On meromorphic functions sharing five one-point or two-point sets IM

By Manabu Shirosaki
Department of Mathematical Sciences, School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
(Communicated by Masaki Kashiwara, M.J.A., Dec. 14, 2009)

Abstract

We show that if two meromorphic functions sharing five one-point or two-point sets two points IM, then one of them is a Möbius transformation of the other.

Key words: Uniqueness theorem; sharing sets; Nevanlinna theory.

1. Introduction. For nonconstant meromorphic functions f and g on \boldsymbol{C} and a finite set S in $\overline{\boldsymbol{C}}=$ $\boldsymbol{C} \cup\{\infty\}$, we say that f and g share S CM (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in$ $f^{-1}(S)$ two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at z_{0}, where the notations $f-\infty$ and $g-\infty$ mean $1 / f$ and $1 / g$, respectively. Also, if $f^{-1}(S)=g^{-1}(S)$, then we say that f and g share S IM (ignoring multiplicities). In particular if S is a one-point set $\{a\}$, then we say also that f and g share a CM or IM.

In [N1] and [N2], R. Nevanlinna showed the following two theorems:

Theorem A1. Let f and g be two distinct nonconstant meromorphic functions on \boldsymbol{C} and a_{1}, \cdots, a_{4} four distinct points in $\overline{\boldsymbol{C}}$. If f and g share $a_{1}, \cdots, a_{4} C M$, then f is a Möbius transformation of g, i.e. $f=(a g+b) /(c g+d)$ for some complex numbers a, b, c, d with $a d-b c \neq 0$, and there exists a permutation σ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}, a_{\sigma(4)}$ are Picard exceptional values of f and g and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$.

Theorem A2. Let f and g be two nonconstant meromorphic functions on \boldsymbol{C} sharing distinct five points in $\overline{\boldsymbol{C}} I M$, then $f=g$.

In $[\mathrm{T}]$ Tohge considered two meromorphic functions sharing $1,-1, \infty$ and a two-point set containing none of them and Theorem 4 in $[\mathrm{T}]$ induces the following

Theorem B. Let S_{1}, S_{2}, S_{3} be one-point sets in $\overline{\boldsymbol{C}}$ and let S_{4} be a two-point set in $\overline{\boldsymbol{C}}$. Assume that $S_{1}, S_{2}, S_{3}, S_{4}$ are pairwise disjoint. If two nonconstant meromorphic functions f and g on \boldsymbol{C} share S_{1}, S_{2}, S_{3}, $S_{4} C M$, then f is a Möbius transformation of g.

[^0]Also, Theorem 1.2 in [ST] and its proof induce
Theorem C. Let S_{1}, S_{2} be one-point sets in $\overline{\boldsymbol{C}}$ and let S_{3}, S_{4} be a two-point set in $\overline{\boldsymbol{C}}$. Assume that $S_{1}, S_{2}, S_{3}, S_{4}$ are pairwise disjoint. If two nonconstant meromorphic functions f and g on \boldsymbol{C} share S_{1}, S_{2}, S_{3}, $S_{4} C M$, then f is a Möbius transformation of g.

Moreover, in $[\mathrm{S}]$ the author considered meromorphic functions sharing two-point sets CM and Theorem 1.1 in $[\mathrm{S}]$ and its proof induce

Theorem D. Let S_{1}, \cdots, S_{6} be pairwise disjoint two-point sets in $\overline{\boldsymbol{C}}$. If two nonconstant meromorphic functions f and g on \boldsymbol{C} share $S_{1}, \cdots, S_{6} C M$, then f is a Möbius transformation of g.

In this paper we consider two meromorphic functions on \boldsymbol{C} sharing five one-point or two-point sets in $\overline{\boldsymbol{C}}$ IM.

Theorem 1. Let S_{1}, \cdots, S_{5} be pairwise disjoint one-point or two-point sets in $\overline{\boldsymbol{C}}$. If two nonconstant meromorphic functions f and g on \boldsymbol{C} share $S_{1}, \cdots, S_{5} I M$, then f is a Möbius transformation of g and hence f and g share each $S_{j} C M$.

This result is much better than that of Theorem D , whereas the proof of the formar is much easier than that of the latter.

The following corollary is induced from the result of Theorem 1 and the little Picard Theorem.

Corollary 2. Let S_{1}, \cdots, S_{5} be pairwise disjoint one-point or two-point sets in $\overline{\boldsymbol{C}}$. Assume that there is no Möbius transformation T except the indentity with at most two points z in \boldsymbol{C} satisifying one of the following conditions: $(i) z \in S_{j}$ and $T(z) \notin S_{j}$ for some $j=1, \cdots, 5 ;$ (ii) $z \notin \cup_{j=1}^{5} S_{j}$ and $T(z) \in$ $\cup_{j=1}^{5} S_{j}$. Then two nonconstant meromorphic functions on \boldsymbol{C} sharing S_{1}, \cdots, S_{5} IM are identical.

How about the case of sharing CM? We give a conjecure.

Conjecture. Let S_{1}, \cdots, S_{4} be pairwise disjoint one-point or two-point sets in $\overline{\boldsymbol{C}}$. If two nonconstant meromorphic functions f and g share $S_{1}, \cdots, S_{4} \mathrm{CM}$, then there exists a Möbius transformation T such that $f=T \circ g$.

This conjecture is true for the cases that the number of one-point sets is four, three or two, and so the remaining problem is the case that the number of one-point sets is one or zero.

We assume that the reader is familiar with the standard notations and results of the value distribution theory (see, for example, $[\mathrm{H}]$). In particular, we express by $S(r, f)$ quantities such that $\lim _{r \rightarrow \infty, r \notin E} S(r, f) / T(r, f)=0$, where E is a subset of $(0, \infty)$ with finite linear measure and it is variable in each cases.
2. Proof of Theorem 1. Before beginning the proof of Theorem 1, we show the following

Lemma 3. For any distinct four point ξ_{1}, η_{1}, ξ_{2}, η_{2} in $\overline{\boldsymbol{C}}$, there exists a Möbius transformation T such that $T\left(\eta_{j}\right)=-T\left(\xi_{j}\right)$ for $j=1,2$.

Proof. We may assume that the four points are $\xi_{1}=0, \xi_{2}=1, \eta_{1}=\infty$ and $\eta_{2}=a$, where $a \neq 0$, $1, \infty$. One of the Möbius transformation desired is given by

$$
T(z)=\frac{z-\sqrt{a}}{z+\sqrt{a}}
$$

Indeed, $T(\infty)=1=-T(0), T(a)=\frac{a-\sqrt{a}}{a+\sqrt{a}}=$ $\frac{\sqrt{a}-1}{\sqrt{a}+1}=-T(1)$.

Now we start the proof of Theorem 1. We assume, more generally, that f and g share one-point sets S_{1}, \cdots, S_{p} and two-point sets S_{p+1}, \cdots, S_{p+q} IM, where these sets are pairwise disjoint and p and q are non-negative integers with $p+q \geq 5$. However, we may assume that $p \leq 4$ by Theorem A2. Also, if $f=g$, then there is nothing to prove. Therefore we assume that $f \neq g$.

Let T be a Möbius transfomation. Then $T \circ f$ and $T \circ g$ share $T\left(S_{j}\right)$ IM, and if $T \circ f$ is a Möbius transformation of $T \circ g$, then f is a Möbius transformation of g. Therefore we may assume that any set S_{j} does not contain ∞.

By the second main theorem and the first main theorem we have

$$
\begin{align*}
&(p+2 q-2) T(r, f) \tag{1}\\
& \leq \sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}\left(r, \frac{1}{f-\xi}\right)+S(r, f) \\
&=\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}\left(r, \frac{1}{g-\xi}\right)+S(r, f) \\
& \quad \leq(p+2 q) T(r, g)+S(r, f)
\end{align*}
$$

and, by the same way,
(2) $(p+2 q-2) T(r, g) \leq(p+2 q) T(r, f)+S(r, g)$.

Hence there is no need to distinguish $S(r, f)$ and $S(r, g)$, and so we denote them by $S(r)$.

By $\bar{N}_{E}\left(r, \frac{1}{f-\xi}\right)$ and $\bar{N}_{N}\left(r, \frac{1}{f-\xi}\right)$ we denote the counting functions which count the point z such that $f(z)=\xi=g(z)$ and $f(z)=\xi \neq g(z)$ counted once, respectively, and we define $\bar{N}_{E}\left(r, \frac{1}{g-\xi}\right)$ and $\bar{N}_{N}\left(r, \frac{1}{g-\xi}\right)$ by the same way. It is easy to see that $\quad \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right)=\bar{N}_{N}\left(r, \frac{1}{g-\xi}\right)=0 \quad$ for $\quad \xi \in$ $S_{1} \cup \cdots \cup S_{p}$ and that

$$
\begin{align*}
\sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{f-\xi}\right) & =\sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{g-\xi}\right), \tag{3}\\
\sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) & =\sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{g-\xi}\right)
\end{align*}
$$

for $j=p+1, \cdots, q$. Since $f-g \not \equiv 0$, we have

$$
\begin{aligned}
\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{f-\xi}\right) & \leq \bar{N}\left(r, \frac{1}{f-g}\right) \\
& \leq T(r, f)+T(r, g)+O(1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=p+1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \\
&=\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}\left(r, \frac{1}{f-\xi}\right)-\sum_{j=1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{E}\left(r, \frac{1}{f-\xi}\right) \\
& \quad \geq(p+2 q-3) T(r, f)-T(r, g)+S(r)
\end{aligned}
$$

By the same way and (3) we have

$$
\begin{aligned}
\sum_{j=p+1}^{q} & \sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \\
& \geq(p+2 q-3) T(r, g)-T(r, f)+S(r)
\end{aligned}
$$

Adding these two inequalities we obtain

$$
\begin{align*}
& \sum_{j=p+1}^{p+q} \sum_{\xi \in S_{j}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) \tag{4}\\
& \quad \geq \frac{1}{2}(p+2 q-4)(T(r, f)+T(r, g))+S(r)
\end{align*}
$$

(i) The case $q \geq 2$.

From (4) we see that there exist distinct j_{1} and j_{2} in $\{p+1, \cdots, q\}$ and a subset I of $(0,+\infty)$ of infinite linear measure such that

$$
\begin{align*}
\frac{1}{q}(p & +2 q-4)(T(r, f)+T(r, g))+S(r) \tag{5}\\
& \leq \sum_{\xi \in S_{j_{1} \cup} \cup S_{j_{2}}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right)
\end{align*}
$$

holds for $r \in I$. Put $S_{j_{1}}=\left\{\xi_{1}, \eta_{1}\right\}, S_{j_{2}}=\left\{\xi_{2}, \eta_{2}\right\}$. Then by Lemma 3 there exists a Möbius transformation T such that $T\left(\eta_{j}\right)=-T\left(\xi_{j}\right)$ for $j=1,2$, and we put $F=T \circ f, G=T \circ g$. Of couse $F \neq G$ by assumption, and assume $F \neq-G$. Then since the points counted in $\bar{N}_{N}\left(\frac{1}{f-\xi}\right)$ for some $\xi \in S_{j_{1}} \cup S_{j_{2}}$ are zeros of $F+G$,

$$
\begin{aligned}
\sum_{\xi \in S_{j} \cup S_{j_{2}}} \bar{N}_{N}\left(r, \frac{1}{f-\xi}\right) & \leq \bar{N}\left(r, \frac{1}{F+G}\right) \\
& \leq T(r, f)+T(r, g)+O(1)
\end{aligned}
$$

holds for $r \in I$. By connecting this lefthand side with the righthand side of (5), we get $p+q \leq 4$, which contradicts the hypothesis. Therefore we conclude that $F=-G$, which induces that f is a Möbius transformation of g.
(ii) The case $q=1$.

In this case we have $p=4$. Put $S_{j}=\left\{a_{j}\right\}$ for $j=1, \cdots, 4$, then by the second main theorem and the first main theorem we get

$$
\begin{aligned}
2 T(r, f) & \leq \sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r) \\
& \leq \bar{N}\left(r, \frac{1}{f-g}\right)+S(r) \\
& \leq T(r, f)+T(r, g)+S(r)
\end{aligned}
$$

and

$$
\begin{aligned}
2 T(r, g) & \leq \sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{g-a_{j}}\right)+S(r) \\
& \leq \bar{N}\left(r, \frac{1}{f-g}\right)+S(r) \\
& \leq T(r, f)+T(r, g)+S(r)
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
T(r, f)=T(r, g)+S(r) \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{f-a_{j}}\right) & =2 T(r, f)+S(r) \tag{7}\\
& =\bar{N}\left(r, \frac{1}{f-g}\right)+S(r)
\end{align*}
$$

Now put $S_{5}=\left\{a_{5}, b_{5}\right\}$, then by the second main theorem and (7) we have

$$
\begin{aligned}
4 T(r, f) \leq & \sum_{j=1}^{5} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+\bar{N}\left(r, \frac{1}{f-b_{5}}\right)+S(r) \\
= & 2 T(r, f)+\bar{N}\left(r, \frac{1}{f-a_{5}}\right)+\bar{N}\left(r, \frac{1}{f-b_{5}}\right) \\
& +S(r)
\end{aligned}
$$

and hence

$$
\begin{equation*}
2 T(r, f) \leq \bar{N}\left(r, \frac{1}{f-a_{5}}\right)+\bar{N}\left(r, \frac{1}{f-b_{5}}\right)+S(r) \tag{8}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \bar{N}_{E}\left(r, \frac{1}{f-a_{5}}\right)+\bar{N}_{E}\left(r, \frac{1}{f-b_{5}}\right) \\
& \quad \leq \bar{N}\left(r, \frac{1}{f-g}\right)-\sum_{j=1}^{4} \bar{N}\left(r, \frac{1}{f-a_{j}}\right) \\
& \quad \leq T(r, f)+T(r, g)-2 T(r, g)+S(r)=S(r)
\end{aligned}
$$

holds by using (6) and (7), we have

$$
\bar{N}_{E}\left(r, \frac{1}{f-a_{5}}\right)+\bar{N}_{E}\left(r, \frac{1}{f-b_{5}}\right) \leq S(r)
$$

This and (8) yield
$\bar{N}_{N}\left(r, \frac{1}{f-a_{5}}\right)+\bar{N}_{N}\left(r, \frac{1}{f-b_{5}}\right) \geq 2 T(r, f)+S(r)$.
On the other hand it follows from (7) that there exists some j_{0} in $\{1, \cdots, 4\}$ such that

$$
\begin{equation*}
\frac{1}{2} T(r, f) \leq \bar{N}\left(r, \frac{1}{f-a_{j_{0}}}\right)+S(r) \tag{10}
\end{equation*}
$$

holds for $r \in I$, where I is a subset of $(0,+\infty)$ of infinite linear measure. We take a Möbius transformation T such that $T\left(b_{5}\right)=-T\left(a_{5}\right)$ and $T\left(a_{j_{0}}\right)=0$ and put $F=T \circ f$ and $G=T \circ g$. Assume that $F \neq$ $-G$. Then since the points z such that $f(z)=a_{j_{0}}$ or that $f(z)$ and $g(z)$ are distinct points in S_{5} are zeros of $F+G$, by (9), (10) and (6)

$$
\begin{aligned}
& \frac{1}{2} T(r, f)+2 T(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f-a_{j_{0}}}\right)+\bar{N}_{N}\left(r, \frac{1}{f-a_{5}}\right) \\
&+\bar{N}_{N}\left(r, \frac{1}{f-b_{5}}\right)+S(r) \\
& \leq \bar{N}\left(r, \frac{1}{F+G}\right)+S(r) \leq T(r, f)+T(r, g)+S(r) \\
& \quad 2 T(f, r)+S(r)
\end{aligned}
$$

holds for $r \in I$, which is a contradiction. Hence we conclude that $F=-G$, which induces that f is a Möbius transformation of g.

References

[H] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[N1] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der Meromorphen Funktionen, Acta Math. 48 (1926), no. 3-4, 367-391.
[N2] R. Nevanlinna, Le théorèm de Picard-Borel et la théorie des fonctions méromorphes, GauthierVillars, Paris, 1929.
[S] M. Shirosaki, A new characterization of collections of two-point sets with the uniqueness property, Kodai Math. J. 30 (2007), no. 2, 213-222.
[ST] M. Shirosaki and M. Taketani, On meromorphic functions sharing two one-point sets and two two-point sets, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 3, 32-35.
[T] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J. 11 (1988), no. 2, 249-279.

[^0]: 2000 Mathematics Subject Classification. Primary 30D35.

