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Abstract: This note deals with a generalization of the famous Lyapunov inequality giving

a necessary condition for the existence of solutions to a boundary value problem for an ordinary

differential equation. The problem we consider is closely related to a well-known problem on an

asymptotic behavior of positive solutions of a class of semilinear elliptic equations of nearly

critical Sobolev growth.
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Introduction. Motivated by the study of

nonlinear boundary value problems at resonance,

in [4], the authors considered the following linear

boundary value problem

u00ðxÞ þ aðxÞuðxÞ ¼ 0; x 2 ðL1; L2Þ;
uðL1Þ ¼ uðL2Þ ¼ 0;

ð1Þ

where aðxÞ 2 �0 and �0 is defined by

�0 ¼ fa 2 C ½L1; L2� n f0g :

Problem (1) has a nontrivial solutiong:
Note that the well-known Lyapunov inequality [10]

states that if aðxÞ 2 �0, then necessarilyZ L2

L1

jaðxÞj dx >
4

L2 � L1
:

This inequality is sharp in the sense that the

constant on the right cannot be replaced by a larger

number. Thus,

�1 � inf
a2�0

kak1 ¼
4

L2 � L1
;

and the value of �1 is not attained. A. Cañada, J. A.

Montero and S. Villegas generalized this result by

considering the quantity

�p � inf
a2�0

kakp;

for all p, 1 � p � 1, and obtaining an explicit

expression for �p in terms of p; L1 and L2. In their

further work [5], they treated an analogous problem

for partial differential equations. More precisely,

the following problem was considered

��uðxÞ ¼ aðxÞuðxÞ x 2 �

uðxÞ ¼ 0 x 2 @�,

�

where � � RN ðN � 2Þ is a smooth bounded

domain, a 2 Lqð�Þ, for some q � 1, and the qual-

itative study of the quantity

�p � inf
a2�\Lpð�Þ

kakp; 1 � p � 1;

where � is defined similarly to �0, was made (see

also [5, Remark 5]). The dimension of the problem

plays an important rôle in this instance. In partic-

ular, A. Cañada, J. A. Montero and S. Villegas

showed that whenN ¼ 2, the constant �p > 0 if, and

only if, 1 < p � 1. If N � 3, then �p > 0 if, and only

if, N
2 � p � 1. Moreover, if N � 2 and N

2 < p � 1,

then �p is attained. Note that a complete study of

the critical case corresponding to the value of p ¼ N
2

is left open in [5]. In the present paper we provide a

detailed treatment, whenN � 3, of this critical case.

In conclusion, mention may be made of the fact

that our result is a generalization of some results

from [8] and [12] on an asymptotic behavior of posi-

tive solutions to a well-known class of semilinear

elliptic equations with nearly critical nonlinearity.

The main result. Let � be a smooth bound-

ed domain in RN , N � 3. Consider the following

Dirichlet boundary value problem

��uðxÞ ¼ aðxÞuðxÞ x 2 �

uðxÞ ¼ 0 x 2 @�,

�
ð2Þ

where the function a : � ! R belongs to the set

� ¼ fa 2 LN=2ð�Þ n f0g :

Problem (2) has a nontrivial solutiong:
The eigenvalues of the eigenvalue problem
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��uðxÞ ¼ � uðxÞ x 2 �

uðxÞ ¼ 0 x 2 @�

�

belong to the set �. Hence the quantity

�N
2
¼ inf

a2�
kakN

2

is well defined.

Theorem 1. The value of �N
2
is given by

�N
2
¼ SN;

where SN is the best Sobolev constant in RN :

SN ¼ �NðN � 2Þ
�ðN=2Þ
�ðNÞ

� �2=N
;

and �N
2
is not attained.

Proof. Let a 2 �, and u 2 H1
0ð�Þ be a corre-

sponding nontrivial solution of Problem (2). Multi-

plying the equation in (2) by u, and integrating by

parts using the boundary condition, we obtainZ
�

jruj2 ¼
Z
�

a u2:ð3Þ

It follows from the Hölder inequality thatZ
�

jruj2 � kakN
2
ku2k N

N�2
:

Note that the exponent 2N=ðN � 2Þ is critical

for the embedding of the Sobolev space H1
0 ð�Þ into

Lebesgue spaces.

From the last inequality we have

kakN
2
�

Z
�

jruj2

kuk22N
N�2

� inf
v2H1

0
ð�Þnf0g

Z
�

jrvj2

kvk22N
N�2

¼ SN:ð4Þ

Therefore,

�N
2
¼ inf

a2�
kakN

2
� SN:ð5Þ

Consider now the problem

��uðxÞ ¼ NðN � 2Þ up�"ðxÞ x 2 �

uðxÞ > 0 x 2 �

uðxÞ ¼ 0 x 2 @�,

8><
>:ð6Þ

where p ¼ ðN þ 2Þ=ðN � 2Þ and " � 0. It is well

known that when " > 0 Problem (6) has a solution

u". Hence for any " > 0 the functions a"ðxÞ :¼
NðN � 2Þ up�1�"

" ðxÞ belong to the set �. Note

that if " ¼ 0 the existence of solutions of Problem

(6) depends on the topological properties of the

domain �. In particular, when � is starshaped it is

proved in [11] that (6) does not have any solution.

The asymptotic behavior of solutions of Problem

(6) as " goes to zero was studied in the papers

[8,12,13] (see also [1,2] for the case of spherical

domains).

Let u" be a solution of Problem (6), and assume

that fu"g">0 is a minimizing sequence for the

Sobolev inequality, i.e.

lim
"!0

Z
�

jru"j2

ku"k2pþ1�"

¼ SN:ð7Þ

Multiplying (6) by u" and integrating by parts, we

obtain Z
�

jru"j2 ¼ NðN � 2Þ
Z
�

upþ1�"
" :

Then, from the assumption (7) we have

lim
"!0

NðN � 2Þku"kp�1�"
pþ1�"

¼ lim
"!0

NðN � 2Þup�1�"
"

�� ��
pþ1�"
p�1�"

¼ SN:

Hence

a"k kN
2
¼ ka"kpþ1

p�1
¼ NðN � 2Þup�1�"

"

�� ��
pþ1
p�1

¼ SN þ oð1Þ as " ! 0:

Therefore

�N
2
¼ inf

a2�
kakN

2
� lim

"!0
ka"kN

2
¼ SN;

which together with (5) gives

�N
2
¼ SN:ð8Þ

Now, let fangn2N be an arbitrary minimizing

sequence for �N
2
, i.e.

lim
n!1

kankN
2
¼ �N

2
¼ inf

a2�
kakN

2
:

For any n 2 N, denote by un a nontrivial solution of

(2) corresponding to the function an. Then from (4)

and (8) we have

lim
n!1

kankN
2
¼ lim

n!1

Z
�

jrunj2

kunk22N
N�2

¼ SN:

Thus fungn2N is a minimizing sequence for the

Sobolev inequality. It is well known that the best

Sobolev constant SN is never achieved on a bounded

domain (see, e.g., [15,16]). Hence we deduce from

(4) that �N
2
is not attained. �

Theorem 2. For any point x0 2 � there

exists a minimizing sequence fangn2N for �N
2
such

that fjanjN=2gn2N converges in the sense of measures
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to S
N=2
N �x0 , where �x0 denotes the Dirac mass con-

centrated at the point x0.

Proof. Let x0 be an arbitrary point of �. We

choose Q to be a Cð�Þ \ C3ð�Þ non-negative

function which has x0 as its unique (non-degener-

ate) maximum point in �. Let

QM :¼ max
x2�

QðxÞ ¼ Qðx0Þ:

Recall that an asymptotic behavior of solutions of

the following boundary value problem was inves-

tigated in [6],

��u ¼ QðxÞjujp�1uþ "juj��1u x 2 �

u ¼ 0 x 2 @�,

(
ð9Þ

where p ¼ ðN þ 2Þ=ðN � 2Þ, � 2 ½1; pÞ, " > 0, and

the function Q can be taken as above. The existence

of at least one positive solution of (9) was establish-

ed in [7] for � ¼ 1 and " less than the first eigenvalue

of �� with zero Dirichlet boundary condition.

We take now � ¼ 1 and note that for " small

enough the functions a"ðxÞ ¼ QðxÞju"ðxÞjp�1 þ ",

where u" is a least energy solution of Problem (9),

belong to the set �. Therefore, using the Minkowski

inequality and the fact that N=2 ¼ ðpþ 1Þ=ðp� 1Þ
we have

SN � lim
"!0

ka"kN
2
¼ lim

"!0
QðxÞju"ðxÞjp�1 þ "

�� ��
N
2

� lim
"!0

Z
�

QðxÞ
N
2 ju"ðxÞjpþ1

� �2=N

� lim
"!0

Q
N
2�1

M

Z
�

QðxÞju"ðxÞjpþ1

� �2=N

¼ Q
ðN�2Þ=2
M

S
N=2
N

Q
ðN�2Þ=2
M

" #2=N

¼ SN:

The value of the last limit is calculated in [6, (2.8)].

Thus

lim
"!0

ka"kN
2
¼ SN:ð10Þ

In particular, we see that a"ðxÞ ¼ QðxÞju"ðxÞjp�1 þ
", " > 0, is a minimizing sequence for �N

2
.

Under the assumed conditions on the function

Q, Theorem 1.1 in [6] asserts that (after passing to a

subsequence)

ju"jpþ1 * Q
�ðN=2Þ
M S

N=2
N �x0 as " ! 0

in the sense of measures, where we recall that x0 is

the unique maximum point of the function Q. This

fact, together with (10), implies that (after passing

to a subsequence)

ja"jN=2 * S
N=2
N �x0 as " ! 0

in the sense of measures, and the theorem

follows. �

Remark. In a forthcoming paper [3] we give

a different, more constructive proof of the last

theorem, revealing the nature of blow-up behavior

of minimizing sequences for �N
2
. Employing the

knowledge on the minimizing sequences for the best

Sobolev constant SN from [9,14], we also prove that

any minimizing sequence for �N
2
converges in the

sense of measures to a multiple of the Dirac mass

centered at some point x0 2 �. In addition, when

N ¼ 1 we show that the blowing-up occurs only at

one point of the domain, the center of the interval,

pointing out a deep difference with respect to the

multidimensional case.

In the two-dimensional case, N ¼ 2, the L1-

norm in the expression of �N
2
is not natural from the

viewpoint of the limiting cases of the Sobolev

embedding theorem. We observe a rather degener-

ate behavior of minimizing sequences here, in the

sense that the concentration may occur at any finite

number of points of the domain. Consequently, we

redefine the constant �N
2
by changing the L1-norm

by a suitable Orlicz norm k � kA stemming from the

Moser-Trudinger inequality, the latter giving the

critical growth in the two-dimensional situation.

The norm k � kA is defined by means of a Young

function AðtÞ ¼ e4�t � 4�t� 1, t � 0. We show that

this new quantity �A is bounded away from zero,

and the following estimate is valid

�A �
1

2�
1
2

> 0;

where

� :¼ sup
u2H1

0
ð�Þ; kruk2¼1

Z
�

e4�u
2 � 4�u2 � 1

� �
:
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Boston, MA.

[ 3 ] J. Byeon, H. J. Kweon and S. A. Timoshin,
Generalized Lyapunov inequalities involving
critical Sobolev exponents. (Preprint).
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