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On Kaufhold’s Whittaker functions

By Shinji NTwA"

(Communicated by Kenji FUKAYA, M.J.A., June 12, 2012)

Abstract:

In this papr we give an integral representation for a Whittaker function of an

non holomorphic Eisenstein series which is a non holomorphic Sigel modular form of degree 2.
Our integral representation is very useful to the theory of the theta lifting of automorphic forms.

Key words:

1. We are concerned with the Whittaker
functions of non holomorphic FEisenstein series
which are non holomorphic Siegel modular forms
of degree 2. Such functions, which we call
Kaufhold’s Whittaker functions in this paper,
were first investigated by Kaufhold [4] and were
generalized to higher degree cases by Shimura [6].
The purpose of this paper is to give an integral
representation for Kaufhold’s Whittaker fuction
with complete and elementary proof. We note
that our representation is very useful in the theory
of the theta lifting of automorphic forms. Let
M, (R) denote the set of all real square matrices of

degree n. Put W, = ( _01 (1) > and

1)  P={VelM®R)|'V=VV>0}.

Then one of Kaufhold’s Whittaker function is the
function

(2) W(Y) = Y| exp(—2mtr Y)hgo(47Y, 5/2,5/2)
of Y € P where

(3) h20(L7 a?/B)

= /|V+ E|" 2|V |P 2 exp(— tr VL)AV,
P
which is 4% exp(2~'tr L) times the right hand
side of Kaufthold [4,(1,14)] if a =8=5s/2, n=h =
1 0

p—ZH—Q—E—(O 1).

Theorem 1. The function W(Y) of Y € P
has the following integral representation:

(4) W(E)=2"I(s—1)"Y] /OO/PeXp(—ﬂ'
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tr((1+u>)V 4+ V!
+ul VI (WoV = VIv))Y)
\VI**"2dV du.

Denote 2757I'(s — 1) times the right hand side
of (4) by F(Y). F(Y) is closely connected to the
Bessel function Ks(Z) in Herz [3,p. 517]. We shall
give the proof of Theorem 1 in the next sections.

2.  Put g[z] ='zgxr as usual. We denote the
Siegel upper half space of degree n by H,, i.e.,

(5) H,={Z=U+:V e M,(C)

|U,V e M,(R),'Z= 2,V > 0}.
Since we can easily see that F(Y[k]) = F(Y),
W(Y[k]) = W(Y) for every Y € P, k€ SO(2), the
functions F,W are determined by the wvalues

FY), W) forY = < 18 tO ) Since the function
2

exp(2miRe Z)W(Im Z) of Z € Hy is a Fourier coef-
ficient of an Eisenstein series, it is an eigenfunction
for the invariant differential operators Aj, Ay in
Niwa [5] with eigenvalues

©)  di=s(s—3)s,
dy = s(s+1)(s—3)(s—4)/256.

To prove Theorem 1, it suffices to show that
exp(2miRe Z)F(Im Z) is also an eigenfunction for
A1, Ay with eigenvalues dj,ds and that the first
term (the constant term) of the Maclaurin expan-

sionofT/V((%1 1?))intl—tgisequaltothatof
2

ti1 0O
(5 o)

w0 )

o0
_ (LBQ _ y2) Zakmk;
5=0

).For—y<x<yput
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o w(( v e )

o0
= (@ —y") > bt
=0

where ay, by, are functions of y. Then it follows from

(9) Aqexp(2miRe Z)W(Im Z)
= dy exp(2miRe Z)W(Im Z)
that
1
(10) 2 (=26, + 2y + Kby, — 4y by

— 47—y + 4 biso + 4kybirs

+ K2y bpyo + dyb), + dkyb), + y*b]

+ b)) = diby
which is exactly the same as Niwa [5,(1.9.1)]. It is
easy to see a; = 0,b; = 0 for odd k. The following

two propositions accomplish the proof of Theorem 1.
Proposition 1.

1
(11) 3 (—2ay, + 2kax + Ka), — 47 ay,

—Ar%ap_9 + 4y2ak+2 + 4k:y2a;€+2

+ B apo + dyaj + dkya), + yQaz

+ag_y)
Proposition 2.

b() = 2747871'7111(8 — 1)&0

= dlak.

(12)

3.  We shall prove Proposition 1 in this sec-
tion. We assume Rer > 2Res > 10 4 4k through-
out this paper. All multiple integrals converge
absolutely and we can change the order of the
integrations. Define the Mellin transform of f(y) by

= / N fydy.
0

Then, to prove the equalities (11), (12), it suffices to
show that the Mellin transforms of the both sides of
them are the same respectively. By definition we

have / / /

exp(—mtr(((1 +u?)V + ‘/71)3//2E))7r2/g

<tr<1/2((1 +ut)V + Vl)( (1) —01 ))

+ 2|V O)V( (1) ))M

(13)

(14) agk,

[Vol. 88(A),
V22V duy ' dy,
and therefore, by changing variables
(15) V— (1+u2)71/2V
and
0 (0+<,9
(16) vV e’ cosh sinh
92 sinh ¢ e? cosh ,
we have

(17) azk:_i/f:/,z/:/i

(1+u)" ™ exp((0+0)(s = 1)/2)
cosh ¢ exp(—m(1 + u?)"?y
(cosh @ + cosh ¢) cosh 1))
((cosh @ — cosh @) cosh ) +
2u(1 + u?) " sinh )
k1 (2k) dudfdpd

i ( )w%azk,m/«%)!)

1 [ [0 oo poo
=) ).
(L) 2 exp((0 + 9)(s — 1)/2)
cosh ¥ exp(—n(1 + u2)1/2y

(cosh 6 + cosh ) cosh )

((cosh 6 — cosh ) cosh 1) %

(2u sinh ¥)* dudfdpdip.

By wusing the binomial expansion of ((coshf —
cosh ) cosh w)%_ﬂ, the integral representation
1 )5 exp(—vt — zcosht)dt for the modified Bessel
function K, (z) and changing variables y — y/(w(1 +
u?)? cosh ), we have

where

(18)

Qk‘ 21 —9]
(19)  M(agk2,7) Z Mklg( i )
where _
(20) Mgy =4(-1)'="

(2k—21 () r—1
/ Ke 1)/2J yK(g 1)/2( )y dy
/ ( +u )(1 s—r+2k— 21)/2(2u)2ldu
-0

/ ” (cosh 1) ™22 (sinh ) 2 dup.

oo
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1\2 _
21)  M(aspa,7) = 221_11"(1 n 5) (26) H(2n,r,s, t) = K(2n,r,s,t).
. Proof. For n =0 see Gradshteyn and Ryzhik
r (l (—2k + 1 — 1))F (—k Tl f) [2,6.576-4]. We can easily prove this proposition by
2 2 induction on n using the following recurrence
1 Lol -1 relation.
M =-(—2k+20+r+s—1
<2 ( rre )) (27) 4H(2n + 2,7, 5,1)
1 _
r(— (=2k+7+5— 2))1(% ol s) = H(2n,m, s +4,8) + 2H(2n, 7, 5,1)
2 + H(2n,r,s —4,t) + H2n,r,s,t + 4)
where +2H(2n,r,s,t) + H?2n,r,s,t — 4)
u p —2(H2n,r,s+2,t+2)+ H2n,r,s +2,t — 2
I R WIS o S )
= \J + H(2n,r,8 —2,t+2)+ H?2n,r,s — 2,t — 2))

/0 KD ) KD )y~ dy.
Proposition 3. For even positive n,
ron

2

23)  I(n,r,s) = r(2 )mﬁ
i(fl)i <?)FG (=2i4+r+n—s+ 1))

i=0

F(;(2i—|—7“—n+s—1)>

-1
W ygnrep (THLVY
5 5

Proof. Put

24)  H(n,r,s,t) = (") (~1)]
=0 \J
=) ) r—
l K(sflj)/z(y)qu)/g(y)y 'dy
and
(25)  K(n,r,s,t)=2"""/T(r)
(Z T((2n — 4k +2r + s —t)/4)
k=0
D((—2n + 4k + 2r — s + 1) /4)(=1)" (Z))
(Zr((zn — 4l 4+2r —s—t+2)/4)
1=0
T((—2n 441+ 2r + 5 + t — 2) /4)(—1)' (Z))
Then this proposition follows from the next prop-
osition by putting t = s. O

Proposition 4. For every non negative in-
teger n,

which is proved by ("}:2) =M +2(") + ()
(The same relation holds for K).
By using I'(s + 1) = sT'(s) succesively, we easi-
ly get the following
Proposition 5.
teger n,
(28)  I(2n,7,s) = /7(2n)!1272" 2, (1, 5)
T(r/2—n)T((r—2n+s—1)/2)
L((r—2n—s5+4+1)/2)/(nIT((r +1)/2))

where rp(r,s) is the following polynomial in r,s of

d€g7 ee 2”.’
" ’ Z

1=0

T (G-neis s
v 2 2

i

H((jl)nJrr;S;).

J=1

For every non negative in-

(29)

By definition we immediately get
Proposition 6. For every non negative in-
teger n,

(30) (0,2 — 5) = 1,(0, 5).

We easily get also
Proposition 7. For every integer n,x such
that 0 <z < n,

(31) (0, =2z + 1) = (2n)!(—=1)""".

It is easy to see that the definition of r,(r,s)
deduces

Proposition 8.
teger n,

(32)

For every non negative in-

dr,iq1(r,8) = rp(r, s — 2)
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(=2n—14r—s)(—2n+1+7r—23)
+rp(r,s+2)(—2n—1+7+ )
(—2n—=34+7r+s) —2ry(r,s)
(=2n—14r—3s)(-2n—-3+r+s).
The induction on n using (32) easily proves the
following

Proposition 9.
teger n,

(33)

For every non negative in-

(=2n+14+7r—98)r,(r,s—2)
+(2n—14r+s)r,(r,s+2)
—2(2n + r)r,(r, s) = 0.
Proposition 10. For every positive integer n,
ro(r+2,5)

Proof. We prove this proposition by induction
on n. Using (32) and the induction assumption

_ Tn(’l”, 3) = 2n(2n — ]_)7’,,1,1(7’, 5)7

(34) —ru(r,8) =2n(2n — D)r,_q(r, 8).

ro(r+2,5)
we have
(35) rnp(r+2,8) —rpa(r,s)
—(2n+2)2n+ 1)r,(r,s)
=(-2n—-24r+2—-s)(-2n—-2+r+2—3)
ro(r+2,5—2)/4
+(=2n—-34+7r+2+5s)(—
ro(r+2,s+2)/4
—(2n—=24r+2—-5)(-2n—-3+r+2+3)
ro(r+2,5)/2
—((=2n—=24r—s)(—
ro(r,s —2)/4
+(-2n—=3+r+s)(—2n—2+r+3s)
ro(r,s+2)/4
—(=2n—=24r—5)(—2n—-3+7r+8)r,(r,s)/2)
—(2n+2)2n+ D)r,(r, s)
=(=2n+14r—98)r,(r,s—2)
(=2n =14 r+s)rp(r,s+2) —2(2n + r)r,(r, s)

n—24+r+2+s)

2n—2+71—235)

which is 0 by (33). O
(34) proves that 7,(r, s) is a polymonial in 7 of
degree n.
The following equality follows from (17),

(21), (23).

(36) M(ag,r) =
N((—2—=2k+r+s)/2)I'(=k+ (r—1)/2)
(1 —2k+r—25)/2)Ri(r,s)/T((1+7)/2)

_237.[.3/21‘»2]{‘77“272]{7(16!)71

[Vol. 88(A),
where .
(37) Ry(r,s) = k) (2% k!)
I 2
> T ( (1+ 2j))
=0 =0
1

R, (r,s) is a polynomial of degree n in r and a monic
polynomial of degree 2n in s. To prove the equality
(11) it suffices to show that Ry(r,s) satisfies (11).

Proposition 11. For every positive integer
n,

(38) R,(r+2,s) — Ry(r,s) = (2n)2Rn,_1(T, s).

Proof. Since linear combinations of R;(r + 2, s)
and R;(r,s) are expressed as ones of ri(r,s),l € Z,
we call a term containing r;(r,s) an I-th term of
them. By (34) I-th terms of R,(r+2,s) — R,(r,s)
consist of a part of I-th terms of R, (r + 2, s), a part
of I-th terms of of R,(r,s) and a part of (I — 1)-th
terms of R, (r + 2, s), and therefore the sum of them
is equal to
1

n—Il—1 2
2 N (22n |) o7 ( H (1 +2j)>

( n++;@)
() (G +72"1)
/( o J;(n;_sz?u_:zz) )

C(m142n—20)(=1+2n—r+s)

_ ﬁ (22" 2(n — 1))

n—[—2 2
ﬁ < H (1+ 2]))

<ng ( n+1+%+7;—s+j)>
(

(39)

/—\

2n —2
2n—1) 2) (20)!(4n?).
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By (38) we can express R,(r,s) as a linear

combination of Rg(0, s), i.e.,

(40) R, (r,s)=(" "' ... 1)
(27’1)" (2n)n—1 -1
(2n—2)" (2n—2)""

o0
") ()

4%(n!/n})? 0
0 4!/ (n —1)1)?
"(R.(0,5) R, 1(0,5)

R()(O 8))
Therefore by (40) we can reduce (11)
following recurrence relation for R, (0, s):
(41)  aR,—2(0,s) +bR,—1(0,s) + cR,(0, s)
+2(n+1)R,41(0,s) =0

to the

where we put
a=8(—1+n)*n(—1+2n)(3+ 2n)
(—6n + 4n* 4 3s — s?),
b= 4n*(—1+2n)(=5 + 14n + 12n?)
—2n(=3 + 8n + 8n?)(—3s + 5°),
c=2(2+2n + 22n° + 12n°)
—2(1 +n)(—3s + s%).
We denote by F(s) the left hand side of (41).
The equality (41) is verified by evaluating the
special values of F(s) at the points s = —2x + 1,
0 and 2x+2 such that 0<zx<n and x € Z.
We can compute such special values F(s) by
the next three propositions and have F(s) =0 at
2n + 3 different points. Since F(s) is a polynomial
in s of degree at most 2n + 2, F(s) is identically
zero. There still remain three propositions to be
proven.
Proposition 12.
that 0 <z <n,

For every integer n,x such

(42)  R,(0,—2z +1) = (=4)"" (n!/z1)?(2x)\.

Proof. It follows from (31), (37) that for
integers n, m such that 0 < m < n,

Kaufhold’s Whittaker functions 107

(43)

O [

(1" (2(n — G+ m)(n — )

= m)(-1 (-2 - ()

m
2Fi(m4+1/2,m—n;m—n+1/2;1).

Thus Gauss’ formula gives the desired result. O

In order to prove the remaining propositions
we give the following lemma which is easily shown
by (30), (31):

Lemma 1.
negative integer k,

(44) (0, 2k:) (-1

_ ZZ n+k
H(—Qj —2n41) / H(2j —2n—1).

j=1

For positive integer n and non

)" ((2n -

HIn?
—1))?

Proposition 13. For every positive integern,

R,(0,0) = (-1)"(2n)!,
R,(0,2) = (—4)"nl.

Proof. By using (7;) = (”?1) + (’;:11) we have

(45)
(46)

n—1

> (—n+1/2)(4(n—1) - 2)

=0
((2(n — 1) — 3)I)2n—1-1 (ﬂ ; 1)

n—Il—

(47) Rn(ov O) =

—n+3/2+ i)) 71(0,0)

+ (—n+1/2)(-1/2-1)"

A

((2
( ﬁ Cnt3/24 z)) r11(0,0)
i=0

—4n(n — 1/2)R,

-2
I1¢
=0
2
=0

~1(0,0).

Therefore we get (45) by induction. On the other

hand we have

(48)  R,(0,2) = 2(1 + 2n)((—1 + 2n)!)*(—1)"*!
3Fy(—n,1/2,1/2;1/2 — n,3/2; 1)

by definition and therefore Saalschiitz’s theorem

gives (46) (See first paragraph of Bailey [1,4.3.]). O
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Proposition 14.
that 0 <z < n,

(49)

For every integer n,x such

(=)= (nl /) (22)).

For the proof of this proposition we need the
following two lemmas:
Lemma 2. Fornon negative m and positive k,

R,(0,2+22) =

(50) — (=1 —=2k+2m — 4km)Ry_1(0,m + 1)
+2(1 42k —2m)Qr-1(m + 1)
+ jo(k,m) + j.(k,m) = Ri(0,m),
(51) —(1+2k-=2m)2m+ 1)Ry_1(0,m + 1)
—2(14 2k —2m)Q—1(m + 1)
—(1+2k—2m)(—2k+2— (2m + 1))
Ri—1(0,m) — (1 + 2k — 2m)
(—2k+2 — (2m +1))jo(k — 1,m),
(52)  Jo(k,m)
= (=2k+1—2m)(2k — 2m)jo(k — 1, m),
(53)  Je(k,m)
—(14+2m)(—k+1/2—=m)jo(k—1,m)
where

(54) ﬁ: k—1) — 1)k 1(’;)

=0

(kli[l(—k L2 —m+ z‘))
=0

Ir (0, m)(—1)™,

:
(55)  dolkim) = 3 (k=D — 112 (’;)
<ﬁ(_k -1/2-m+ i))
(0. 1) 0.+ )1
(56)  Jjel kZi g)l1gh-l-1
=
( ) kﬁ2 k‘+1/2—m+z)>

—1420—2m)(1+2m)

(
(ri(0,m +1) —r(0,m + 1))(—=1)"/2.

[Vol. 88(A),

Proof. We can prove (50), (51), (52) and (53)
in the same way as for the proof of (45). O
Lemma 3. For0<m <k,
2m(=1+ 2m)Ry—1(0,m + 1)
=—1+2k-2m)(-k+1—-(2m+1))
R;H(O, m) + Rk(O, m)
Proof. We have (57) by eliminating Qj_1(m +
1) from (50), (51) because jo(k,m) = j.(k,m) =0
for 0 < m < k by (52), (53). Proposition 14 follows
from (57) by induction. O
4.  Finally we prove Proposition 2. By using
the formula for ho(L,a, ) = he(L,a,3) in the
proof of Kaufhold [4, Hilfssatz 6] we have

/ W((y/2)E)y ~*dy
=27 7214 1) (s — 1)
D((=247r+5)/2)T((1 +r—5)/2)

= 2747710 (s — 1) M(ag, 7).
We get Proposition 2 by comparing this with (36).

(57)

(58)  M(bo,r)
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