Lyapunov inequality for elliptic equations involving limiting nonlinearities

By Sergey A. Timoshin
Department of Mathematics and PMI, POSTECH, Pohang, Kyungbuk 790-784, Republic of Korea

(Communicated by Masaki Kashiwara, M.J.A., Sept. 13, 2010)

Abstract

This note deals with a generalization of the famous Lyapunov inequality giving a necessary condition for the existence of solutions to a boundary value problem for an ordinary differential equation. The problem we consider is closely related to a well-known problem on an asymptotic behavior of positive solutions of a class of semilinear elliptic equations of nearly critical Sobolev growth.

Key words: Elliptic equations; critical exponents; Lyapunov inequality.

Introduction. Motivated by the study of nonlinear boundary value problems at resonance, in [4], the authors considered the following linear boundary value problem

$$
\begin{align*}
& u^{\prime \prime}(x)+a(x) u(x)=0, \quad x \in\left(L_{1}, L_{2}\right) \\
& u\left(L_{1}\right)=u\left(L_{2}\right)=0 \tag{1}
\end{align*}
$$

where $a(x) \in \Lambda_{0}$ and Λ_{0} is defined by

$$
\Lambda_{0}=\left\{a \in C\left[L_{1}, L_{2}\right] \backslash\{0\}:\right.
$$

Problem (1) has a nontrivial solution $\}$.
Note that the well-known Lyapunov inequality [10] states that if $a(x) \in \Lambda_{0}$, then necessarily

$$
\int_{L_{1}}^{L_{2}}|a(x)| d x>\frac{4}{L_{2}-L_{1}} .
$$

This inequality is sharp in the sense that the constant on the right cannot be replaced by a larger number. Thus,

$$
\beta_{1} \equiv \inf _{a \in \Lambda_{0}}\|a\|_{1}=\frac{4}{L_{2}-L_{1}}
$$

and the value of β_{1} is not attained. A. Cañada, J. A. Montero and S. Villegas generalized this result by considering the quantity

$$
\beta_{p} \equiv \inf _{a \in \Lambda_{0}}\|a\|_{p}
$$

for all $p, 1 \leq p \leq \infty$, and obtaining an explicit expression for β_{p} in terms of p, L_{1} and L_{2}. In their further work [5], they treated an analogous problem for partial differential equations. More precisely, the following problem was considered

[^0]\[

$$
\begin{cases}-\Delta u(x)=a(x) u(x) & x \in \Omega \\ u(x)=0 & x \in \partial \Omega\end{cases}
$$
\]

where $\Omega \subset \mathbf{R}^{N} \quad(N \geq 2)$ is a smooth bounded domain, $a \in L^{q}(\Omega)$, for some $q \geq 1$, and the qualitative study of the quantity

$$
\beta_{p} \equiv \inf _{a \in \Lambda \cap L^{p}(\Omega)}\|a\|_{p}, \quad 1 \leq p \leq \infty
$$

where Λ is defined similarly to Λ_{0}, was made (see also [5, Remark 5]). The dimension of the problem plays an important rôle in this instance. In particular, A. Cañada, J. A. Montero and S. Villegas showed that when $N=2$, the constant $\beta_{p}>0$ if, and only if, $1<p \leq \infty$. If $N \geq 3$, then $\beta_{p}>0$ if, and only if, $\frac{N}{2} \leq p \leq \infty$. Moreover, if $N \geq 2$ and $\frac{N}{2}<p \leq \infty$, then β_{p} is attained. Note that a complete study of the critical case corresponding to the value of $p=\frac{N}{2}$ is left open in [5]. In the present paper we provide a detailed treatment, when $N \geq 3$, of this critical case.

In conclusion, mention may be made of the fact that our result is a generalization of some results from [8] and [12] on an asymptotic behavior of positive solutions to a well-known class of semilinear elliptic equations with nearly critical nonlinearity.

The main result. Let Ω be a smooth bounded domain in $\mathbf{R}^{N}, N \geq 3$. Consider the following Dirichlet boundary value problem

$$
\begin{cases}-\Delta u(x)=a(x) u(x) & x \in \Omega \tag{2}\\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

where the function $a: \Omega \rightarrow \mathbf{R}$ belongs to the set

$$
\Lambda=\left\{a \in L^{N / 2}(\Omega) \backslash\{0\}:\right.
$$

Problem (2) has a nontrivial solution\}.
The eigenvalues of the eigenvalue problem

$$
\begin{cases}-\Delta u(x)=\lambda u(x) & x \in \Omega \\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

belong to the set Λ. Hence the quantity

$$
\beta_{\frac{N}{2}}=\inf _{a \in \Lambda}\|a\|_{\frac{N}{2}}
$$

is well defined.
Theorem 1. The value of $\beta_{\frac{N}{2}}$ is given by

$$
\beta_{\frac{N}{2}}=S_{N},
$$

where S_{N} is the best Sobolev constant in \mathbf{R}^{N} :

$$
S_{N}=\pi N(N-2)\left[\frac{\Gamma(N / 2)}{\Gamma(N)}\right]^{2 / N}
$$

and $\beta_{\frac{N}{2}}$ is not attained.
Proof. Let $a \in \Lambda$, and $u \in H_{0}^{1}(\Omega)$ be a corresponding nontrivial solution of Problem (2). Multiplying the equation in (2) by u, and integrating by parts using the boundary condition, we obtain

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2}=\int_{\Omega} a u^{2} \tag{3}
\end{equation*}
$$

It follows from the Hölder inequality that

$$
\int_{\Omega}|\nabla u|^{2} \leq\|a\|_{\frac{N}{2}}\left\|u^{2}\right\|_{\frac{N}{N-2}}
$$

Note that the exponent $2 N /(N-2)$ is critical for the embedding of the Sobolev space $H_{0}^{1}(\Omega)$ into Lebesgue spaces.

From the last inequality we have
(4) $\|a\|_{\frac{N}{2}} \geq \frac{\int_{\Omega}|\nabla u|^{2}}{\|u\|_{\frac{2 N}{N-2}}^{2}} \geq \inf _{v \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla v|^{2}}{\|v\|_{\frac{2 N}{N-2}}^{2}}=S_{N}$.

Therefore,

$$
\begin{equation*}
\beta_{\frac{N}{2}}=\inf _{a \in \Lambda}\|a\|_{\frac{N}{2}} \geq S_{N} . \tag{5}
\end{equation*}
$$

Consider now the problem
(6) $\begin{cases}-\Delta u(x)=N(N-2) u^{p-\varepsilon}(x) & x \in \Omega \\ u(x)>0 & x \in \Omega \\ u(x)=0 & x \in \partial \Omega,\end{cases}$
where $p=(N+2) /(N-2)$ and $\varepsilon \geq 0$. It is well known that when $\varepsilon>0$ Problem (6) has a solution u_{ε}. Hence for any $\varepsilon>0$ the functions $a_{\varepsilon}(x):=$ $N(N-2) u_{\varepsilon}^{p-1-\varepsilon}(x)$ belong to the set Λ. Note that if $\varepsilon=0$ the existence of solutions of Problem (6) depends on the topological properties of the domain Ω. In particular, when Ω is starshaped it is proved in [11] that (6) does not have any solution.

The asymptotic behavior of solutions of Problem (6) as ε goes to zero was studied in the papers [$8,12,13]$ (see also $[1,2]$ for the case of spherical domains).

Let u_{ε} be a solution of Problem (6), and assume that $\left\{u_{\varepsilon}\right\}_{\varepsilon>0}$ is a minimizing sequence for the Sobolev inequality, i.e.

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}}{\left\|u_{\varepsilon}\right\|_{p+1-\varepsilon}^{2}}=S_{N} \tag{7}
\end{equation*}
$$

Multiplying (6) by u_{ε} and integrating by parts, we obtain

$$
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}=N(N-2) \int_{\Omega} u_{\varepsilon}^{p+1-\varepsilon} .
$$

Then, from the assumption (7) we have

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} N(N-2)\left\|u_{\varepsilon}\right\|_{p+1-\varepsilon}^{p-1-\varepsilon} \\
& \quad=\lim _{\varepsilon \rightarrow 0}\left\|N(N-2) u_{\varepsilon}^{p-1-\varepsilon}\right\|_{\frac{p+1-\varepsilon}{p-1-\varepsilon}}=S_{N}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\|a_{\varepsilon}\right\|_{\frac{N}{2}}=\left\|a_{\varepsilon}\right\|_{\frac{p+1}{p-1}}=\left\|N(N-2) u_{\varepsilon}^{p-1-\varepsilon}\right\|_{\frac{p+1}{p-1}} \\
& \quad=S_{N}+o(1) \quad \text { as } \quad \varepsilon \rightarrow 0 .
\end{aligned}
$$

Therefore

$$
\beta_{\frac{N}{2}}=\inf _{a \in \Lambda}\|a\|_{\frac{N}{2}} \leq \lim _{\varepsilon \rightarrow 0}\left\|a_{\varepsilon}\right\|_{\frac{N}{2}}=S_{N}
$$

which together with (5) gives

$$
\begin{equation*}
\beta_{\frac{N}{2}}=S_{N} \tag{8}
\end{equation*}
$$

Now, let $\left\{a_{n}\right\}_{n \in \mathbf{N}}$ be an arbitrary minimizing sequence for $\beta_{\frac{N}{2}}$, i.e.

$$
\lim _{n \rightarrow \infty}\left\|a_{n}\right\|_{\frac{N}{2}}=\beta_{\frac{N}{2}}=\inf _{a \in \Lambda}\|a\|_{\frac{N}{2}}
$$

For any $n \in \mathbf{N}$, denote by u_{n} a nontrivial solution of (2) corresponding to the function a_{n}. Then from (4) and (8) we have

$$
\lim _{n \rightarrow \infty}\left\|a_{n}\right\|_{\frac{N}{2}}=\lim _{n \rightarrow \infty} \frac{\int_{\Omega}\left|\nabla u_{n}\right|^{2}}{\left\|u_{n}\right\|_{\frac{2 N}{N-2}}^{2}}=S_{N}
$$

Thus $\left\{u_{n}\right\}_{n \in \mathbf{N}}$ is a minimizing sequence for the Sobolev inequality. It is well known that the best Sobolev constant S_{N} is never achieved on a bounded domain (see, e.g., $[15,16]$). Hence we deduce from (4) that $\beta_{\frac{N}{2}}$ is not attained.

Theorem 2. For any point $x_{0} \in \bar{\Omega}$ there exists a minimizing sequence $\left\{a_{n}\right\}_{n \in \mathbf{N}}$ for $\beta_{\frac{N}{2}}$ such that $\left\{\left|a_{n}\right|^{N / 2}\right\}_{n \in \mathbf{N}}$ converges in the sense of méasures
to $S_{N}^{N / 2} \delta_{x_{0}}$, where $\delta_{x_{0}}$ denotes the Dirac mass concentrated at the point x_{0}.

Proof. Let x_{0} be an arbitrary point of $\bar{\Omega}$. We choose Q to be a $C(\bar{\Omega}) \cap C^{3}(\Omega)$ non-negative function which has x_{0} as its unique (non-degenerate) maximum point in $\bar{\Omega}$. Let

$$
Q_{M}:=\max _{x \in \bar{\Omega}} Q(x)=Q\left(x_{0}\right) .
$$

Recall that an asymptotic behavior of solutions of the following boundary value problem was investigated in [6],
(9) $\begin{cases}-\Delta u=Q(x)|u|^{p-1} u+\varepsilon|u|^{\sigma-1} u & x \in \Omega \\ u=0 & x \in \partial \Omega,\end{cases}$
where $p=(N+2) /(N-2), \sigma \in[1, p), \varepsilon>0$, and the function Q can be taken as above. The existence of at least one positive solution of (9) was established in $[7]$ for $\sigma=1$ and ε less than the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition.

We take now $\sigma=1$ and note that for ε small enough the functions $a_{\varepsilon}(x)=Q(x)\left|u_{\varepsilon}(x)\right|^{p-1}+\varepsilon$, where u_{ε} is a least energy solution of Problem (9), belong to the set Λ. Therefore, using the Minkowski inequality and the fact that $N / 2=(p+1) /(p-1)$ we have

$$
\begin{aligned}
S_{N} \leq \lim _{\varepsilon \rightarrow 0}\left\|a_{\varepsilon}\right\|_{\frac{N}{2}} & =\lim _{\varepsilon \rightarrow 0}\left\|Q(x)\left|u_{\varepsilon}(x)\right|^{p-1}+\varepsilon\right\|_{\frac{N}{2}} \\
& \leq \lim _{\varepsilon \rightarrow 0}\left[\int_{\Omega} Q(x)^{\frac{N}{2}}\left|u_{\varepsilon}(x)\right|^{p+1}\right]^{2 / N} \\
& \leq \lim _{\varepsilon \rightarrow 0}\left[Q_{M}^{\frac{N}{2}-1} \int_{\Omega} Q(x)\left|u_{\varepsilon}(x)\right|^{p+1}\right]^{2 / N} \\
& =\left[Q_{M}^{(N-2) / 2} \frac{S_{N}^{N / 2}}{Q_{M}^{(N-2) / 2}}\right]^{2 / N}=S_{N}
\end{aligned}
$$

The value of the last limit is calculated in $[6,(2.8)]$. Thus

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|a_{\varepsilon}\right\|_{\frac{N}{2}}=S_{N} \tag{10}
\end{equation*}
$$

In particular, we see that $a_{\varepsilon}(x)=Q(x)\left|u_{\varepsilon}(x)\right|^{p-1}+$ $\varepsilon, \varepsilon>0$, is a minimizing sequence for $\beta_{\frac{N}{2}}$.

Under the assumed conditions on the function Q, Theorem 1.1 in [6] asserts that (after passing to a subsequence)

$$
\left|u_{\varepsilon}\right|^{p+1} \rightharpoonup Q_{M}^{-(N / 2)} S_{N}^{N / 2} \delta_{x_{0}} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

in the sense of measures, where we recall that x_{0} is the unique maximum point of the function Q. This fact, together with (10), implies that (after passing to a subsequence)

$$
\left|a_{\varepsilon}\right|^{N / 2} \rightharpoonup S_{N}^{N / 2} \delta_{x_{0}} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

in the sense of measures, and the theorem follows.

Remark. In a forthcoming paper [3] we give a different, more constructive proof of the last theorem, revealing the nature of blow-up behavior of minimizing sequences for $\beta_{\underline{N}}$. Employing the knowledge on the minimizing sequences for the best Sobolev constant S_{N} from [9,14], we also prove that any minimizing sequence for $\beta_{\frac{N}{2}}$ converges in the sense of measures to a multiple ${ }^{2}$ of the Dirac mass centered at some point $x_{0} \in \bar{\Omega}$. In addition, when $N=1$ we show that the blowing-up occurs only at one point of the domain, the center of the interval, pointing out a deep difference with respect to the multidimensional case.

In the two-dimensional case, $N=2$, the $L_{1^{-}}$ norm in the expression of $\beta_{\frac{N}{2}}$ is not natural from the viewpoint of the limiting ${ }^{2}$ cases of the Sobolev embedding theorem. We observe a rather degenerate behavior of minimizing sequences here, in the sense that the concentration may occur at any finite number of points of the domain. Consequently, we redefine the constant $\beta_{\frac{N}{2}}$ by changing the L_{1}-norm by a suitable Orlicz norm $\|\cdot\|_{A}$ stemming from the Moser-Trudinger inequality, the latter giving the critical growth in the two-dimensional situation. The norm $\|\cdot\|_{A}$ is defined by means of a Young function $A(t)=e^{4 \pi t}-4 \pi t-1, t \geq 0$. We show that this new quantity β_{A} is bounded away from zero, and the following estimate is valid

$$
\beta_{A} \geq \frac{1}{2 \nu^{\frac{1}{2}}}>0
$$

where

$$
\nu:=\sup _{u \in H_{0}^{1}(\Omega),\|\nabla u\|_{2}=1} \int_{\Omega}\left(e^{4 \pi u^{2}}-4 \pi u^{2}-1\right)
$$

Acknowledgement. The author would like to thank Prof. Jaeyoung Byeon for introducing him to the problem and for helpful discussions.

References

[1] F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987), no. 3, 349365.
[2] H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, in

Partial differential equations and the calculus of variations, Vol. I, 149-192, Birkhäuser, Boston, Boston, MA.
[3] J. Byeon, H. J. Kweon and S. A. Timoshin, Generalized Lyapunov inequalities involving critical Sobolev exponents. (Preprint).
[4] A. Cañada, J. A. Montero and S. Villegas, Liapunov-type inequalities and Neumann boundary value problems at resonance, Math. Inequal. Appl. 8 (2005), no. 3, 459-475.
[5] A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), no. 1, 176-193.
6] D. Cao and X. Zhong, Multiplicity of positive solutions for semilinear elliptic equations involving the critical Sobolev exponents, Nonlinear Anal. 29 (1997), no. 4, 461-483.
[7] J. F. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), no. 5, 623-657.
[8] Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159-174.
[9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121.
[10] A. M. Lyapunov, Problème général de la stabilité du mouvement. Ann. de la Faculté de Toulouse (2) 9 (1907), 406.
[11] S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36-39. (in Russian) and Soviet Math. Dokl. 6 (1965), 1408-1411.
[12] O. Rey, Proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math. 65 (1989), no. 1, 19-37.
[13] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1-52.
[14] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, 511-517.
[15] M. Struwe, Variational methods, Springer, Berlin, 1990.
[16] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.

[^0]: 2010 Mathematics Subject Classification. Primary 35J25; Secondary 35B33.

