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Abstract: In a previous work with Thorbergsson, it was proved that a simple closed curve

in the real projective plane P2 that is not null-homotopic has at least three sextactic points. This

assertion was conjectured by Gerrit Bol. That proof used an axiomatic approach called ‘intrinsic

conic system’. The purpose of this paper is to give a more elementary proof.
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1. Introduction. In the real projective

plane P2, one can consider their osculating conics

and sextactic points of curves. Choose five points on

a curve � in a neighborhood of a point p that are not

inflection points. There is a unique regular conic

passing through the five points. Letting the five

points all converge to p, and so the conics converge

to a uniquely defined regular conic that is called

the osculating conic of � in p. The osculating conic

meets with multiplicity at least five in p. If it meets

with multiplicity at least six in p, then p is called

a sextactic point. In this paper, we shall assume

curves are all C1-regular. It should be pointed out

that the assertions in this paper are more generally

true for curves that are only C4 with essentially the

same proofs (see Remark 2 below).

Theorem. (Thorbergsson-Umehara [12]). Let

� be a simple closed curve in P2 that is not null-

homotopic. Then � has at least three sextactic points.

The theorem was stated as a problem by Bol

in [4] on page 43. A proof of the theorem under

rather strong genericity assumptions on the inflec-

tion points was given by Fabricius-Bjerre in [6]. In

this paper, a simple arc means an arc without self-

intersections. To prove the theorem, it is sufficient

to show the following assertion, as explained in the

next section. (We denote by ja;bj the determinant

of the square 2-matrix ða;bÞ for a;b 2 R2.)

Proposition. Let � : ½0; 1� ! R2 be a closed

curve in the affine plane R2. Suppose that j _��ðtÞ; €��ðtÞj
is positive on ð0; 1Þ and vanishes at t ¼ 0; 1. Then
there exists a sextactic point of � on ð0; 1Þ.

This proposition is a generlization of

[12, Proposition 5.1] where the same assertion has

been proved when � has no self-intersections. The

proof of [12, Proposition 5.1] is not elementary and

is accomplished by introducing a powerful tool to

find sextactic points called the ‘intrinsic conic

system’. However, by using the tool, the following

assertion is also proved.

Fact [12]. The total number of sextactic and

inflection points on a simple closed curve in P2

which is null-homotopic is at least four.

Here, inflection points are defined as zeros of the

function j _��; €��j. This assertion does not follow from

the proposition, since the number of inflection points

may not be even (cf. [12, Example B.4]). The fact

above is a generalization of the classical fact that a

closed strictly convex curve has at least six sextactic

points. A refinement of this assertion is given in

[13, Theorem 1.2]. Historical remarks on sextactic

points are written in [12] (see also [10, p73]).

In this paper, we show that the proposition can

be proved much more easily.

2. Proof of Theorem. Before proving the

proposition, we shall observe that the theorem

follows from the proposition according to [12]: Let

� : ½0; 1� ! P2 be a simple closed curve as in the

theorem. Of importance for us is the well-known

classical result of Möbius [9] that a simple closed

curve in P2 that is not null-homotopic has at least

three inflection points. (An elementary proof is in

[11]. A refinement of this fact when the curve has a

suitable convexity is given in [14].) Then we can

take three subarcs

�i : ½0; 1� ! P2 ði ¼ 1; 2; 3Þ
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of � such that they have no inflection points except

when t ¼ 0; 1 and then each image of �i lies in an affine

plane. Here, we applied the fact that any simple closed

arc � : ½0; 1� ! P2 having no inflection points on the

interval ð0; 1Þ lies in an affine plane. This assertion is a

key lemma of the tennis ball theorem which assets that

a simple closed curve having at most two inflection

points lies in an affine plane. (see [1,2,12,Appendix A]

and also [10, p100]). Now we can apply the proposi-

tion for each �i and can find a sextactic point on each

open arc �ijð0;1Þ, which proves the assertion.

Now, we give a proof of the proposition. Let �

be a curve as in the proposition and � : ð0; 1Þ ! R

the affine curvature function of �, that is,

� ¼ 12j _��; €��j j€��; �ð3Þj þ 3j _��; €��j j _��; �ð4Þj � 5j _��; �ð3Þj2

9j _��; €��j8=3
;

which is independent of the choice of a parametri-

zation t of �. The critical points of �ðtÞ correspond
to the sextactic points (cf. [5, p12]). To prove the

proposition, we prepare the following assertion.

Lemma. Let � : ½0; 1� ! R2 be a curve such

that j _��ðtÞ; €��ðtÞj is positive for t > 0 and vanishes at

t ¼ 0. Then for each positive integer n, there exists

tn 2 ð0; 1=nÞ such that �ðtnÞ � �n. In particular,

inft2ð0;x� �ðtÞ diverges to �1 as x ! 0.

Remark 1. Fabricius-Bjerre [6] observed

that �ðtÞ diverges to �1 if j _��ð0Þ; �ð3Þð0Þj does not

vanish. More generally, as pointed out in [12, p79],

limt!0 �ðtÞ ¼ �1 holds unless all derivatives of �ðtÞ
at t ¼ 0 vanish. The lemma is a generalization of

those results. In general, �ðtÞ may not be bounded

from above (see the example below).

Let �ðtÞ be a curve without inflection points in

affine plane, then

nðtÞ :¼ j _��; €��j�3=2 €�� �
1

3
j _��; €��j�5=2j _��; �ð3Þj _��

is called the affine normal vector field along �. The

vector nðtÞ points the direction of the locus of middle

points of chords of the curve parallel to the tangent

line at �ðtÞ (cf. [3, p6] or [5, p9]). Then the envelop

generated by affine normal lines of � is given by

�ðtÞ :¼ �ðtÞ þ
1

�ðtÞ nðtÞ;

which is called the affine evolute or the affine caustic

of �. (Several properties of affine evolutes are given

in Giblin-Sapiro [7] and Izumiya-Sano [8].) As a

consequence, we get the following assertion.

Corollary. Let � be as in the assumption

of the lemma. Then the affine evolute �ðtÞ of �ðtÞ
accumulates to the inflection point �ð0Þ. Moreover,

�ðtÞ converges to �ð0Þ as t ! 0, if at least one of

�ðmÞð0Þ ðm � 3Þ does not vanish.

The proposition follows from the lemma imme-

diately, since the affine curvature function � of � as

in the proposition must have at least one local

maximum point on ð0; 1Þ.
We now prove the lemma. Let ðx; yÞ be the

canonical coordinate system of R2. Without loss of

generality, we may assume that the arc � can be

locally expressed as a graph y ¼ fðxÞ of R2 defined

on ð0; "Þ for some fixed " > 0 such that x ¼ 0 is the

inflection point satisfying fð0Þ ¼ _ffð0Þ ¼ 0. Then the

condition j _��ðtÞ; €��ðtÞj > 0 implies €ffðxÞ > 0 if x > 0.

Since x ¼ 0 is an inflection point, €ffðxÞ tends to zero

as x ! 0. The affine curvature function of � is

expressed by

�ðxÞ ¼ �
5f ð3ÞðxÞ2 � 3f ð4ÞðxÞ€ffðxÞ

9€ffðxÞ8=3
;

which can be rewritten as (cf. [3, p14, (83)] or

[5, p8, (3.21)])

�ðxÞ ¼ �
€’’fðxÞ
2

; ’fðxÞ :¼ €ffðxÞ�2=3:ð1Þ

Since ’ðxÞ > 0 and limx!0þ0 ’ðxÞ ¼ 1, the proof of

the lemma reduces to the following assertion.

Sub-lemma. Let ’ðxÞ be a positive-valued

C2-function defined on ð0; 1�. If ’ðxÞ diverges to 1
as x ! 0, then for each positive integer n, there

exists xn 2 ð0; 1n� such that €’’ðxnÞ > n.

Proof. If the assertion fails, then €’’ðxÞ � n

holds for x 2 ð0; 1n�. Integrating this inequality twice

on the interval ½x; 1n�, we have

’ðxÞ �
nx2

2
þ _’’

1

n

� �
� 1

� �
xþ cn;

where

cn :¼
1

2n
� 1

n
_’’

1

n

� �
þ ’

1

n

� �
:

If x tends to zero, the right-hand side converges to

the constant cn, which contradicts the fact that

’ðxÞ ! 1. �

Example. We set

fðxÞ :¼
Z x

0

Z s

0

e�hðtÞ=t2dtds; hðxÞ :¼ 2� sin
1

x2
:
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Since h � 1, fðxÞ is C1 at x ¼ 0. Moreover, x ¼ 0

is an isolated inflection point, since €ffðxÞ ¼ e�hðxÞ=x2 .
By a straightforward calculation, we have that

f ð3Þ

2
¼ �

cos zþ x2ðsin z� 2Þ
x5ehðxÞ=x2

;

f ð4Þ

4
¼

cos2 z� x2ðsin zþ 4 cos z� sin 2zÞ þ oðx2Þ
x10ehðxÞ=x2

;

where z ¼ 1=x2 and oðx2Þ is the higher order term

than x2. We set

�0ðxÞ :¼
x10e2hðxÞ=x

2

4
ð5f ð3ÞðxÞ2 � 3f ð4ÞðxÞ€ffðxÞÞ;

then we have that

�0 ¼ 1þ cos 2zþ x2ð3 sin z� 8 cos zþ 2 sin 2zÞ þ oðx2Þ:

In particular, it holds that

�0ðxÞjz¼3�=2 ¼ �3x2 þ oðx2Þ:

The relation � ¼ �4x�10e2hðxÞ=3x
2
�0=9 yields that

the sequence f�ðxnÞgn¼1;2;... diverges to 1 if we set

xn :¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�nþ 3�=2
p ðn ¼ 1; 2; . . .Þ:

Thus, we get the following two relations

lim
x!0

sup
jtj�jxj

�ðxÞ ¼ 1; lim
x!0

inf
jtj�jxj

�ðxÞ ¼ �1:

Remark 2. If one wishes to prove the theo-

rem for a C4-regular curve as in [12], a sextactic

point should be defined as a point whose osculating

conic is locally contained in the closure of one side of

the curve, since the sexctactic point cannot be char-

acterized as a critical point of the affine curvature

function. In fact, a point on an arc which attains

local maximum or minimum of the affine curvature

function is a sextactic point in this sense: Let fðxÞ be
a C4-function defined on the interval ð��; �Þ (� > 0).
We consider the case that x ¼ 0 attains the max-

imum of the affine curvature function �ðxÞ, namely,

it holds that �ðxÞ � �ð0Þ for jxj < �. We may assume

that fð0Þ ¼ _ffð0Þ ¼ 0 and €ffð0Þ > 0. Let y ¼ gðxÞ be

the local graph of the osculating conic at x ¼ 0.

Then the affine curvature function of gðxÞ is the

constant �ð0Þ. By (1), it holds that

�€’’fðxÞ ¼ 2�ðxÞ � 2�ð0Þ ¼ �€’’gðxÞ:ð2Þ
Since the osculating conic meets the curve with

multiplicity 5, it holds that

f ðiÞð0Þ ¼ gðiÞð0Þ ð0 � i � 4Þ:

Thus, integrating (2) on the interval between 0 and

x twice, we have ’fðxÞ � ’gðxÞ, namely, it holds

that

€ggðxÞ � €ffðxÞ ðjxj < �Þ:

Again, integrating this twice, we get the inequality

gðxÞ � fðxÞ on ð��; �Þ, that is, x ¼ 0 satisfies the

definition of sextactic point as above.
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