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Abstract:
group by using an elliptic element as a test map.
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1. Introduction. The discreteness of Mobius
groups is a fundamental problem which has been
extensively studied. In 1976, by using the so-called
Jorgensen inequality, Jorgensen [6] established the
following well-known result.

Theorem J. A non-elementary subgroup G of
M(EQ) 1s discrete if and only if each two-generator
subgroup of G is discrete.

This important result shows that the discrete-
ness of a non-elementary Mobius group G ¢ M(R")
depends on the information of all its rank two
subgroups.

Furthermore, P. Tukia and Xiantao Wang [7]
obtained that

Theorem TW. Let GC M(E2) be non-ele-
mentary. If G contains an elliptic element of order
at least 3, then G is discrete if and only if each non-
elementary subgroup generated by two elliptic ele-
ments of G is discrete.

Theorem TW shows that if G contains elliptic
elements of order at least three, then the discreteness
of the subgroups generated by two elliptic elements
of G is enough to secure the discreteness of G.

For a space version of Theorem TW, one has the
following result as obtained in [9)].

Theorem W. Let GC M(R") be non-ele-
mentary and satisfy the Parabolic Condition. Sup-
pose G contains an elliptic element f such that f? is
not an element of WY (G). Then G is discrete if and
only if WY (@) is discrete and each non-elementary
subgroup of G generated by two elliptic elements is
discrete.
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In this paper, we give some discreteness criteria for a non-elementary Mobius
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We say that a subgroup G'C M(R") satisfies
the Parabolic Condition if G contains no sequence
{fi} such that each f; is parabolic and f; — I as
i — oo (cf. [9]).

Yang Shihai generalized Theorem TW to
PU(2,1) in [12]. Then Cao [1] obtained the gen-
eralizations of Theorems TW and W in PU(1,n).

However, Chen Min [2] showed that one could
even use a fixed Mobius transformation as a test
map to test the discreteness of a group. Following
the idea of Theorems TW and W, it is natural to
ask that whether one can generalize these results by
using an elliptic element as a test map. Through dis-
cussion, we obtain

Theorem 1.1. Let G C M(R") be a non-
elementary group and M(G)=H"". Suppose that
f € G is elliptic such that f> # I. Then G is discrete
if and only if each non-elementary subgroup gen-
erated by f and an elliptic element of G is discrete.

Theorem 1.2. Let G MR") be a non-
elementary group. Suppose that f € G is elliptic such
that f2¢ WY (G) and the restriction of f on S is
sense-preserving. Then G is discrete if and only if
WY (G) is discrete, and each non-elementary sub-
group generated by f and an elliptic element of G is
discrete.

Theorem 1.3. Let G C PU(1,n) be a non-
elementary group and M(G)=H{. Suppose that
f € G is elliptic with order at least 3. Then G is dis-
crete if and only if each non-elementary group gen-
erated by f and an elliptic element of G is discrete.

Theorem 1.4. Let G C PU(1,n) be a non-
elementary group. Suppose that f € G is elliptic such
that f2 ¢ ker(®) and the restriction of f on M(G) is
sense-preserving. Then G is discrete if and only
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if ker(®) is discrete, and each non-elementary sub-
group generated by f and an elliptic element of G is
discrete.

2. Preliminaries. Throughout this paper, for
a group GC M (f_{n), we will adopt the same
definitions and notations as in [11] such as H'", dis-
crete group, the limit set L(G), WY (G), non-elemen-
tary group and so on; for a group G C PU(1,n), we
will adopt the same definitions and notations as in
[1, 3] such as H{, discrete group, the limit set L(G)
and so on.

We denote M(G) the smallest invariant totally
geodesic sub-manifold of G, ®(g) the restriction of
g to M(G) for all g € G, that is

®(g) = g|M(G)a (G) =

According to [3, 5], if G € M(R"), then by con-
jugation, M(G) = HE (m <n+1);if G C PU(1,n),
then by conjugation,

M(G)

{9l : 9€ G

=HY or HE,

where k,l are positive integers and k,l <n. It is
obvious that if G C PU(1,n) and M(G)=HE
(resp. HY), then for any g € G, ®(g) is an element
of PU(1,k) (resp. PO(1,1)).

For f € M(R"), let the set of fixed points of f be

fix( =x}.

For a nontrivial element f € M(R"), f is called lozo-
dromic if f has exactly two fixed points and they all
lie on R" pambolzc if f has exactly one fixed point
and it hes on R", and elliptic if f has a fixed point in
H"+1.

H={zed": ()

For g¢, = (CCLT Zr> e MR") (r=1,2), we
define C
lgr = goll = (la1 = @sf® + [b1 = baf* + [e1 — o
+|di — dof?).

The following lemma is crucial for our investi-
gation.

Lemma 2.1 [10]. Letf, g M[R"). If (f, g) is
a discrete and non-elementary group, then

1
Il llg—TI| >—
17 =10 llg =11 > o
Let g € PU(1,n) be a nontrivial element and

fiz(g) = {z € He : glx) = x}.
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g is called loxodromic if g has exactly two fixed
points and they all lie on the boundary OH¢ of Hg,
parabolic if f has exactly one fixed point and it lies
on OHg, and elliptic if f has a fixed point in H¢.

In order to prove the main results, we need the
following lemmas.

Lemma 2.2 [1]. Let G be a non-elementary
subgroup of PU(1,n). Then either
(1) G is discrete; or
(2) ker(®) is not discrete but ®(Q) is discrete; or
(3) ®(Q) is dense in SU(1, M(@G)).

Here SU(1,M(G)) consists
U(1, M(G)) with determinant 1.

Lemma 2.3 [1, 4]. Suppose that two elements
f and g in PU(1,n) generate a discrete and non-
elementary group.
(1) If f is parabolic or loxodromic, then we have

max{N(f), N([f.g])} = 2 - V3,

of matrices in

where [f,g] = fgf tg' is the commutator of f and
g, N(f)y=\If=1| and ||.|| means the Frobenius
matriz norm so that ||Q| = [tr(QQ*)] for any
matriz Q.

(2) If f is elliptic, then we have
max{N(f),N(f,¢]): ¢=1,2,---,n+1} >2— /3.

3. The proofs of the main results. Now
we first give a lemma which is important to prove
Theorems 1.1 and 1.2.

Lemma 3.1. If f € M(R") is elliptic, then by
conjugation in M(R"), we may assume that

a b
(¢ o)
Proof. By conjugation, we may assume that

f= (: ’g), where v # 0. If § = 0, then the result

follows. 1 1§
Now suppose § # 0. Let g = (0 71 ) Then
. a+vy 6y B—ayls
9fg— = :
0% 0
The proof is completed. O

Proof of Theorem 1.1. The necessity is ob-
vious. We only need to prove the sufficiency.

Since M(G) = H"™, we know that the minimal
sphere containing L(G) is R". Choose =; € L(G) and
accordingly open balls U; in R (7=1,2,---,
n + 2) satisfying
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(1) zj € Uj;
(2) U;NU, = () whenever j # s;
(3) for any a; € Uj, there exists only one n-sphere
S(ay, -+, apy2) containing ay, - -+, ayi9.
We first claim that G contains no sequence of
distinct elliptic elements converging to the identity.
Suppose, on the contrary, that G contains such
a sequence {g;} converging to the identity as i —
oo. By choosing a subsequence and after relabeling
Uj, j=1,2,---,n+2, if necessary, we can assume
that fiz(g?) N Uy = 0 for each large enough i.
If fix(f?)NU; =0, then there exists a loxo-
dromic element ¢ € G with fiz(g;) C U;. Hence
there is an integer ¢ such that

fiz(d, fPg7") = gi[fiz(f)] € UL
If fiz(f*)NU; # 0, then, since f?# I, there
exists some U; satisfying fiz(f*)NU; =0, where

j€1{2,3,---,n+2}. Therefore, there exist a loxo-
dromic element g9 € G and an integer s such that

fiz(g5 f*95°) C Uj.
For g5f%g5°, there exists an integer r such that

fiz(gi95/°95°9:") C Ut
So in either case, there exists an element h € G
such that

fiz(hf?hY) C Uy.
Since (hfh~', g;) = h{f, h~1g;h)h ™!, by assump-
tion and Lemma 2.1, we know that (hfh™!, g;) is ele-
mentary for large enough 4. Therefore,

Fiz(g7) N fiz(hf*h™1) # 0,
which is a contradiction. We have proved the claim.
By Lemma 3.1, we may assume that f=
<Z 8) Suppose, on the contrary, that G is not
discrete. Then G is dense in M(R") by Theorem 3.1
in [8]. Let ; = (

ri

o L

Ti

>,Where r, >1land r; — 1 as

i — 00. Then there exists a sequence {h;} C G of dis-
tinct loxodromic elements converging to the identity
such that h; is close enough to [; for each i. By com-
putation we have

7“7;2 rfba* — ab*
U - 0 1 — I

r?

It is easy to see that [;fl;'f~! is loxodromic for
each i. Then h; fh;'f ! is also loxodromic.
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Since  (f,hifh;t) = (f,hifh;'f7!) and
hifhi'f~' — I, by assumption and Lemma 2.1, the
subgroup (f, h;fh;!) is elementary for large enough
i. Let fiz(hifhiy'f~')={z;,y;}. Then both f?
and h;f?h;! fix z; and y;. Note that f is not of
order two. Then f? and h;f?h;! are elliptic, and
{hif*h;1f72} is a sequence of distinct elliptic ele-
ments converging to the identity, which is a con-
tradiction.

The proof is completed. O

Proof of Theorem 1.2. We only prove the
sufficiency. By conjugation, we may assume that the
minimal sphere containing L(G) is S :f_{k, where
1 <k < n. Let g|g denote the restriction of g € G to
R" and

Y(G) = {glg : g|g is sense-preserving and g € G}.

Suppose, on the contrary, that G is not discrete.

Since WY (G) is discrete, ¥(G) is dense in M (Rk).

By assumption, we know that f|g € ¥(Q), f*g=

(fl 5)2 # I and ¢(G) is k-dimensional. By Theorem

1.1, ¥(G) contains a non-elementary and non-discrete

subgroup generated by f|g and an elliptic element

gls € Y(G). It is obvious that g € G is elliptic and

(f,9) C G is non-elementary. The assumption im-

plies that ( f, g) is discrete, which contradicts to that

(flg,9lg) is non-discrete. O
Proof of Theorem 1.3. The necessity is

obvious. We now prove the sufficiency. We know

that M(G) = HE. Choose z; € L(G) and accord-
ingly open balls U; in ﬁé (j=1,2,---,2n+ 1) satis-
fying

(1) @; € Uj;

(2) U;NUs = () whenever j # s;

(3) for any a; €U, there exists only one (2n—1)-sphere
S(ay, -+, a9,11) containing ay, - -, Ggpi1.
Suppose, on the contrary, that GG is not discrete.

According to Corollary 4.5.2 in [3], there exists a

sequence {g;} C G of distinct elliptic elements con-

verging to the identity as ¢ — oco. By choosing a

subsequence and after relabeling Uj, if necessary, we

can assume that fiz(g?)NU; =0 for each large
enough <.
By similar reasoning as in the proof of Theorem

1.1, there exists a element h € G such that

fiz(hf*n™Y) C U;.

Since (hfh~', g;) = h{f, h~tg;h)h~!, by assump-
tion and Lemma 2.3, we know that (hfh~!, g;) is
elementary for large enough ¢. This implies that
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fiz(g7) N fiz(hf*h™") # 0,
which is a contradiction. The proof is completed. []

Proof of Theorem 1.4. We only need to
prove the sufficiency. We suppose, on the contrary,
that G is not discrete. By Lemma 2.2, we know that
®(G) is not discrete.

By conjugation, we may assume that M(G) =
Hé or HIR, where 1 < k,l <n. Now we divide our
proof into two cases.

Casel. M(G)=H.

According to Corollary 4.5.2 in [3], there exists
a sequence {g;} C G of distinct elliptic elements
converging to the identity as ¢ — oo. By similar rea-
soning as in the proof of Theorem 1.3, we obtain a
contradiction.

Case II. M(G) = Hy.

We know that ®(G) is a subgroup of PO(1,1)
and all the sense-preserving elements of ®(G) is
dense in M (f_{l_l). By assumption, ®(f) is a sense-
preserving elliptic element with ®(f?) = ®*(f) # I.
Theorem 1.1 implies that there exists a non-elemen-
tary and non-discrete group generated by ®(f) and
®(g), where ®(g) is a sense-preserving elliptic ele-
ment. Therefore, (f,g) is a non-elementary but non-
discrete subgroup of G, which is also a contradiction.

The proof is completed. O
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