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1. Introduction. A subset T of a subset S of

a seminormed space X equipped with a seminorm

k � kX is said to be dense in S if for an arbitrarily

chosen point s 2 S and for any positive number " >

0 there exists a point t 2 T such that ks� tkX < ".

A subset S of X is referred to as being separable if S

contains a countable dense subset T of S. Here of

course the case S ¼ X is not excluded. If S is not

separable, then we say that S is nonseparable. We

will discuss the separability of some concrete semi-

normed spaces of harmonic functions on Riemann

surfaces.

We denote by HðRÞ the linear space of

harmonic functions on an open (i.e. noncompact)

Riemann surface R. We will consider two linear

subspaces of HðRÞ. The first is the linear subspace

HBðRÞ of HðRÞ consisting of bounded harmonic

functions u on R. Then the space HBðRÞ forms a

Banach space equipped with the supremum norm

kuk1 :¼ supR juj. Concerning this space we have the

following result.

Theorem 1.1. The Banach space HBðRÞ is

nonseparable unless it is of finite dimension. In

other words, the Banach space HBðRÞ is separable if

and only if HBðRÞ is finite dimensional.

Fix an arbitrary point o 2 R and consider the

normalized subspace HBðR; oÞ of HBðRÞ given by

the set fu 2 HBðRÞ : uðoÞ ¼ 0g. As a closed sub-

space of the Banach space HBðRÞ the space

HBðR; oÞ is also a Banach space with respect

to the same supnorm. Clearly dimHBðRÞ ¼
dimHBðR; oÞ þ 1, and, HBðRÞ and HBðR; oÞ are

simultaneously separable or nonseparable. Then

Corollary to Theorem 1.1. The Banach

space HBðR; oÞ is nonseparable unless it is of finite

dimension. In other words, the Banach space

HBðR; oÞ is separable if and only if HBðR; oÞ is

finite dimensional.

As the second linear subspace of HðRÞ we

consider the space HDðRÞ of Dirichlet finite har-

monic functions u on R, i.e. harmonic functions u on

R whose Dirichlet integral DðuÞ :¼
R
R du ^ �du is

finite. Observe that DðuÞ1=2 is only a seminorm on

HDðRÞ and we obtain a seminormed space HDðRÞ
with respect to the seminorm Dð�Þ1=2. Contrary to

the above Theorem 1.1, we obtain this time the

following clear conclusion.

Theorem 1.2. The seminormed space

HDðRÞ is always separable.

The normalized subspace HDðR; oÞ of HDðRÞ
given by fu 2 HDðRÞ : uðoÞ ¼ 0g forms a Hilbert

space whose inner product is given by the mutual

Dirichlet integral Dðu; vÞ :¼
R
R du ^ �dv for u and

v in HDðRÞ. Similarly as in the case of HBðRÞ
we also have dimHDðRÞ ¼ dimHDðR; oÞ þ 1. Once

the above Theorem 1.2 is taken for granted, then

we can trivially admit the following claim.

Corollary to Theorem 1.2. The Hilbert

space HDðR; oÞ is always separable.

We apply the above results to the so called

inverse inclusion problem in the classification

theory of Riemann surfaces. Concretely we give a

simple proof using the above facts to the following

result of Masaoka ([7–9]):
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Theorem M. The phenomenon HBðRÞ ¼
HDðRÞ occurs if and only if dimHBðRÞ ¼
dimHDðRÞ and the common value is finite.

Thus far three proofs including the original

proof of Masaoka have been given to the above

result. The original first proof of Masaoka ([7], see

also [8] and in particular [9]) is the constructive one:

when HBðRÞ ¼ HDðRÞ is of infinite dimension, one

can construct, contradictorily, a bounded Dirichlet

infinite harmonic function using the Doob

generalization [3] to the case of Martin boundary

setting of the classical Douglas characterization [4]

of an L1-function on the unit circle to be the

boundary function of an HD-function on the unit

disc. The proof is thus quite far from being simple.

As the second proof, the present author gave

one [10] using his characterization [11] of capacitary

functions on the Royden harmonic boundary, which

is relatively simple but still slightly distant from

being trivial. The third one [12] is also given

recently by the present author based upon the

observation that HBðRÞ is not reflexive as a

Banach space unless it is of finite dimension while

the Hilbert space HDðR; oÞ is of course reflexive,

which may be said to be almost trivial. The one

being given below in this paper is further simpler

and probably we can say it is the simplest or at least

there may be no simpler one among other possible

proofs.

As usual we denote by R the real number field

and by N the set of strictly positive integers

f1; 2; 3; � � �g. Hereafter in this paper to avoid the

triviality we always assume the hyperbolicity of the

Riemann surface R in the sense that R carries the

Green function since otherwise spaces HBðRÞ and

HDðRÞ are reduced to the trivial space R.

2. Proof of Theorem 1.1. We begin this

section by recalling the definition of Stonean spaces

(cf. e.g. [15]). A compact Hausdorff space � is

EXTREMELY DISCONNECTED if the closure of any

open subset of � is again open so that � is a fortiori

totally disconnected. In other words, � is extremely

disconnected if every point of � has a base of the

neighborhood system at the point consisting of

clopen (i.e. closed and open simultaneously) neigh-

borhoods of the point. Stone [17] proved that an

extremely disconnected compact Hausdorff space �

is characterized by the property of Cð�Þ being a

BOUNDED COMPLETE LATTICE: every bounded sub-

set of Cð�Þ has a supremum in Cð�Þ relative to the

natural ordering for real functions. By virtue of

this characterization by Stone, we say that � is a

Stonean space if it is an extremely disconnected

compact Hausdorff space, or equivalently, if it is

a compact Hausdorff space � whose Cð�Þ is a

bounded complete lattice. Stonean spaces are used

in this paper in the following representation of

HBðRÞ: There exists a unique (up to homeomor-

phisms) Stonean space � such that

HBðRÞ ¼ Cð�Þð2:1Þ

in the sense that the Banach space HBðRÞ is

isometrically (linear) isomorphic to the Banach

space Cð�Þ with the supnorm on �. There are more

than one proofs for (2.1) (cf. e.g. [14]) but probably

the simplest is to take � as the Wiener harmonic

boundary � ¼ �R of R (cf. e.g. [2,6,16], etc.). By

understanding the dimension dimX of a linear

space X is either the number n 2 N of elements in

its finite base, if it exists, or 1, if it does not exist,

and also the number #Y of a set Y is either the

number n 2 N of elements in Y when Y is a finite

set or 1 and we can easily see (cf. the next

paragraph below) that

dimHBðRÞ ¼ #�:ð2:2Þ

Hence, if dimHBðRÞ ¼ n 2 N, then � consists of n

points and Cð�Þ ¼ Rn, which is separable. The proof

is, thus, over if we show that Cð�Þ is nonseparable if

#� ¼ 1.

The assumption #� ¼ 1 implies the existence

of at least one accumulation point of �, say �, in �.

Since � is a clopen neighborhood of � in the Stonean

space �, we can find a point �1 2 � and a clopen

neighborhood V1 � � of �1 such that � 2 � n V1. Since

� n V1 is a clopen neighborhood of �, we can find a

point �2 2 � n V1 and a clopen neighborhood V2 �
� n V1 of �2 such that � 2 � n ðV1 [ V2Þ. Since � n ðV1 [
V2Þ is a clopen neighborhood of �, we can find a

point �3 2 � n ðV1 [ V2Þ and a clopen neighborhood

V3 � � n ðV1 [ V2Þ of �3 such that � 2 � n ðV1 [ V2 [
V3Þ. Repeating this procedure we can choose a

sequence ð�jÞj2N of mutually distinct points �j in �

ðj 2 NÞ and a sequence ðVjÞj2N of mutually disjoint

clopen neighborhood Vj of �j ðj 2 NÞ in �.

Let �j ¼ �Vj be the characteristic function of

Vj on �. Since Vj is clopen, �j 2 Cð�Þ ( j 2 N). Let I

be the open interval ð0; 1Þ � R and

� ¼ 0:�1�2 � � ��n � � �ð2:3Þ
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be the infinite dyadic fractional expression of � 2 I
so that �j 2 f0; 1g for every j 2 N and there are at

least one �j ¼ 0 and infinitely many �j ¼ 1. Since �

is Stonean, we can define

e� :¼ sup
Xn
j¼1

�j�j : n 2 N

( )
ð2:4Þ

because 0 5
Pn

j¼1 �j�j 5 1 on �. Then set

E :¼ fe� : � 2 Ig:

Observe that
Pn

j¼1 �j�j forms an increasing se-

quence for n 2 N. If �k ¼ 0, then we have

0 5
Xn
j¼1

�j�j 5 1� �k

for every n 2 N so that we deduce 0 5 e� 5 1� �k
or e�jVk ¼ 0 ¼ �k. If �k ¼ 1, then

�k 5
Xn
j¼1

�j�j 5 1

for every n 2 N with n = k so that we infer that �k 5

e� 5 1 or e�jVk ¼ 1 ¼ �k. Thus we have seen that

e�jVj ¼ �j ðj 2 NÞ:ð2:5Þ

This proves that e� 6¼ e� for � 6¼ � and the cardinal

number

cardE ¼ card I ¼ @:ð2:6Þ

Take any subset F � Cð�Þ which is dense in Cð�Þ.
We can choose and then fix an f� 2 F for each � 2 I
such that kf� � e�k1 < 1=4. For each couple

ð�; �Þ 2 I � I with � 6¼ �, there is a j 2 N such that

j�j � �jj ¼ 1, where

� ¼ 0:�1�2 � � ��n � � �

is the infinite dyadic fractional expression of �.

Observe that expressing f� � f� as the sum of ðe� �
e�Þ and fðf� � e�Þ � ðf� � e�Þg and applying the

trianle inequality, kf� � f�k1 is seen to be greater

than or equal to ke� � e�k1 � kf� � e�k1 � kf� �
e�k1 which is estimated from below by j�j � �jj �
1=4� 1=4 ¼ 1=2 so that

kf� � f�k1 = 1=2;

which assures f� 6¼ f� on �. This proves that the

mapping e� 7! f� : E ! F is injective so that

cardF = cardE and (2.6) yields that any dense

subset F in Cð�Þ cannot be countable. We have thus

shown that if dimCðRÞ ¼ 1 or #� ¼ 1, then Cð�Þ
is not separable. �

In the above proof, instead of (2.1), we can also

use another representation HBðRÞ ¼ L1ð�; !Þ with

the harmonic measure ! on the Wiener harmonic

boundary � of R, by which we can replace the

topological consideration on � by the measure

theoretic one on �. But it is hard to tell which is

simpler or easier.

We turn to the proof of Corollary to

Theorem 1.1. As already stated we have

dimHBðRÞ ¼ dimHBðR; oÞ þ 1

and thus HBðRÞ is of finite dimension if and only if

HBðR; oÞ is finite dimensional. Let F be a countable

dense subset in HBðRÞ. Then the set G ¼ ff �
fðoÞ : f 2 Fg is also countable. Take any v 2
HBðR; oÞ and any ". We can find an f 2 F with

kv� fk1 < "=2. Then jfðoÞj ¼ jvðoÞ � fðoÞj 5 kv�
fk1 < "=2. Since f � fðoÞ 2 G and

kv� ðf � fðoÞÞk1 5 kv� fk1 þ jfðoÞj < ";

which shows that G is countable dense in HBðR; oÞ.
Conversely, let G be a countable dense subset in

HBðR; oÞ and let F be a subset of HBðRÞ given by

F :¼ fgþ r : g 2 G; r 2 Qg, where Q is the set of

rational numbers in R so that F is again countable.

For any u 2 HBðRÞ and any " > 0, we can find a

g 2 G and an r 2 Q such that

kðu� uðoÞÞ � gk1 < "=2 and juðoÞ � rj < "=2:

Then by u� ðgþ rÞ ¼ fðu� uðoÞÞ � gg þ ðuðoÞ � rÞ
we see at once that ku� ðgþ rÞk1 < ", which shows

that F is dense in HBðRÞ. �

3. Proof of Theorem 1.2. We start this

section by fixing some notation. When Z1; Z2; � � � ;
Zm are m abstract sets, we form the product set

of them as the set of z :¼ ðz1; z2; � � � ; zmÞ with

zj 2 Zj ð1 5 j 5 mÞ, which we denote byO
15j5m

Zj ¼ Z1 � Z2 � � � � � Zm:

Let Xj be a Hilbert space with k � kj as its norm

and ð�; �Þj as its inner product ( j 2 N). We denote

by

X :¼
O
j2N

Xj

the set of x :¼ ðx1; x2; � � �Þ (xj 2 Xj ðj 2 NÞ) withX
j2N

kxjk2
j < þ1:
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For the above x and y ¼ ðy1; y2; � � �Þ in X and for

c 2 R we define the addition and scalar multi-

plication componentwise:

xþ y ¼ ðx1 þ y1; x2 þ y2; � � �Þ

and

cx ¼ ðcx1; cx2; � � �Þ;

which make X a linear space. The norm kxk of x 2
X is given by

kxk2 :¼
X
j2N

kxjk2
j ;

which induces the inner product ðx; yÞ on X as

ðx; yÞ :¼
X
j2N

ðxj; yjÞj;

which makes X a new Hilbert space. Identifying x ¼
ðx1; � � � ; xm; 0; 0; � � �Þ (i.e. x ¼ ðx1; x2; � � �Þ with xj ¼ 0

for j > m) in X with ðx1; � � � ; xmÞ in
N

15j5m Xj we

will view that O
15j5m

Xj �
O
j2N

Xj

as a closed linear subspace. In case Zj is a mere

subset of Xj, we can also view thatO
15j5m

Zj �
O
j2N

Xj:

We turn to the separability question. It is clear

that if each component of
N

15j5m Xj is separable,

then
N

15j5m Xj is separable and vice versa. One

step further we have

Fact 3.1. If every Hilbert space Xj is sepa-

rable for j 2 N, then the product Hilbert spaceN
j2NXj is also separable.

Proof. Take a countable dense subset Zj � Xj

for each j 2 N and set

Z :¼
[
m2N

O
15j5m

Zj

 !
�
O
j2N

Xj:

Then Z is countable as the countable union of

countable sets
N

15j5m Zj. Given an arbitrary

point x ¼ ðx1; x2; � � �Þ in X :¼
N

j2N Xj and any

positive number " > 0. We can find an m 2 N

such that kx� xðmÞk < "=2, where xðmÞ ¼ ðx1; x2;

� � � ; xmÞ in
N

15j5m Xj. As is easily seen,
N

15j5m Zj
is dense in

N
15j5m Xj, we can find a zðmÞ :¼

ðz1; z2; � � � ; zmÞ in
N

15j5m Zj � Z such that kxðmÞ �
zðmÞk < "=2 so that kx� zðmÞk < " with zðmÞ 2 Z.

Then Z is a countable dense subset of X, i.e. X is

separable. �

We take the Hilbert space �ðRÞ of square

integrable 1-forms � on an open Riemann surface R

(cf. [1]), i.e. if � ¼ adxþ bdy is the local expression

of � on a parametric disc ðU; z ¼ xþ iyÞ, then

coefficients aðzÞ and bðzÞ belongs to the Lebesgue

space L2ðUÞ and the square of the norm of � is given

by Z
R

� ^ �� ¼
Z
R

ðaðzÞ2 þ bðzÞ2Þdxdy <1:

We will ascertain that �ðRÞ is separable. Let

R ¼ [j2NSj

be the triangular decomposition of R so that each Sj
is piecewise analytic simply connected Jordan

region, Sj \ Sk ¼ ; ( j 6¼ k), and fSjgj2N is locally

finite. Hence, by renumbering fSjgj2N if necessary,

if Rn is the interior of [15j5nSj, then fRngn2N is an

exhaustion of R by piecewise smooth subregions Rn

(n 2 N). Then

� 7! ð�jS1; �jS2: � � �Þ

gives an isometric injective linear mapping of �ðRÞ
to
N

j2N �ðSjÞ and we can view that

�ðRÞ �
O
j2N

�ðSjÞ:

The mapping � ¼ adxþ bdy 7! ða; bÞ of �ðSjÞ to

L2ðSjÞ � L2ðSjÞ is an isometric isomorphism for

each j 2 N. Hence the separability of L2ðSjÞ implies

that of L2ðSjÞ � L2ðSjÞ and hence that of �ðSjÞ for

each j 2 N. Fact 3.1 then assures the separability ofN
j2N �ðSjÞ and, as its subset, �ðRÞ is separable.

Let

dHDðRÞ :¼ fdu : u 2 HDðRÞg;

which is a closed subspace of �ðRÞ. Therefore

dHDðRÞ is separable. The mapping u 7! du of

HDðR; oÞ to dHDðRÞ is a bijective linear isomor-

phism and isometric since

DðuÞ ¼
Z
R

du ^ �du ¼ kduk2
�ðRÞ:

This proves that HDðR : oÞ is also separable. Let S

be a countable dense subset of HDðR; oÞ. Choose an

arbitrary u 2 HDðRÞ and take any " > 0. Then u�
uðoÞ 2 HDðR; oÞ and we can find an s 2 S such that

Dððu� uðoÞÞ � sÞ1=2 < ". But
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Dððu� uðoÞÞ � sÞ1=2 ¼ Dðu� sÞ1=2

shows that S is also a countable dense subset

of HDðRÞ so that HDðRÞ is also separable.

This simultaneously completes proofs of both of

Theorem 1.2 and the corollary to it. �

4. Application: Proof of Theorem M. In

addition to two classes HBðRÞ and HDðRÞ it is

occasionally convenient to consider one more space

HBDðRÞ :¼ HBðRÞ \HDðRÞ. With respect to the

combined norm

kukBD :¼ kuk1 þ
ffiffiffiffiffiffiffiffiffiffiffi
DðuÞ

p
the new space is also given as follows:

HBDðRÞ :¼ fu 2 HðRÞ : kukBD < þ1g:

Both of the convergence in k � k1 and
ffiffiffiffiffiffiffiffiffi
Dð�Þ

p
yield

the local uniform convergence and a fortiori we can

conclude that HBDðRÞ is a Banach space equipped

with the norm k � kBD. We can also consider the

normalized class

HBDðR; oÞ ¼ fu 2 HBDðRÞ : uðoÞ ¼ 0g;

which is a closed subspace of HBDðRÞ so that it is

again a Banach space equipped with the above

combined norm k � kBD. We can also say that

HBDðR; oÞ ¼ HBðR; oÞ \HDðR; oÞ:

Recall that Theorem M to be proven below

maintains the following class identity

HBðRÞ ¼ HDðRÞð4:1Þ

is equivalent to the dimensional identity

dimHBðRÞ ¼ dimHDðRÞ <1ð4:2Þ

as linear spaces. The implication ð4:2Þ ) ð4:1Þ has

long been known (cf. e.g. [13,16]) and actually its

proof is straightforward. Thus this part has

nothing to do with our present application of

Theorems 1.1 and 1.2. However, just for the

completeness sake, we insert its proof here. For

this we use the Virtanen-Royden theorem (cf.

e.g. [16]) that the space HBDðRÞ, as a subset of

HDðRÞ, is dense in the seminormed space HDðRÞ:
HBDðRÞ ¼ HDðRÞ. Since HBDðRÞ is a subspace of

HBðRÞ which is of finite dimension, we must have

dimHBDðRÞ <1. Then HBDðRÞ ¼ HBDðRÞ and

hence HDðRÞ ¼ HBDðRÞ � HBðRÞ. Under the cir-

cumstance HDðRÞ � HBðRÞ, (4.2) must imply

HDðRÞ ¼ HBðRÞ: (4.1).

The essential part of Theorem M is thus the

implication ð4:1Þ ) ð4:2Þ. Clearly (4.1) is equiva-

lent to the class identity

HBðR; oÞ ¼ HDðR; oÞ:ð4:3Þ

Since dimHXðRÞ ¼ dimHXðR; oÞ þ 1 for X ¼ B or

D, (4.2) is equivalent to the dimensional identity

dimHBðR; oÞ ¼ dimHDðR; oÞ <1:ð4:4Þ

Here the work of proving ð4:1Þ ) ð4:2Þ is identical

with the task of showing ð4:3Þ ) ð4:4Þ. Therefore

we can say that the main part of Theorem M is,

in essence, the implication ð4:3Þ ) ð4:4Þ, which

we are going to prove. Of course (4.3) merely

means the set identity or at the most the identity as

linear spaces and saying nothing about Banach

space structures at this point. Hence we can at

least maintain the validity of the first identity

in (4.4): dimHBðR; oÞ ¼ dimHDðR; oÞ. The point

here is to show the finiteness of them. Therefore

what we really have to show is the following

assertion.

Claim 4.5. The relation (4.3) implies that

dimHBðR; oÞ <1:

Proof. Observe that (4.3) means that

HBðR; oÞ ¼ HDðR; oÞ ¼ HBDðR; oÞ:ð4:6Þ

We denote the Banach space ðHBðR; oÞ; k � k1Þ by

ðX; k � kXÞ, the Banach space ðHDðR; oÞ; Dð�Þ1=2Þ by

ðY ; k � kY Þ, and finally the last third Banach space

ðHBDðR; oÞ; k � kBDÞ by ðZ; k � kZÞ. Let T1 : Z ! X

be the linear operator given by the the identity and

T2 : Z ! Y the linear operator given also by the

identity. For every z 2 Z, we have

kT1zkX ¼ kzkX 5 kzkX þ kzkY ¼ kzkZ
so that the operator norm kT1k 5 1, and similarly

kT2zkY ¼ kzkY 5 kzkX þ kzkY ¼ kzkZ
and therefore kT2k 5 1. By the Banach open map-

ping principle (cf. e.g. [5,18]), we see that T�1
1 :

X ! Z and T�1
2 : Y ! Z are also bounded, too.

Then, we see that

T :¼ T2 � T�1
1 : X ! Y

and the inverse of T , i.e.

T�1 ¼ T1 � T�1
2 : Y ! X

are also bounded so that
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K :¼ max kTk; kT�1k
� �

2 ½1;þ1Þ
and we have

kT�1ðTxÞkX 5 KkTxkY 5 K2kxkX
for every x 2 X, which establishes

K�1kuk1 5 DðuÞ1=2
5 Kkuk1ð4:7Þ

for every u in X ¼ HBDðR; oÞ. Since HDðR; oÞ is

separable by Theorem 1.2, we must conclude with

(4.7) and (4.3) the separability of HBðR; oÞ. How-

ever Theorem 1.1 says that HBðR; oÞ is separable if

and only if dimHBðR; oÞ <1. �

In the above proof of the fact that Banach

spaces HBðR; oÞ and HDðR; oÞ are homeomorphi-

cally linear isomorphic we can avoid the use of the

Banach space HBDðR; oÞ by observing that each

convergence in norm kuk1 or
ffiffiffiffiffiffiffiffiffiffiffi
DðuÞ

p
in HBðR; oÞ or

HDðR; oÞ implies the local uniform convergence on

R. However which is simpler belongs to the matter

of taste.
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