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Abstract: We introduce several definitions of energy density of Brody curves and show

that they give the same value in an appropriate situation.
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1. Introduction. Let z ¼ xþ y
ffiffiffiffiffiffiffi
�1
p

2 C be

the standard coordinate of the complex plane C. Let

X be a compact Hermitian manifold with the Kähler

form !, and let f : C! X be a holomorphic map.

We define the spherical derivative jdf jðzÞ � 0 by

f�! ¼ jdf j2dxdy:

We call f a Brody curve (cf. Brody [1]) if it satisfies

jdf jðzÞ � 1 for all z 2 C. Let MðXÞ be the space

of Brody curves in X. This is equipped with the

compact-open topology, and it becomes a compact

metrizable space (possibly infinite dimensional)

with the following natural continuous C-action:

C�MðXÞ !MðXÞ; ða; fðzÞÞ 7! fðzþ aÞ:

For f 2MðXÞ, we define the energy density

�ðfÞ (first introduced in [4]) by

�ðfÞ :¼ lim
R!1

1

�R2
sup
a2C

Z
jz�aj<R

jdf j2dxdy
 !

:

(This limit always exists by Lemma 2.4 in Section

2.) Let N �MðXÞ be a C-invariant closed subset.

We define �ðN Þ as the supremum of �ðfÞ over all

f 2 N . We sometimes denote �ðMðXÞÞ by �ðXÞ.
The idea of introducing �ðN Þ began in the

paper [7]. ([7] uses a different definition.) It has

a close relation to the mean dimension theory

(introduced by Gromov [3]). The paper [4] proves

2ðN þ 1Þ�ðCPNÞ � dimðMðCPNÞ : CÞ
� 4N�ðCPNÞ:

Here CPN is the projective space with the standard

Fubini-Study metric, and dimðMðCPNÞ : CÞ is the

mean dimension of MðCPNÞ. In particular

dimðMðCP 1Þ : CÞ ¼ 4�ðCP 1Þ:

The purpose of the present paper is to study

variants of �ðN Þ and to show that they give the

same value.

Let T ðr; fÞ be the Nevanlinna-Shimizu-Ahlfors

characteristic function of f 2MðXÞ:

T ðr; fÞ :¼
Z r

1

Z
jzj<t
jdf j2dxdy

 !
dt

t
ðr � 1Þ:

Since jdfj � 1 we have T ðr; fÞ � �r2=2. We define

�NSAðfÞ and �
NSA
ðfÞ by

�NSAðfÞ :¼ lim sup
r!1

2

�r2
T ðr; fÞ;

�
NSA
ðfÞ :¼ lim inf

r!1

2

�r2
T ðr; fÞ:

For a C-invariant closed subset N �MðXÞ, let

�NSAðN Þ and �
NSA
ðN Þ be the supremums of �NSAðfÞ

and �
NSA
ðfÞ over f 2 N respectively. It is easy

to see �
NSA
ðfÞ � �NSAðfÞ � �ðfÞ. Hence �

NSA
ðN Þ �

�NSAðN Þ � �ðN Þ.
The quantity �NSAðMðXÞÞ naturally appeared

in the study of the upper bound on the mean

dimension [6].

Example 1.1. Consider Z2 ¼ fðx; yÞ j x; y 2
Zg � C. Let an ðn � 1Þ be an increasing sequence of

positive numbers which goes to infinity sufficiently

fast. (an ¼ n2 will do.) Set

� :¼ Z2 \
[1
n¼1

fz 2 C j jz� anj � ng
 !

:

Let c > 0. We define a meromorphic function fðzÞ
by

fðzÞ :¼
X
�2�

1

ðcz� �Þ3
:
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We can choose c so that f 2MðCP 1Þ and

�ðfÞ > 0; �NSAðfÞ ¼ �NSA
ðfÞ ¼ 0:

For f 2MðXÞ we denote the closure of the C-

orbit of f by C � f. Our main result is the following

Theorem 1.2. For any f 2MðXÞ we have

�ðfÞ ¼ �ðC � fÞ ¼ �NSAðC � fÞ ¼ �NSA
ðC � fÞ:

Hence for any C-invariant closed subset N �MðXÞ
�ðN Þ ¼ �NSAðN Þ ¼ �NSA

ðN Þ:

The technique of the proof of Theorem 1.2 also

gives the following

Theorem 1.3. For any C-invariant closed

subset N �MðXÞ

�ðN Þ ¼ lim
R!1

1

�R2
sup
f2N

Z
jzj<R
jdfj2dxdy

 !
:ð1Þ

The proofs of these theorems will be given in

Section 3. The essential ingredients of the proofs

are the standard argument of normal family (i.e. the

compactness ofMðXÞ) and a technical result given

in Section 2.

2. Technical result. We fix a positive in-

teger D throughout this section. (Later we will need

only the case D ¼ 2.)

We introduce one notation on Borel measures:

Let � be a Borel measure on RD, and let a 2 RD. We

define a Borel measure a:� on RD by ða:�Þð�Þ :¼
�ðaþ �Þ where � � RD and aþ � :¼ faþ x j x 2
�g � RD.

Let M be a set of Borel measures on RD

satisfying the following two conditions:

(a) For any � 2M and a 2 RD we have a:� 2M.

(b) sup�2M �ð½0; 1	DÞ < þ1.

Under the condition (a), the condition (b) is

equivalent to the condition that for every bounded

Borel subset � � RD we have sup�2M �ð�Þ < þ1.

Example 2.1. Let ’ : RD ! ½0; 1	 be a mea-

surable function, and set

�ð�Þ :¼
Z

�

’dvol; ð� � RDÞ:

Here dvol is the standard volume element of RD.

Then the set fa:� j a 2 RDg satisfies the above two

conditions.

For a Borel set � � RD we denote its Lebesgue

measure by j�j. For r > 0 and a 2 RD we set

BrðaÞ :¼ fx 2 RDj jx� aj � rg. We denote Brð0Þ by

Br. We introduce the following two quantities:

� :¼ lim
R!1

1

jBRj
sup
�2M

�ðBRÞ
 !

;

~�� :¼ lim
r!1

lim
R!1

sup
�2M

inf
r�t�R

�ðBtÞ
jBtj

� �( )" #
:

The existence of the limit in the definition of �

follows from Lemma 2.4 below (see the proof of

Lemma 2.5). The quantity

sup
�2M

inf
r�t�R

�ðBtÞ
jBtj

� �
is a non-increasing function in R and a non-

decreasing function in r. Hence the limits in the

definition of ~�� exist.

The definition of ~�� looks complicated, but it is

easy to see ~�� � �. The following result is the main

technical tool for the proofs of Theorems 1.2 and 1.3.

Theorem 2.2. ~�� ¼ �.

This result might be known to some specialists

in harmonic analysis or ergodic theory. But I could

not find a literature containing this result.

We need two lemmas below. Lemma 2.3 is the

well-known finite Vitali covering lemma (see e.g.

Einsiedler-Ward [2, p. 40, Lemma 2.27]). Lemma 2.4

is a special case of Ornstein-Weiss’s lemma.

(This formulation is due to Gromov [3, p. 336].

The original argument was given in Ornstein-Weiss

[5, Chapter I, Sections 2 and 3].)

Lemma 2.3. Let a1; . . . ; aK 2 RD and

r1; . . . ; rK > 0. Then we can choose 1 �
ið1Þ < � � � < iðkÞ � K such that the balls

Brið1Þ ðaið1ÞÞ; . . . ; BriðkÞ ðaiðkÞÞ are disjoint and[K
j¼1

BrjðajÞ �
[k
j¼1

B3riðjÞ ðaiðjÞÞ:

Before giving the statement of Lemma 2.4 we

need to prepare some terminologies. Let � � RD

and r > 0. We define @r� as the set of points x 2 RD

such that BrðxÞ has a non-empty intersection both

with � and RD n �. A sequence of bounded Borel

subsets f�ngn�1 of RD is called a Følner sequence if

for all r > 0

j@r�nj=j�nj ! 0 ðn!1Þ:

The sequence fBngn�1 is a Følner sequence. The

sequence f½0; n	Dgn�1 is also.

Lemma 2.4. Let h be a non-negative func-

tion on the set of bounded Borel subsets of RD

satisfying the following three conditions.
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(Monotonicity) If �1 � �2, then hð�1Þ � hð�2Þ.
(Subadditivity) hð�1 [ �2Þ � hð�1Þ þ hð�2Þ.
(Invariance) For any a 2 RD and any bounded

Borel subset � � RD, we have hðaþ �Þ ¼ hð�Þ.
Then for any Følner sequence �n ðn � 1Þ in

RD, the limit of the sequence

hð�nÞ=j�nj ðn � 1Þ

exists, and its value is independent of the choice of

a Følner sequence.

The following is an immediate consequence of

Lemma 2.4.

Lemma 2.5. For any " > 0 there exists N ¼
Nð"Þ > 0 such that every bounded Borel subset � �
RD with j@N�j=j�j < 1=N satisfies

sup�2M �ð�Þ
j�j � �

����
���� < ":

Proof. Set hð�Þ :¼ sup�2M �ð�Þ. This satisfies

the three conditions in Lemma 2.4. If the above

statement is false, then there exist " > 0 and a

sequence of bounded Borel subsets �n � RD with

j@n�nj=j�nj < 1=n satisfying

hð�nÞ
j�nj

� �
����

���� � ":ð2Þ

But f�ngn�1 satisfies the definition of a Følner

sequence. So by Lemma 2.4

� ¼ lim
n!1

hð�nÞ=j�nj:

This contradicts the above (2). �

Proof of Theorem 2.2. Assume ~�� < �� �
for some � > 0. Set " :¼ �=ð2 � 3Dþ1Þ. Let N ¼ Nð"Þ
be a positive number given by Lemma 2.5. We

choose r > 0 sufficiently large so that every t � r
satisfies

j@NBtj
jBtj

<
1

3N
:ð3Þ

We fix R > r so that

sup
�2M

inf
r�t�R

�ðBtÞ
jBtj

� �
< �� �:

Let L > R be a large number satisfying

jBL�Rj >
jBLj

3
;

1

2
�

1

3Dþ1

� �
jBLj > jBRj:ð4Þ

Fix an arbitrary � 2M. For each a 2 RD there is

t ¼ tðaÞ 2 ½r; R	 such that

�ðBtðaÞÞ
jBtj

¼
ða:�ÞðBtÞ
jBtj

< �� �:ð5Þ

By the finite Vitali covering lemma (Lemma 2.3),

we can choose a1; . . . ; aK 2 BL�R (set ti :¼ tðaiÞ)
such that BtiðaiÞ \ BtjðajÞ ¼ ; ði 6¼ jÞ and

BL�R �
[K
i¼1

B3tiðaiÞ:

By the first condition of (4)

3�D�1jBLj <
XK
i¼1

jBtiðaiÞj:

Then we can choose (using the second condition of

(4)) 1 � J � K such that

3�D�1jBLj <
XJ
i¼1

jBtiðaiÞj �
jBLj

2
:ð6Þ

By (5)

�
[J
i¼1

BtiðaiÞ
 !

< ð�� �Þ
[J
i¼1

BtiðaiÞ
�����

�����:ð7Þ

Set � :¼ BL n
SJ
i¼1 BtiðaiÞ. j�j � jBLj=2. Since

@N� � @NBL [
SJ
i¼1 @NBtiðaiÞ,

j@N�j � j@NBLj þ
XJ
i¼1

j@NBtiðaiÞj

<
1

3N
jBLj þ

XJ
i¼1

jBtiðaiÞj
 !

ðby (3ÞÞ

� jBLj
2N
� j�j

N
ðby (6ÞÞ:

Hence by Lemma 2.5

�ð�Þ
j�j < �þ ":

So by (7)

�ðBLÞ ¼ �ð�Þ þ �
[J
i¼1

BtiðaiÞ
 !

< ð�þ "Þj�j þ ð�� �Þ
[J
i¼1

BtiðaiÞ
�����

�����
¼ �jBLj þ "j�j � �

[J
i¼1

BtiðaiÞ
�����

�����
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

:

By (6) and " ¼ �=ð2 � 3Dþ1Þ,
A < "jBLj � � � 3�D�1jBLj ¼ �"jBLj:
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Thus

�ðBLÞ
jBLj

< �� ":

Since � 2M is arbitrary,

1

jBLj
sup
�2M

�ðBLÞ � �� ":

We can let L! þ1. Hence � � �� ". This is a

contradiction. �

Remark 2.6. In the above proof we have not

used the complete additivity of measures � 2M.

We needed only the monotonicity and subadditivity

(two conditions given in Lemma 2.4) of � 2M. So

Theorem 2.2 can be also applied to a set of

monotone, subadditive, non-negative functions on

the set of bounded Borel subsets of RD satisfying

the conditions (a) and (b) in the beginning of this

section. This generalization is not used in this

paper. But it might become useful in some future.

Applying Theorem 2.2 to Example 2.1, we get

the following corollary:

Corollary 2.7. Let ’ : RD ! ½0; 1	 be a

measurable function. Then

lim
R!1

1

jBRj
sup
a2RD

Z
BRðaÞ

’dvol

 !

¼ lim
r!1

lim
R!1

sup
a2RD

inf
r�t�R

R
BtðaÞ ’dvol

jBtj

 !( )" #
:

3. Proofs of Theorems 1.2 and 1.3. Let

f : C! X be a Brody curve. We first prove

Theorem 1.2.

Step 1. �ðfÞ ¼ �ðC � fÞ.
Proof. It is enough to prove that �ðgÞ � �ðfÞ

for all g 2 C � f . Take a sequence fangn�1 � C such

that fðzþ anÞ converges to gðzÞ uniformly over

every compact subset of C. Let " > 0. For any

R > 0 and b 2 C there exists n0 > 0 such that for

n � n0

jdf j2ðzþ anÞ � jdgj2ðzÞ
�� �� < " ðjz� bj < RÞ:

Hence for n � n0

1

�R2

Z
jz�bj<R

jdgj2dxdy

�
1

�R2

Z
jz�an�bj<R

jdf j2ðzÞdxdyþ "

�
1

�R2
sup
a2C

Z
jz�aj<R

jdf j2dxdyþ ":

Taking the supremum with respect to b and

R!1, we get �ðgÞ � �ðfÞ þ ". Let "! 0. We get

�ðgÞ � �ðfÞ. �

Step 2. �ðfÞ ¼ �
NSA
ðC � fÞ ¼ �NSAðC � fÞ.

(This completes the proof of Theorem 1.2.)

Proof. From Step 1, we get �
NSA
ðC � fÞ �

�NSAðC � fÞ � �ðC � fÞ ¼ �ðfÞ. So it is enough to

prove �
NSA
ðC � fÞ � �ðfÞ. By Corollary 2.7 �ðfÞ is

equal to

lim
r!1

lim
R!1

sup
a2C

inf
r�t�R

R
BtðaÞ jdf j

2dxdy

�t2

 !( )" #
:

Let " > 0 and fix r ¼ rð"Þ > 1 satisfying

lim
R!1

sup
a2C

inf
r�t�R

R
BtðaÞ jdf j

2dxdy

�t2

 !( )
> �ðfÞ � ":

Then for any R > r there exists aðRÞ 2 C such

that

inf
r�t�R

1

�t2

Z
BtðaðRÞÞ

jdf j2ðzÞdxdy > �ðfÞ � ":

Since MðXÞ is compact, we can take a sequence

r < R1 < R2 < R3 < � � � ! 1 (set ak :¼ aðRkÞ) such

that fðzþ akÞ converges to some gðzÞ in MðXÞ.
(Then g 2 C � f .) We have

inf
r�t�Rk

1

�t2

Z
Bt

jdf j2ðzþ akÞdxdy > �ðfÞ � ":

Hence for any t � r we get

1

�t2

Z
Bt

jdgj2ðzÞdxdy � �ðfÞ � ":

Then for s � r ð> 1Þ

T ðs; gÞ �
Z s

r

Z
Bt

jdgj2dxdy
� �

dt

t

� ð�ðfÞ � "Þ �s2

2
�
�r2

2

� �
:

Hence for s � r
2

�s2
T ðs; gÞ � ð�ðfÞ � "Þ 1�

r2

s2

� �
:

Taking the limit-inf with respect to s, we get

�
NSA
ðgÞ � �ðfÞ � ". Thus

�
NSA
ðC � fÞ � �

NSA
ðgÞ � �ðfÞ � ":

" > 0 is arbitrary. So �
NSA
ðC � fÞ � �ðfÞ. �

Remark 3.1. By using the above argument,

we can also prove that �ðfÞ is equal to the

supremum of
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lim sup
r!þ1

1

�r2

Z
jzj<r
jdgj2dxdy

 !

over g 2 C � f . (The limit-sup can be replaced with

the limit-inf.) This type of energy density was

introduced and studied in [7].

Proof of Theorem 1.3. Let � be the right-

hand-side of (1). � � �ðN Þ is obvious (by the

C-invariance of N ). For each f 2 N we define a

Borel measure �f on C by �fð�Þ :¼
R

� jdf j
2dxdy.

Consider the set f�f j f 2 N g. This set satisfies

the conditions (a) and (b) in the beginning of

Section 2. Then Theorem 2.2 implies that � is equal

to

lim
r!1

lim
R!1

sup
f2N

inf
r�t�R

R
Bt
jdf j2dxdy
�t2

 !( )" #
:

Then, as in the proof of Step 2, for every " > 0

we can find r" > 0 and g" 2 N such that for all

t � r"
1

�t2

Z
Bt

jdg"j2dxdy � �� ":

Then �ðN Þ � �ðg"Þ � �� ". Since " > 0 is arbitrary,

we get �ðN Þ � �. �
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