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Abstract:

In this paper we study energy growth for solutions to wave equations. We prove

that there exist compact in space perturbations of the wave equation 8?u — Au = 0 such that the
energy of solution grows at the rate exp((1 + ¢)“) for any a > 0.

Key words:

1. Introduction. We are interested in en-
ergy growth for solutions to wave equations. There
are many results about lower bounds of energy. For
instance Reissig-Yagdjian [5] showed that there is
an exponentially growing solution to

OPu—a(t)’Au =0,

where a(t) is positive, smooth, periodic and non-
constant.

On the other hand, for solutions
equations in divergence form

82u - Z Oy, (@i j(z

the energy is preserved.
In this paper we consider compact in space
perturbation cases, that is

to wave

x)0y,u) = 0,

OPu — Z Oy, (i j(t, £)0y,u) = 0,
ig=1

where a; ;(t,z) is constant outside a compact set
in R].

Colombini-Rauch [1] studied an example of
compact in space perturbation that would give
exponentially growing solutions. But their proof
was not complete. Doi-Nishitani-Ueda [2] complet-
ed thier proof and extended this result to examples
that give exp((1+¢)*) growth of energy for any
0<a<l.

Here we shall further extend these results and
we get examples that give exp((1+¢)*) growth of
energy for any 0 < a.
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2. Main result. We consider the wave
equation
(2.1) 8t2u - Z Oy, (ainj(ta m)axju) =0
=

with Cauchy data

u(0,z) = f(z), Owu(0,z) = g(x),

where t € [0,00),2 € R" and u denotes a complex-
valued unknown function. We assume that a; ;(t, z)
are smooth, real-valued, a; ; = a;;, and there exist a
constant A > 0 and a smooth nonnegative function

6(t) such that for any (¢,z,£) € [0,00) x R" x R"
we have
(2:2) AP <Y aiy(t w)6

ij=1

< A1+ 6(0)%¢l”.
Moreover, we assume that for any multiindex a €
Z’, the inequality

(2.3) |0 ai(t, )] < Ca(1+68(t))*

holds with some constant C,, > 0. We put

a(t,z,§) : Za”txagj
and
E(u,t) ::/ |8fu| + Za”a Uy, U Judz.
ig=1
We call E(u,t) the total energy of w. If

f.g € CP(R"), then the energy identity holds:
(2.4) E(u,t) = E(u,0)

/ /Z&a” S, )0, U0y udzds.
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Denote by H the Hilbert space that is the comple-
tion of C°(R") with respect to the norm

2 . 2 2
ul|z, = Oy, u dx:/ Vul|“dz.
= [, S loalde = [ 19w

Let R(t,0) be the solution operator defined by
CF(RY) x CF(R™) — C(R") x G (R")
(U(O, ')» 8tu(0v )) = (U'(t’ ')v 8tu(ta )) 7
which can be extended uniquely to bounded oper-

ator on H x L?(R"). A bicharacteristic of a function
H(t,z,€) is a solution to the canonical equation

dX

dt
(2.5) =

dt

——(t) = VeH (¢, X(t), Z(1)),
—(t) = =V H(t, X(t), E(1)).

Following Colombini-Rauch [1] and Doi-Nishitani-
Ueda [2], we use the following lower estimate of
energy in terms of a null bicharacteristic:

Lemma 2.1. Assume that there is a bichar-
acteristic (X(t),2(t)) of v/a or —y/a such that

(2.6) Z@)] > ¢

for t >0 with some constant ¢* > 0. Then there
exists a family of Cauchy data (f;, g;) € S(R") x
S(R")(j € N) such that for corresponding solutions
u; to (2.1) we have

E (uj ) t)
lim sup

1
> —G(t)
j—00 E(U}, 0) 4

for allt > 0, where

t 815(1 —

G(t) = exp(/ (s, X(s),=2(s ))ds).
0 2a

Here S(R™) denotes the Schwartz space on R".

We can prove this lemma in the same way as in
Nishiyama [4], where he treated the case a; (¢, z) =
a; ;(z) with a damping term.

From this lemma, we have the following
estimate of the operator norm of R(¢,0):

Corollary 2.2. We have

1
IR Ol o2y = 5‘4 (L+o(t

G

0l
()

I

> %A’S(l +6(0) 721+ 8(6) "

w

for allt > 0.
Applying Corollary 2.2, we can construct ex-
amples which cause exp fo s)ds) growth of energy
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for any given 6(t). Our construction works in all
dimensions n > 2 though we present only the case
n =2 for simplicity Consider the wave equation

WU—E:a

where (t,z) € [0,00) x R*. That is, ajy =as =0
and a; = age = a in (2.1). To apply Corollary 2.2,
we require the following conditions that correspond

(2.7) a(t,z)0yu) =0,

to (2.2), (2.3) and that & is compact in space
perturbation:
a(t,z)=1 for |z|>2,
(28) AT <a(tz) < A(1+6(1))
|ard(t>$)| S Ca(l + 6(t))2
Theorem 2.3. For any smooth nonnegative

function 6(t) on [0,00) there exists a(t,x) satisfying
(2.8) such that for the associate solution operator
R(t,0) to (2.7) we have

(2.9) MR®E Ol gpexzzy =

Moreover, if 6(t) satisfies

(2.10) i[(r)lf )5(15) >0, §=o0(8), ¢ =o(6®
te|0,00

as t — oo, then for any € >0 there exists a(t,x)

satisfying (2.8) such that for the associate solution

operator R(t,0) to (2.7) we have

1 t
(2.11) §A36(0)_1/26(t)_1exp(/ 5(5)d$>
0
<R 0) | e 12
<C’0exp<2+€ sds),
t
(212)  C16(t) exp / o(s >
0
<R Ol 2o w224 22)
< NRE O 2o w2y

§(Bexp(ﬁ.+€)/%5@ﬁh>,

0
where H' denotes the usual Sobolev space.

We note that when 6(¢) is bounded, estimates
(2.11), (2.12) are proved in [2].

3. Proof of Lemma 2.1. This proof is al-
most similar to the proof in Nishiyama [4]. We first
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describe h-pseudodifferential operators, microlocal
defect measures and a diagonalization of the
equation (2.1). Let h be a small positive parameter,
S = S((1+[¢*)™?, |dzf* + (1+ &) |d¢]*)  and
a € 8™. We define

+
afulo) = oo [ @ a( T ) utyava

for uw € S(R"). The operator a} is called the h-
pseudodifferential operator of symbol a. We put

OPS™ ={a};a € S™},
ARG — m mhrsl,
reRIeR
h*OPS™ = {a}’;a € h>*S™}.
If {u,} is a bounded family in L?*(R") then there

exist a subsequence {h;}, N tending to 0 and a
positive Radon measure 1 on R?" such that

lim (a un, , up,) :/_ a(x,&)du
j—00 R2"

for any a € C°(R?). We call p the microlocal
defect measure associated with {uy, }.

Next, we explain a diagonalization of (2.1). Let
x(€) € CFP(R") satisfy 0<x <1, suppx C {[¢] <
¢} and x =1 near 0. Multiplying (2.1) by h and
adding (1/h)x}'u we have

1
ha,?u+h( at,z,&) +

Zaaau +x(&)pu

= 7 X U

By ellipticity of a + (h*/4) Y 9,0;a;; + X, one can
find A € S! satisfying

(a(t,z,€) + Zaaa”m)JrX(g));vEA;goA;;’
mod h*OPS™ °°.
We put

i
O+ =\
V:(UI)Z fZL ",
v w
2 815_5)\1}:

then V is a solution to

iy 0 h (ON\"/ 1 —1
ho,V = V4= — 1%
0 —i\y 2\ /-1 1
o vrlo—1
( {(W}) (
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where R denotes the remainder and {-,-} the
Poisson bracket:

{a,b} = 0¢ad,b — 0,adkb.

In order to diagonalize the principal term of
the equation above. We introduce

<1 ()> ih <0t)\ b>w< 0 1>
0 1 4\ ), \-1 0
(i)\;lv 0 ) h <8t)\ b>w<1 0).

Then QV satisfies
hd(QV) = AQV + RV + QR< b )
u

where R € h20PS~!. Let x(£) € C°(R") satisfy 0 <
X < 1, suppx C {|¢] < ¢*} and x = 1 near 0. We put

- (2)-0

then we have
hOW = AW + [(1 — x)},, A]W
mod h2OPS~ 'V, h2OPS 1u,

— X QV

where [-,-] denotes the commutator. If we take a
family {W},} that satisfies the equation above, then
the microlocal defect measure v of {W,} satisfies
certain corresponding equation. More precisely, we
have

Lemma 3.1. Assume that (fn,gn) € S(R") x
SR"), Ifull2wey = O(h™) and {up} are the cor-
responding solutions to (2.1). We define {vi},
{van}, {win}, {won} from {un} as above. If
supye(o,1) E(un,0) < +00 then one can find a subse-
quence {h;},cn tending to 0 and microlocal defect
measures vg(t) on R" xRy . associated with
{wrn,; (t)}(k = 1,2) such that

—V1 ={Va,n} + —Vl,

priche —{Va,»} + —1/2
on R" x Ry . in the sense of distribution. Here
e = {E€RM[E >}

We can prove this lemma by differentiating the
form of microlocal defect measure. We omit the
detail, which can be found in Nishiyama [4].

Now we prove Lemma 2.1:

Proof of Lemma 2.1. We can assume that
(X(t),E(t)) is a bicharacteristic of —/a without loss
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of generality. We put (xg,&) = (X(0),Z(0)). Let
¢ € C*(R") satisfy [l¢||j2rn) = 1 and we define

—4/n L= o ix-
@uwzh“w(ﬁﬁﬂe@“
We choose Cauchy data
hoooo 11
) = | — Ay -® 7_(1) )
(fns gn) (Z (A 5 g h)
where (\¥)"" is a parametrix of AY. We note that

(01.(0),v2,(0)) = (®5,,0) mod h>®S~. Using the
sharp Garding inequality, we calculate

(3.1)
E(uh,O)
1 o N )
= 2 D (@ghdy () @ B () ) +
W
1 wy—1 wy—1 1
== 1;(0%) ho;ai jhO;(Ay) ™ @n, Pa)p2 + 4
1 w(yw\— w\— ..
= 5 - (Xh ()‘h) I(I)hv <>\h> lq)h)Lz + O(h )
1
<2 +0(h).

It is known that {®;,} has the defect measure 6, ¢
(see Evans-Zworski [3]) and it is easy to see that
(1 = x);v1.,(0) and wy ;,(0) have same defect meas-
ure 6, ¢,)- From this and Lemma 3.1, we can take a
subsequence {h;};.x tending to 0 and microlocal
defect measure v1(t) on R" x Ry, .. associated with

{win ()} satisfying

—V1 = {Va,1} -l-
( ) = b(an 60)-
Solving this equation we have
vi(t) = G(t)ox1),=zx))-

Since

G@%iéuw G ()62

€[>c*

=/ vy (t) < tim w02
R xR J—00

€[>c*

ydzd§

and
llwin, D172y < 2llwin, () = (1= X5 vun (172 me
+2[[(1 = R)ivrn, (D172
< 4E(up,;,t) + O(h)
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(see Nishiyama [4] Lemma 3.1), we obtain
4limsup E(up,;,t) > G(t).
J—00
On the other hand, from (3.1) it follows that
E(up,0) <1 for small h. Thus we have

E(up, t
2Bt S 1)
E(uha O)

for small h. Consequently we obtain

41im supM > G(t)
Jj—oo E(“h 0)
and complete the proof. O
4. Proof of Theorem 2.3. We follow the
construction given by Colombini and Rauch in [1].
We first show a simple upper bound:
Proposition 4.1. We have

(41) IR 0l gpexrz) < A*(1+6(0))
1 t
X exp _/ sup |8ta(s,:£,§)| ds
0 zeR” a(57x7§)
for all t > 0.

Proof. From (2.4) we have

E(u,t) = E(u,0) + / /&a s, x, Vu)dzds
< E(u,0)
t
+/ Sup ME(% 5)ds,
0 zeR” CL(S,.’,LC)
where
a(t,x,() = ZauthQCj

Using Gronwall’s inequality, we get

! 0
E(ua t) S E(U/, O) exp / sup M dS
0 skt a(s,0)
cCn

Noting
‘ata(sax7C)| _ |8ta(s,x,§)|
a(s7x7 C) B a(37x7§)

and (2.2), we obtain (4.1). O

Proof of Theorem 2.3. Let n = 2 and 6(¢) be
an arbitrary smooth nonnegative function. Using
the standard identification C 3 u+iv+— (u,v) €
R? of R? with the complex plane, we write

zeR" zeR”
cecr teR”
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rz=re?, = pe’.

Let f(#) be a smooth 27 periodic function verifying

1
f(0)=0, f(0)=1, sup|f]<=, suplf|<1.
feR 2 PeR

For example
1
f(6) = 3 sin(26)

satisfies these requirements. We define 0(¢t) and ¢(t)
by the solutions to

do

GO=1+80). 00) =2,
Dy =1+80), o0)=0.

Let x(r) be a smooth cut-off function such that 0 <
x(r) <1 and

[ 1 nearr=1,
X(r):{ 0 r<1/2orr>2.
Let us define
Valt,r,0) = x(r)e" (14 6(t) — 26(t) f(0 — 6(t)))
+1—x(r)
then @€ C*(]0,00) x R?) and (2.8) holds. More-

over, r(t) = 1,0(t), (t) and p(t) = exp(2 [, §(s)ds)
satisfy the canonical equation with Hamiltonian

_\/5:
dr B - P
& = Vacos(0-0),
Z—f = % asin(f — ¢),
42) { dp  ova . 10va
E = —W Sln(¢ — 6) + ;W COS((b — 9),
dp _ a 10va
= —p(WCOS((b—e)—F; 50 sm(tb—@)).
Hence

X(t) =r(t)eD,  =2(t) = p(t)e??

are solutions to (2.5) and satisfy (2.6). Further-
more, we have

% _ eXp(/Otfs(s)ds).

Thus we can apply Corollary 2.2 and get (2.9).
Next we prove the latter assertion. Let 6(t)
satisfy (2.10) and € >0. And let M be a large
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integer depending on € >0 and f(#) a smooth 27
periodic function satisfying

1
f(o):(]v f/(O):]-v Sup|f|§M, Sup|f/|§17
feR /eR

for example

F(0) = %sin(M&).

Take 0(t), ¢(t) and x(r) defined as above. We define

Va(t,r,0) = x(r)e" " (6(t) — 26(t) f(6 — 6(t) + 1))
+1—x(r).

Then a € C*([0,00) x R?) and (2.8) holds. Note
that we can replace (1+46(¢t)) by 6(t) in the
condition (2.8). Furthermore, in this case r(t) =
1,0(t) — t,6(t) — t, p(t) = exp(2 [} 6(s)ds) also satis-
fy (4.2). And then we can apply Corollary 2.2 and
get the lower estimate of (2.11). To give the upper
estimate of (2.11), it suffices to estimate

|ata(ta z, £)|

zeR" a(t, €, g)
(eR”

from Proposition 4.1. We first obtain

0.a] 10Vl
(43) — =2 ¥
<o (14 2/M)|&| + 26
= (1—2/M)s
(1+2/M)|¢| 4
(1—2/M)s " 1—2/M"

By using assumption (2.10), there exists T) =
T (M) > 0 such that for all t > T}

o (L 2/ M) _ 1

(1—2/M)s(t) — M 5(0)-

Hence we have

Cr M) 4
P </ 20 2/ans(s) 1 2/M ‘“‘”d‘s)

conl (i =) )

for all t > T. Therefore we put M; so that

1 4
I S
M, T1—2n ST

then

IR T sy < A%(Tl)exp((z o [ ’5<s>ds)

1
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for a defined from M which larger than M;. From
this and a standard energy inequality we have

IR, 0l grxr2) < Coexp ((2 +e¢) /0 6(s)ds>

for t >0 with some constant Cy = Cy(e, M) > 0.
Thus we get (2.11).

Finally we prove (2.12). We can easily prove
the lower estimate of (2.12) by modifying
Lemma 2.1. To prove the upper estimate, following
Doi-Nishitani-Ueda [2], we consider a modified
energy

E(t) = B(t) + 5(t) Re(9ru, w) + () ull”.

Here ((t) and v(t) are chosen later. We define «(t)
by the right hand side of (4.3). We obtain

(14) T B) < BE()

+ (= 25)/a|vu|2dx
+ (8 + 2y = 8°) Re(9yu, u)
+ (v = ) lul®.

Now we put

2

YV, (B -8

8 5, =
9 ’7_2

then we have
ﬁ/ + 2’7 - ﬂQ =0,
1 .
v =By =50688 -5 - 5).

We shall estimate E(t) by E(t). From the definition
of B(t) and the assumption (2.10), there exists Ty =
Ty(e, M) > 0,¢; > 0 such that

388 — 3" - <0,
le g
3 = C1

for all ¢ > T5. By using the Schwarz inequality,
there is a constant ¢y > 0 such that

. 1
E > 2 Etallull’ 2 el (u, ) (07 po-

In particular, we have
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E(t) < 4E(t).
From this and (4.4) we obtain
(14+2/M)|¢|

d -~
B t) < <ﬁ+8m

)E‘(u, t)

for all t > T. Using the assumption (2.10) again,
we get
(1+2/M)e(0)| _ 1

a—2an0) =W

for t > Ty with sufficiently large T3. Thus we have

E(t) < E(T3) exp ( (ﬁ + %) /T t 6(s)ds) .

3
Now we take M, so that
2

1
— 4+ — <242
1—2/M2+ + 2

My —
then for any M > M, we have
t

E(t) < E(T3) exp<(2 + 2¢) /T

3

6(s)ds>

while ¢ > T73. From this and a standard energy
estimate, it follows that

t
IR 0) Loy < Co exp<<1 +o) | 6<s>ds)
0

for all ¢ > 0 with some constant Cy = Cy(e, M) > 0.

Thus, we finish the proof. O
References
[ 1] F. Colombini and J. Rauch, Smooth localized

parametric resonance for wave equations, J.
Reine Angew. Math. 616 (2008), 1-14.

S. Doi, T. Nishitani and H. Ueda, Note on lower
bounds of energy growth for solutions to wave
equations, Osaka J. Math. (to appear).

L. C. Evans and M. Zworski, Lectures on semi-
classical analysis, version 0.95. http://math.
berkeley.edu/ zworski/semiclassical.pdf

H. Nishiyama, Non uniform decay of the total
energy of the dissipative wave equation, Osaka
J. Math. 46 (2009), no. 2, 461-477.

M. Reissig and K. Yagdjian, About the influence
of oscillations on Strichartz-type decay esti-
mates, Rend. Sem. Mat. Univ. Politec. Torino
58 (2000), no. 3, 375-388.

[2]

[3]

[4]

[5]



	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5

