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Abstract: In this paper, we give some discreteness criteria for a non-elementary M€obius
group by using an elliptic element as a test map.
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1. Introduction. The discreteness of M€obius

groups is a fundamental problem which has been
extensively studied. In 1976, by using the so-called

J�rgensen inequality, J�rgensen [6] established the

following well-known result.
Theorem J. A non-elementary subgroup G of

M ðR2Þ is discrete if and only if each two-generator

subgroup of G is discrete.

This important result shows that the discrete-

ness of a non-elementary M€obius group G �MðR2Þ
depends on the information of all its rank two
subgroups.

Furthermore, P. Tukia and Xiantao Wang [7]

obtained that
Theorem TW. Let G � MðR2Þ be non-ele-

mentary. If G contains an elliptic element of order

at least 3, then G is discrete if and only if each non-

elementary subgroup generated by two elliptic ele-

ments of G is discrete.

Theorem TW shows that if G contains elliptic
elements of order at least three, then the discreteness

of the subgroups generated by two elliptic elements

of G is enough to secure the discreteness of G.
For a space version of Theorem TW, one has the

following result as obtained in [9].

Theorem W. Let G � M ðRnÞ be non-ele-

mentary and satisfy the Parabolic Condition. Sup-

pose G contains an elliptic element f such that f 2 is

not an element of WY ðGÞ. Then G is discrete if and

only if WY ðGÞ is discrete and each non-elementary

subgroup of G generated by two elliptic elements is

discrete.

We say that a subgroup G �MðRnÞ satis�es

the Parabolic Condition if G contains no sequence
ffig such that each fi is parabolic and fi ! I as

i!1 (cf. [9]).

Yang Shihai generalized Theorem TW to
PUð2; 1Þ in [12]. Then Cao [1] obtained the gen-

eralizations of Theorems TW and W in PUð1; nÞ.
However, Chen Min [2] showed that one could

even use a �xed M€obius transformation as a test

map to test the discreteness of a group. Following

the idea of Theorems TW and W, it is natural to
ask that whether one can generalize these results by

using an elliptic element as a test map. Through dis-

cussion, we obtain
Theorem 1.1. Let G � M ðRnÞ be a non-

elementary group and MðGÞ ¼ Hnþ1. Suppose that

f 2 G is elliptic such that f 2 6¼ I . Then G is discrete

if and only if each non-elementary subgroup gen-

erated by f and an elliptic element of G is discrete.

Theorem 1.2. Let G � M ðRnÞ be a non-

elementary group. Suppose that f 2 G is elliptic such

that f 2 =2WY ðGÞ and the restriction of f on S is

sense-preserving. Then G is discrete if and only if

WY ðGÞ is discrete, and each non-elementary sub-

group generated by f and an elliptic element of G is

discrete.

Theorem 1.3. Let G � PU ð1; nÞ be a non-

elementary group and MðGÞ ¼ Hn
C. Suppose that

f 2 G is elliptic with order at least 3. Then G is dis-

crete if and only if each non-elementary group gen-

erated by f and an elliptic element of G is discrete.

Theorem 1.4. Let G � PU ð1; nÞ be a non-

elementary group. Suppose that f 2 G is elliptic such

that f 2 =2 kerð�Þ and the restriction of f on MðGÞ is

sense-preserving. Then G is discrete if and only
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if kerð�Þ is discrete, and each non-elementary sub-

group generated by f and an elliptic element of G is

discrete.

2. Preliminaries. Throughout this paper, for

a group G �MðRnÞ, we will adopt the same

de�nitions and notations as in [11] such as H
nþ1

, dis-
crete group, the limit set LðGÞ, WY ðGÞ, non-elemen-

tary group and so on; for a group G � PUð1; nÞ, we

will adopt the same de�nitions and notations as in
[1, 3] such as Hn

C, discrete group, the limit set LðGÞ
and so on.

We denote MðGÞ the smallest invariant totally
geodesic sub-manifold of G, �ðgÞ the restriction of

g to MðGÞ for all g 2 G, that is

�ðgÞ ¼ gjMðGÞ; �ðGÞ ¼ fgjMðGÞ : g 2 Gg:

According to [3, 5], if G �MðRnÞ, then by con-

jugation, MðGÞ ¼ Hm
R ðm � nþ 1Þ; if G � PUð1; nÞ,

then by conjugation,

MðGÞ ¼ Hk
C or Hl

R;

where k; l are positive integers and k; l � n. It is
obvious that if G � PUð1; nÞ and MðGÞ ¼ Hk

C

(resp. Hl
R), then for any g 2 G, �ðgÞ is an element

of PUð1; kÞ (resp. POð1; lÞ).
For f 2MðRnÞ, let the set of �xed points of f be

fixðfÞ ¼ fx 2H
nþ1

: fðxÞ ¼ xg:

For a nontrivial element f 2MðRnÞ, f is called loxo-

dromic if f has exactly two �xed points and they all
lie on R

n
, parabolic if f has exactly one �xed point

and it lies on R
n
, and elliptic if f has a �xed point in

Hnþ1.

For gr ¼
ar br
cr dr

� �
2MðRnÞ ðr ¼ 1; 2Þ, we

de�ne

kg1 � g2k ¼ ðja1 � a2j2 þ jb1 � b2j2 þ jc1 � c2j2

þ jd1 � d2j2Þ
1
2:

The following lemma is crucial for our investi-
gation.

Lemma 2.1 [10]. Let f , g 2 M ðRnÞ. If f ; gh i is

a discrete and non-elementary group, then

f � Ik k � g� Ik k � 1

32
:

Let g 2 PUð1; nÞ be a nontrivial element and

fixðgÞ ¼ fx 2H
n

C : gðxÞ ¼ xg:

g is called loxodromic if g has exactly two �xed
points and they all lie on the boundary @Hn

C of Hn
C,

parabolic if f has exactly one �xed point and it lies
on @Hn

C, and elliptic if f has a �xed point in Hn
C.

In order to prove the main results, we need the

following lemmas.
Lemma 2.2 [1]. Let G be a non-elementary

subgroup of PUð1; nÞ. Then either

(1) G is discrete; or

(2) kerð�Þ is not discrete but �ðGÞ is discrete; or

(3) �ðGÞ is dense in SUð1;MðGÞÞ.
Here SUð1;MðGÞÞ consists of matrices in

Uð1;MðGÞÞ with determinant 1.

Lemma 2.3 [1, 4]. Suppose that two elements

f and g in PUð1; nÞ generate a discrete and non-

elementary group.

(1) If f is parabolic or loxodromic, then we have

maxfNðfÞ; Nð½f; g�Þg � 2�
ffiffiffi
3
p

;

where ½ f ; g� ¼ f g f �1g�1 is the commutator of f and

g, Nð f Þ ¼ k f � Ik and k :k means the Frobenius

matrix norm so that kQk ¼ ½trðQQ�Þ�
1
2 for any

matrix Q.

(2) If f is elliptic, then we have

maxfNðfÞ; Nð½f; gq�Þ : q ¼ 1; 2; � � � ; nþ 1g � 2�
ffiffiffi
3
p

:

3. The proofs of the main results. Now
we �rst give a lemma which is important to prove

Theorems 1.1 and 1.2.

Lemma 3.1. If f 2 MðRnÞ is elliptic, then by

conjugation in MðRnÞ, we may assume that

f ¼ a b
c 0

� �
:

Proof. By conjugation, we may assume that

f ¼ � �
� �

� �
, where � 6¼ 0. If � ¼ 0, then the result

follows.

Now suppose � 6¼ 0. Let g ¼ 1 ��1�

0 1

� �
. Then

gfg�1 ¼
�þ ��1�� � � ���1�

� 0

 !
:

The proof is completed. r
Proof of Theorem 1.1. The necessity is ob-

vious. We only need to prove the suf�ciency.

Since MðGÞ ¼ Hnþ1, we know that the minimal

sphere containing LðGÞ is R
n
. Choose xj 2 LðGÞ and

accordingly open balls Uj in R
nþ1

(j ¼ 1; 2; � � � ;
nþ 2) satisfying
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(1) xj 2 Uj;
(2) Uj \ Us ¼ ; whenever j 6¼ s;
(3) for any aj 2 Uj, there exists only one n-sphere

Sða1; � � � ; anþ2Þ containing a1; � � � ; anþ2.

We �rst claim that G contains no sequence of

distinct elliptic elements converging to the identity.
Suppose, on the contrary, that G contains such

a sequence fgig converging to the identity as i!
1. By choosing a subsequence and after relabeling
Uj, j ¼ 1; 2; � � � ; nþ 2, if necessary, we can assume

that fixðg2
i Þ \ U1 ¼ ; for each large enough i.

If fixðf2Þ \ U1 ¼ ;, then there exists a loxo-
dromic element g1 2 G with fixðg1Þ � U1. Hence

there is an integer t such that

fixðgt1f2g�t1 Þ ¼ gt1½fixðf2Þ� � U1:

If fixðf 2Þ \ U1 6¼ ;, then, since f2 6¼ I, there

exists some Uj satisfying fixðf2Þ \ Uj ¼ ;, where

j 2 f2; 3; � � � ; nþ 2g. Therefore, there exist a loxo-
dromic element g2 2 G and an integer s such that

fixðgs2f2g�s2 Þ � Uj:
For gs2f

2g�s2 , there exists an integer r such that

fixðgr1gs2f2g�s2 g�r1 Þ � U1:

So in either case, there exists an element h 2 G
such that

fixðhf 2h�1Þ � U1:

Since hhfh�1; gii ¼ hhf; h�1gihih�1, by assump-
tion and Lemma 2.1, we know that hhfh�1; gii is ele-

mentary for large enough i. Therefore,

fixðg2
i Þ \ fixðhf 2h�1Þ 6¼ ;;

which is a contradiction. We have proved the claim.
By Lemma 3.1, we may assume that f ¼

a b
c 0

� �
: Suppose, on the contrary, that G is not

discrete. Then G is dense in MðRnÞ by Theorem 3.1

in [8]. Let li ¼
ri 0

0 1
ri

� �
, where ri > 1 and ri ! 1 as

i!1. Then there exists a sequence fhig � G of dis-

tinct loxodromic elements converging to the identity
such that hi is close enough to li for each i. By com-

putation we have

lifl
�1
i f�1 ¼

r2
i r2

i ba
� � ab�

0 1

r 2
i

 !
! I:

It is easy to see that lifl
�1
i f �1 is loxodromic for

each i. Then hifh
�1
i f �1 is also loxodromic.

Since hf; hifh�1
i i ¼ hf; hifh�1

i f �1i and
hifh

�1
i f �1 ! I, by assumption and Lemma 2.1, the

subgroup hf; hifh�1
i i is elementary for large enough

i. Let fixðhifh�1
i f �1Þ ¼ fxi; yig. Then both f 2

and hif
2h�1

i �x xi and yi. Note that f is not of

order two. Then f 2 and hif
2h�1

i are elliptic, and
fhif 2h�1

i f�2g is a sequence of distinct elliptic ele-

ments converging to the identity, which is a con-

tradiction.
The proof is completed. r
Proof of Theorem 1.2. We only prove the

suf�ciency. By conjugation, we may assume that the
minimal sphere containing LðGÞ is S ¼R

k
, where

1 � k � n. Let gjS denote the restriction of g 2 G to

R
k

and

 ðGÞ ¼ fgjS : gjS is sense-preserving and g 2 Gg:
Suppose, on the contrary, that G is not discrete.

Since WY ðGÞ is discrete,  ðGÞ is dense in MðRkÞ.
By assumption, we know that f jS 2  ðGÞ, f2jS ¼
ðf jSÞ

2 6¼ I and  ðGÞ is k-dimensional. By Theorem

1.1,  ðGÞ contains a non-elementary and non-discrete

subgroup generated by f jS and an elliptic element
gjS 2  ðGÞ. It is obvious that g 2 G is elliptic and

hf; gi � G is non-elementary. The assumption im-

plies that hf; gi is discrete, which contradicts to that
hf jS; g jSi is non-discrete. r

Proof of Theorem 1.3. The necessity is

obvious. We now prove the suf�ciency. We know
that MðGÞ ¼ Hn

C. Choose xj 2 LðGÞ and accord-

ingly open balls Uj in H
n

C (j ¼ 1; 2; � � � ; 2nþ 1) satis-

fying
(1) xj 2 Uj;
(2) Uj \ Us ¼ ; whenever j 6¼ s;
(3) for any aj2Uj, there exists only one ð2n�1Þ-sphere

Sða1; � � � ; a2nþ1Þ containing a1; � � � ; a2nþ1.

Suppose, on the contrary, that G is not discrete.

According to Corollary 4:5:2 in [3], there exists a
sequence fgig � G of distinct elliptic elements con-

verging to the identity as i!1. By choosing a

subsequence and after relabeling Uj, if necessary, we
can assume that fixðg2

i Þ \ U1 ¼ ; for each large

enough i.

By similar reasoning as in the proof of Theorem
1.1, there exists a element h 2 G such that

fixðhf 2h�1Þ � U1:

Since hhfh�1; gii ¼ hhf; h�1gihih�1, by assump-

tion and Lemma 2.3, we know that hhfh�1; gii is
elementary for large enough i. This implies that
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fixðg2
i Þ \ fixðhf 2h�1Þ 6¼ ;;

which is a contradiction. The proof is completed. r
Proof of Theorem 1.4. We only need to

prove the suf�ciency. We suppose, on the contrary,

that G is not discrete. By Lemma 2.2, we know that

�ðGÞ is not discrete.
By conjugation, we may assume that MðGÞ ¼

Hk
C or Hl

R, where 1 � k; l � n. Now we divide our

proof into two cases.
Case I. MðGÞ ¼ Hk

C.

According to Corollary 4:5:2 in [3], there exists

a sequence fgig � G of distinct elliptic elements
converging to the identity as i!1. By similar rea-

soning as in the proof of Theorem 1.3, we obtain a

contradiction.
Case II. MðGÞ ¼ H l

R.

We know that �ðGÞ is a subgroup of POð1; lÞ
and all the sense-preserving elements of �ðGÞ is
dense in MðRl�1Þ. By assumption, �ðfÞ is a sense-

preserving elliptic element with �ðf 2Þ ¼ �2ðfÞ 6¼ I.

Theorem 1.1 implies that there exists a non-elemen-
tary and non-discrete group generated by �ðfÞ and

�ðgÞ, where �ðgÞ is a sense-preserving elliptic ele-

ment. Therefore, hf; gi is a non-elementary but non-
discrete subgroup of G, which is also a contradiction.

The proof is completed. r
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