
in O,,, where P; are all distinct prime ideals.

Next we shall show n < p. Let h(z) be the
minimal polynomial of u over Q. Using decompo-
sition of p and the assumption p does not divide

s=tx" mod r, xz € Z}.
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I(u), by Kummer’s theorem in [2,p. 141-145], we
obtain  h(x) = ¢1(x)p2(x) - - ¢d,(x) mod p where
¢j(z) =z — a;, a; € Z and a; mod p are all distinct.
Thus we have p 2 [{a; mod p}| =n. O

Let ¢ be a primitive root for r, let x be a
character of order n defined by x(c) = w where w =
e and let 9(X) = D_scr, X(a)(? be the Gauss sum of
x where F, is a finite field of order r.

Let o({) = ¢¢ be a generator of the Galois group
G of K over Q and set T,, := (o").

For simplicity, we set gy = —1, gr = g(x*) for
n>k>0 and 6, =06 for n>k=>0 where 0=
> rer, ¢7 is a trace of C.

It is known that L, = Q(#) and 6 is a normal
basis element of O,, over Z (see [9,p. 61, p. 74]).

The next Lemma is useful to our object. It only
needs to assume r is prime and n is a divisor of r — 1
in this Lemma. This proof is essentially in the
first equation of (1) due to [9,p. 62]. This idea of
classifying primitive roots goes back to Gauss;
the regular 17 polygon construction by ruler and
compass.

Lemma.

(1) gr=>"""0u0, for 0Sk<n and nfy=

S éwk*gé for 0 £ k <n where @ is the com-

plex conjugate of w.

(2) We set cyclic matrices Ay, By, of the degree n

as follows:
Oy 0 On—1
977,71 00 97172
A, =
6, 6, ... 6
and
g G In—-1
9n-1 9o Gn—2
B, =
g 92 --- 9

Then A, has eigenvalues g and column
eigenvectors vy = (W), respectively and B,
has also eigenvalues nfy and column eigenvec-
tors vy = (_kj), respectively.

(3) 1Al = Tjb g ond B = n" T[4 6, where
|A,| and |B,| are determinants of A, and By,
respectively.

(4) We set e=(—1) ™ for even n and X is
the quadratic character. Then we have

(r—1)(n—2)
8
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A, = { —z if n is odd,
er 2 g(\) if nis even.
Thus we have
=l
= { ot

Proof. (1) First equations follow essentially
from

if m is odd,

if n is even.

acF,
n—1 % 5
=33 X (@ ()
t=0 s=1
n—1 n—1
= X (Z CT) Zwtt%.
t=0

On second equations, we can easily solve linear
equations gp = ZZ;& W@, for 0 < k < n about the
unknowns 6,.

(2) is easily checked from (1).

(3) follows easily from (2).

(4): Tt is easy to see x(—1) = 1 for odd n. In general,
it follows from

1 =1 e —1 r=1

X(—l) = X(C 2 ) w2 = (e ) — (_1) n |
(4) follows from grgn—« = x(—1)"|gs* = x(=1)"r for
1<k "Tfl 0

Some results in [7,8] are proved again in the
next

Corollary.
(1) Ifris a common prime divisor of f and t, then

p=1orr=1mod 4 (see [7,Lemma, (4)]).
(2) If p=3 and f divides t, then ¢ =—1 mod 9

(see [8, Corollary, (a)]).

Proof. Let n be a divisor of ¢* where ¢'q =
r—1.
(1) We set here n =2. We have d(Ly) = (—1)%r
by Lemma and d(f) = (0 —6;)* = d(Ly) because
0 = Trgyr,(¢) and so 64 6; = —1. Thus Kummer’s
theorem asserts h(z) = (x — b)(z + b+ 1) mod p for
the minimal polynomial h(z) of 6.

(2b+1)2 = (0—01)° = d(Ls) = (-1)T

Thus we have by Fermat’s theorem.

# 0 mod p.

= Pl

1=((20+1))2 =(-1)% 2 mod p.
(2) We consider the case n=p=3. If f is com-
posite, then f does not divide ¢. Thus f is prime
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and so r = f (see [7]), where r is as in (1). f has
a primary prime decomposition f=n7 in Zw]
where w=-¢€3 and n=ww—gq), (see [6,8]). In
this case, we set x is the cubic residue character
modulo 7. Let h(z) be the minimal polynomial of 6
over Q.

h(z) :== 2° + a12® + asx + a3
= (iL' — 90)(£L' — 91)(3? — 92)7
where a1 = —6y — 0, — 0y = 1. If 3 does not divide

I(f), then h(x)=2>—2 mod 3 contradicts to
a; = 1. Thus d(f) =0 mod 3.
1 6, 6
f:T':—|A3|:—(00+01+92) ]. 9() 91
1 6y 6

:0(2)4’9%4’9%—&2:1—30,2.

Thus we have 3a; =1 — f = —¢(g¢+ 1). On the other
hand, using ¢» = g1, f =i and the Stickelberger
relation g3 = = fn (see [6]), we have

—27(13 = 27909192 = |B3|

go g1 92
=192 g 91
g1 92 9o

= g0+ 91 + 9 — 3909192
=-1+f(n+n)+3f
=1+ flg=1)+3f=(g+1)"
Thus we have 33¢%a3 = (—q(q+1))* = 3%a3 and so
as + as Eag—q3a3 =0 mod 3.

Noting h/(0) = as — 6 mod 3 where h'(z) is the
derivation of h(z), we obtain
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0= —d(6) = Np,/q(h(0)) = h(az)
E(Ig—@%-f—&gE—d% mod 3.
Thus we have 0 = 3az = —q(¢+ 1) mod 9. O

Remark. The minimal polynomials of 6 and
prime ideal decompositions of p in cases (1) and (2)
can be explicitly determined.
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