Lyapunov inequality for elliptic equations involving limiting nonlinearities

By Sergey A. TIMOSHIN

Department of Mathematics and PMI, POSTECH, Pohang, Kyungbuk 790-784, Republic of Korea

(Communicated by Masaki KASHIWARA, M.J.A., Sept. 13, 2010)

Abstract: This note deals with a generalization of the famous Lyapunov inequality giving a necessary condition for the existence of solutions to a boundary value problem for an ordinary differential equation. The problem we consider is closely related to a well-known problem on an asymptotic behavior of positive solutions of a class of semilinear elliptic equations of nearly critical Sobolev growth.

Key words: Elliptic equations; critical exponents; Lyapunov inequality.

Introduction. Motivated by the study of nonlinear boundary value problems at resonance, in [4], the authors considered the following linear boundary value problem

(1)
$$u''(x) + a(x)u(x) = 0, \quad x \in (L_1, L_2), \\ u(L_1) = u(L_2) = 0,$$

where $a(x) \in \Lambda_0$ and Λ_0 is defined by

$$\Lambda_0 = \{ a \in C[L_1, L_2] \setminus \{0\} :$$

Problem (1) has a nontrivial solution $\}.$

Note that the well-known Lyapunov inequality [10] states that if $a(x) \in \Lambda_0$, then necessarily

$$\int_{L_1}^{L_2} |a(x)| \, dx > \frac{4}{L_2 - L_1}$$

This inequality is sharp in the sense that the constant on the right cannot be replaced by a larger number. Thus,

$$\beta_1 \equiv \inf_{a \in \Lambda_0} \|a\|_1 = \frac{4}{L_2 - L_1},$$

and the value of β_1 is not attained. A. Cañada, J. A. Montero and S. Villegas generalized this result by considering the quantity

$$\beta_p \equiv \inf_{a \in \Lambda_0} \|a\|_p,$$

for all $p, 1 \le p \le \infty$, and obtaining an explicit expression for β_p in terms of p, L_1 and L_2 . In their further work [5], they treated an analogous problem for partial differential equations. More precisely, the following problem was considered

$$\begin{cases} -\Delta u(x) = a(x) u(x) & x \in \Omega\\ u(x) = 0 & x \in \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbf{R}^N$ $(N \ge 2)$ is a smooth bounded domain, $a \in L^q(\Omega)$, for some $q \ge 1$, and the qualitative study of the quantity

$$\beta_p \equiv \inf_{a \in \Lambda \cap L^p(\Omega)} \|a\|_p, \quad 1 \le p \le \infty,$$

where Λ is defined similarly to Λ_0 , was made (see also [5, Remark 5]). The dimension of the problem plays an important rôle in this instance. In particular, A. Cañada, J. A. Montero and S. Villegas showed that when N = 2, the constant $\beta_p > 0$ if, and only if, $1 . If <math>N \geq 3$, then $\beta_p > 0$ if, and only if, $\frac{N}{2} \leq p \leq \infty$. Moreover, if $N \geq 2$ and $\frac{N}{2} ,$ $then <math>\beta_p$ is attained. Note that a complete study of the critical case corresponding to the value of $p = \frac{N}{2}$ is left open in [5]. In the present paper we provide a detailed treatment, when $N \geq 3$, of this critical case.

In conclusion, mention may be made of the fact that our result is a generalization of some results from [8] and [12] on an asymptotic behavior of positive solutions to a well-known class of semilinear elliptic equations with nearly critical nonlinearity.

The main result. Let Ω be a smooth bounded domain in \mathbb{R}^N , $N \geq 3$. Consider the following Dirichlet boundary value problem

(2)
$$\begin{cases} -\Delta u(x) = a(x) u(x) & x \in \Omega\\ u(x) = 0 & x \in \partial \Omega \end{cases}$$

where the function $a: \Omega \to \mathbf{R}$ belongs to the set

 $\Lambda = \{ a \in L^{N/2}(\Omega) \setminus \{ 0 \} :$

Problem (2) has a nontrivial solution.

The eigenvalues of the eigenvalue problem

²⁰¹⁰ Mathematics Subject Classification. Primary 35J25; Secondary 35B33.

$$\begin{cases} -\Delta u(x) = \lambda \, u(x) & x \in \Omega \\ u(x) = 0 & x \in \partial \Omega \end{cases}$$

belong to the set Λ . Hence the quantity

$$\beta_{\frac{N}{2}} = \inf_{a \in \Lambda} \|a\|_{\frac{N}{2}}$$

is well defined.

Theorem 1. The value of $\beta_{\frac{N}{2}}$ is given by $\beta_{\frac{N}{2}} = S_N,$

where S_N is the best Sobolev constant in \mathbf{R}^N :

$$S_N = \pi N(N-2) \left[\frac{\Gamma(N/2)}{\Gamma(N)} \right]^{2/N},$$

and $\beta_{\underline{N}}$ is not attained.

Proof. Let $a \in \Lambda$, and $u \in H_0^1(\Omega)$ be a corresponding nontrivial solution of Problem (2). Multiplying the equation in (2) by u, and integrating by parts using the boundary condition, we obtain

(3)
$$\int_{\Omega} |\nabla u|^2 = \int_{\Omega} a \, u^2.$$

It follows from the Hölder inequality that

$$\int_{\Omega} |\nabla u|^2 \le \|a\|_{\frac{N}{2}} \|u^2\|_{\frac{N}{N-2}}.$$

Note that the exponent 2N/(N-2) is critical for the embedding of the Sobolev space $H_0^1(\Omega)$ into Lebesgue spaces.

From the last inequality we have

(4)
$$||a||_{\frac{N}{2}} \ge \frac{\int_{\Omega} |\nabla u|^2}{||u||_{\frac{2N}{N-2}}^2} \ge \inf_{v \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla v|^2}{||v||_{\frac{2N}{N-2}}^2} = S_N.$$

Therefore,

(5)
$$\beta_{\frac{N}{2}} = \inf_{a \in \Lambda} \|a\|_{\frac{N}{2}} \ge S_N.$$

Consider now the problem

(6)
$$\begin{cases} -\Delta u(x) = N(N-2) u^{p-\varepsilon}(x) & x \in \Omega \\ u(x) > 0 & x \in \Omega \\ u(x) = 0 & x \in \partial\Omega, \end{cases}$$

where p = (N+2)/(N-2) and $\varepsilon \ge 0$. It is well known that when $\varepsilon > 0$ Problem (6) has a solution u_{ε} . Hence for any $\varepsilon > 0$ the functions $a_{\varepsilon}(x) :=$ N(N-2) $u_{\varepsilon}^{p-1-\varepsilon}(x)$ belong to the set Λ . Note that if $\varepsilon = 0$ the existence of solutions of Problem (6) depends on the topological properties of the domain Ω . In particular, when Ω is starshaped it is proved in [11] that (6) does not have any solution. The asymptotic behavior of solutions of Problem (6) as ε goes to zero was studied in the papers [8,12,13] (see also [1,2] for the case of spherical domains).

Let u_{ε} be a solution of Problem (6), and assume that $\{u_{\varepsilon}\}_{\varepsilon>0}$ is a minimizing sequence for the Sobolev inequality, i.e.

(7)
$$\lim_{\varepsilon \to 0} \frac{\int_{\Omega} |\nabla u_{\varepsilon}|^2}{\|u_{\varepsilon}\|_{p+1-\varepsilon}^2} = S_N.$$

Multiplying (6) by u_{ε} and integrating by parts, we obtain

$$\int_{\Omega} |\nabla u_{\varepsilon}|^2 = N(N-2) \int_{\Omega} u_{\varepsilon}^{p+1-\varepsilon}$$

Then, from the assumption (7) we have

$$\begin{split} \lim_{\varepsilon \to 0} N(N-2) \| u_{\varepsilon} \|_{p+1-\varepsilon}^{p-1-\varepsilon} \\ &= \lim_{\varepsilon \to 0} \| N(N-2) u_{\varepsilon}^{p-1-\varepsilon} \|_{\frac{p+1-\varepsilon}{p-1-\varepsilon}} = S_N. \end{split}$$

Hence

$$\begin{aligned} \|a_{\varepsilon}\|_{\frac{N}{2}} &= \|a_{\varepsilon}\|_{\frac{p+1}{p-1}} = \left\|N(N-2)u_{\varepsilon}^{p-1-\varepsilon}\right\|_{\frac{p+1}{p-1}} \\ &= S_N + o(1) \quad \text{as} \quad \varepsilon \to 0. \end{aligned}$$

Therefore

$$\beta_{\underline{N}} = \inf_{a \in \Lambda} \|a\|_{\underline{N}} \le \lim_{\varepsilon \to 0} \|a_{\varepsilon}\|_{\underline{N}} = S_N,$$

which together with (5) gives

(8)
$$\beta_{\frac{N}{2}} = S_N.$$

Now, let $\{a_n\}_{n\in\mathbb{N}}$ be an arbitrary minimizing sequence for $\beta_{\underline{N}}$, i.e.

$$\lim_{n \to \infty} \|a_n\|_{\frac{N}{2}} = \beta_{\frac{N}{2}} = \inf_{a \in \Lambda} \|a\|_{\frac{N}{2}}$$

For any $n \in \mathbf{N}$, denote by u_n a nontrivial solution of (2) corresponding to the function a_n . Then from (4) and (8) we have

$$\lim_{n \to \infty} \|a_n\|_{\frac{N}{2}} = \lim_{n \to \infty} \frac{\int_{\Omega} |\nabla u_n|^2}{\|u_n\|_{\frac{2N}{N-2}}^2} = S_N$$

Thus $\{u_n\}_{n \in \mathbb{N}}$ is a minimizing sequence for the Sobolev inequality. It is well known that the best Sobolev constant S_N is never achieved on a bounded domain (see, e.g., [15,16]). Hence we deduce from (4) that $\beta_{\underline{N}}$ is not attained.

Theorem 2. For any point $x_0 \in \overline{\Omega}$ there exists a minimizing sequence $\{a_n\}_{n \in \mathbb{N}}$ for $\beta_{\underline{N}}$ such that $\{|a_n|^{N/2}\}_{n \in \mathbb{N}}$ converges in the sense of measures

to $S_N^{N/2}\delta_{x_0}$, where δ_{x_0} denotes the Dirac mass concentrated at the point x_0 .

Proof. Let x_0 be an arbitrary point of $\overline{\Omega}$. We choose Q to be a $C(\overline{\Omega}) \cap C^3(\Omega)$ non-negative function which has x_0 as its unique (non-degenerate) maximum point in $\overline{\Omega}$. Let

$$Q_M := \max_{x \in \overline{\Omega}} Q(x) = Q(x_0).$$

Recall that an asymptotic behavior of solutions of the following boundary value problem was investigated in [6],

(9)
$$\begin{cases} -\Delta u = Q(x)|u|^{p-1}u + \varepsilon |u|^{\sigma-1}u & x \in \Omega\\ u = 0 & x \in \partial\Omega, \end{cases}$$

where p = (N+2)/(N-2), $\sigma \in [1,p)$, $\varepsilon > 0$, and the function Q can be taken as above. The existence of at least one positive solution of (9) was established in [7] for $\sigma = 1$ and ε less than the first eigenvalue of $-\Delta$ with zero Dirichlet boundary condition.

We take now $\sigma = 1$ and note that for ε small enough the functions $a_{\varepsilon}(x) = Q(x)|u_{\varepsilon}(x)|^{p-1} + \varepsilon$, where u_{ε} is a least energy solution of Problem (9), belong to the set Λ . Therefore, using the Minkowski inequality and the fact that N/2 = (p+1)/(p-1)we have

$$S_{N} \leq \lim_{\varepsilon \to 0} \|a_{\varepsilon}\|_{\frac{N}{2}} = \lim_{\varepsilon \to 0} \|Q(x)|u_{\varepsilon}(x)|^{p-1} + \varepsilon \|_{\frac{N}{2}}$$
$$\leq \lim_{\varepsilon \to 0} \left[\int_{\Omega} Q(x)^{\frac{N}{2}} |u_{\varepsilon}(x)|^{p+1} \right]^{2/N}$$
$$\leq \lim_{\varepsilon \to 0} \left[Q_{M}^{\frac{N}{2}-1} \int_{\Omega} Q(x) |u_{\varepsilon}(x)|^{p+1} \right]^{2/N}$$
$$= \left[Q_{M}^{(N-2)/2} \frac{S_{N}^{N/2}}{Q_{M}^{(N-2)/2}} \right]^{2/N} = S_{N}.$$

The value of the last limit is calculated in [6, (2.8)]. Thus

(10)
$$\lim_{\varepsilon \to 0} \|a_{\varepsilon}\|_{\frac{N}{2}} = S_N.$$

In particular, we see that $a_{\varepsilon}(x) = Q(x)|u_{\varepsilon}(x)|^{p-1} + \varepsilon$, $\varepsilon > 0$, is a minimizing sequence for $\beta_{\underline{N}}$.

Under the assumed conditions on the function Q, Theorem 1.1 in [6] asserts that (after passing to a subsequence)

$$u_{\varepsilon}|^{p+1} \rightharpoonup Q_M^{-(N/2)} S_N^{N/2} \delta_{x_0} \quad \text{as} \quad \varepsilon \to 0$$

in the sense of measures, where we recall that x_0 is the unique maximum point of the function Q. This fact, together with (10), implies that (after passing to a subsequence)

$$|a_{\varepsilon}|^{N/2}
ightarrow S_N^{N/2} \delta_{x_0} \quad ext{as} \quad arepsilon
ightarrow 0$$

in the sense of measures, and the theorem follows. $\hfill \Box$

Remark. In a forthcoming paper [3] we give a different, more constructive proof of the last theorem, revealing the nature of blow-up behavior of minimizing sequences for $\beta_{\frac{N}{2}}$. Employing the knowledge on the minimizing sequences for the best Sobolev constant S_N from [9,14], we also prove that any minimizing sequence for $\beta_{\frac{N}{2}}$ converges in the sense of measures to a multiple of the Dirac mass centered at some point $x_0 \in \overline{\Omega}$. In addition, when N = 1 we show that the blowing-up occurs only at one point of the domain, the center of the interval, pointing out a deep difference with respect to the multidimensional case.

In the two-dimensional case, N = 2, the L_1 norm in the expression of β_N is not natural from the viewpoint of the limiting² cases of the Sobolev embedding theorem. We observe a rather degenerate behavior of minimizing sequences here, in the sense that the concentration may occur at any finite number of points of the domain. Consequently, we redefine the constant β_N by changing the L_1 -norm by a suitable Orlicz norm $\|\cdot\|_A$ stemming from the Moser-Trudinger inequality, the latter giving the critical growth in the two-dimensional situation. The norm $\|\cdot\|_A$ is defined by means of a Young function $A(t) = e^{4\pi t} - 4\pi t - 1$, $t \ge 0$. We show that this new quantity β_A is bounded away from zero, and the following estimate is valid

$$\beta_A \ge \frac{1}{2\nu^{\frac{1}{2}}} >$$

0,

where

$$\nu := \sup_{u \in H_0^1(\Omega), \|\nabla u\|_2 = 1} \int_{\Omega} \left(e^{4\pi u^2} - 4\pi u^2 - 1 \right)$$

Acknowledgement. The author would like to thank Prof. Jaeyoung Byeon for introducing him to the problem and for helpful discussions.

References

- F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987), no. 3, 349– 365.
- [2] H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, in

No. 8]

Partial differential equations and the calculus of variations, Vol. I, 149–192, Birkhäuser, Boston, Boston, MA.

- [3] J. Byeon, H. J. Kweon and S. A. Timoshin, Generalized Lyapunov inequalities involving critical Sobolev exponents. (Preprint).
- [4] A. Cañada, J. A. Montero and S. Villegas, Liapunov-type inequalities and Neumann boundary value problems at resonance, Math. Inequal. Appl. 8 (2005), no. 3, 459–475.
- [5] A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), no. 1, 176–193.
- [6] D. Cao and X. Zhong, Multiplicity of positive solutions for semilinear elliptic equations involving the critical Sobolev exponents, Nonlinear Anal. 29 (1997), no. 4, 461–483.
- J. F. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), no. 5, 623–657.
- [8] Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159–174.

- [9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45–121.
- [10] A. M. Lyapunov, Problème général de la stabilité du mouvement. Ann. de la Faculté de Toulouse (2) 9 (1907), 406.
- [11] S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Akad. Nauk SSSR **165** (1965), 36–39. (in Russian) and Soviet Math. Dokl. **6** (1965), 1408–1411.
- O. Rey, Proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math. 65 (1989), no. 1, 19–37.
- [13] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1–52.
- M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, 511–517.
- [15] M. Struwe, Variational methods, Springer, Berlin, 1990.
- [16] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.