Non-symplectic automorphisms of 3-power order on $K 3$ surfaces

By Shingo TAKI
Korea Institute for Advanced Study, Hoegiro 87 (207-43 Cheongnyangni 2-dong), Dongdaemun-gu, Seoul 130-722, Korea
(Communicated by Shigefumi Mori, M.J.A., Sept. 13, 2010)

Abstract

We classify non-symplectic automorphisms of 3-power order on algebraic $K 3$ surfaces which act trivially on the Néron-Severi lattice, i.e., we describe their fixed locus. Moreover we give Weierstrass equations of $K 3$ surfaces with a non-symplectic automorphism of 3-power order.

Key words: K3 surface; non-symplectic automorphism.

1. Introduction. Let X be a smooth compact complex surface. If its canonical line bundle K_{X} is trivial and $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)=0$ then X is called a $K 3$ surface. In the following, for an algebraic $K 3$ surface X, we denote by S_{X}, T_{X} and ω_{X} the Néron-Severi lattice, the transcendental lattice and a nowhere vanishing holomorphic 2 -form on X, respectively.

An automorphism of X is symplectic if it acts trivially on $\mathbf{C} \omega_{X}$. In particular, this paper is devoted to study of non-symplectic automorphisms of 3 -power order which act trivially on S_{X}.

We suppose that g is a non-symplectic automorphism of order I on X such that $g^{*} \omega_{X}=\zeta_{I} \omega_{X}$ where ζ_{I} is a primitive I-th root of unity. Then g^{*} has no non-zero fixed vectors in $T_{X} \otimes \mathbf{Q}$ and hence $\phi(I)$ divides $\operatorname{rank} T_{X}$, where ϕ is the Euler function. In particular $\phi(I) \leq \operatorname{rank} T_{X}$ and hence $I \leq 66$ ([Ni1], Theorem 3.1 and Corollary 3.2).

Non-symplectic automorphisms have been studied by several authors e.g. Nikulin [Ni1,Ni2], Vorontsov [Vo], Kondo [Ko], Xiao [Xi], Oguiso, Zhang [OZ1,OZ2], Artebani, Sarti [AS] and Taki [Ta]. Recently, we have the classification of nonsymplectic automorphisms of prime order on $K 3$ surfaces [AST]. In particular we characterize their fixed loci in terms of the invariants of p-elementary lattices. Then Schütt $[\mathrm{Sc}]$ classified $K 3$ surfaces with non-symplectic automorphisms which the order is 2 -power and equals the rank of the transcendental lattice.

We know the following

[^0]Proposition 1.1 [Vo,Ko]. Let k be a positive integer. Assume that there exists a non-symplectic automorphism φ of order p^{k} on X which acts trivially on S_{X}. Then S_{X} is a p-elementary lattice, that is, S_{X}^{*} / S_{X} is a p-elementary group where $S_{X}^{*}=$ $\operatorname{Hom}\left(S_{X}, \mathbf{Z}\right)$.

In general, the inverse of Proposition 1.1 is not true. For example, $S_{X}=U(3) \oplus E_{8}(3)$ is a 3 elementary lattice. But X has no non-symplectic automorphisms of order 3 which act trivially on S_{X}. (See [AS,Ta].)

If I is 3 -power then $I=3,9,27$. Non-symplectic automorphisms of order 3 have been classified by Artebani, Sarti [AS] and Taki [Ta]. They proved the following

Theorem 1.2 [AS,Ta]. Let r be the Picard number of X and let s be the minimal number of generators of S_{X}^{*} / S_{X}.
X has a non-symplectic automorphism φ of order 3 which acts trivially on S_{X} if and only if $22-r-2 s \geq 0$. Moreover the fixed locus $X^{\varphi}:=$ $\{x \in X \mid \varphi(x)=x\}$ has the form
$X^{\varphi}=\left\{\begin{array}{lc}\left\{P_{1}, P_{2}, P_{3}\right\} & \text { if } S_{X}=U(3) \oplus E_{6}^{*}(3) \\ \left\{P_{1}, \ldots, P_{M}\right\} \amalg C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{K} & \text { otherwise }\end{array}\right.$ and $M=r / 2-1, g=(22-r-2 s) / 4, K=(2+r-$ $2 s) / 4$, where we denote by P_{i} an isolated point, $C^{(g)}$ a non-singular curve of genus g and by E_{j} a nonsingular rational curve.

Oguiso and Zhang [OZ1] have proved that the $K 3$ surface with non-symplectic automorphisms of order 27 is unique. Then we mainly study nonsymplectic automorphisms of order 9 .

And the main purpose of this paper is to prove the following theorem.

Theorem 1.3.

(1) X has a non-symplectic automorphism φ of order 9 acting trivially on S_{X} if and only if $S_{X}=$ $U \oplus A_{2}, U \oplus E_{8}, U \oplus E_{6} \oplus A_{2}$ or $U \oplus E_{8} \oplus E_{6}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}=\left\{\begin{array}{c}
\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \quad \text { if } S_{X}=U \oplus A_{2}, \\
\left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1} \\
\text { if } S_{X}=U \oplus E_{8} \text { or } U \oplus E_{6} \oplus A_{2}, \\
\left\{P_{1}, P_{2}, \ldots, P_{14}\right\} \amalg E_{1} \amalg E_{2} \\
\text { if } S_{X}=U \oplus E_{8} \oplus E_{6} .
\end{array}\right.
$$

(2) X has a non-symplectic automorphism φ of order 27 acting trivially on S_{X} if and only if $S_{X}=U \oplus A_{2}$. Moreover the fixed locus X^{φ} has the form $X^{\varphi}=\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$.
Here we denote by P_{i} an isolated point and by E_{j} a non-singular rational curve.

Remark 1.4. We have already had the classification of non-symplectic automorphisms of 5power order on $K 3$ surfaces. If I is 5 -power then $I=5,25$. Non-symplectic automorphisms of order 5 have been classified by Artebani, Sarti and Taki [AST]. Oguiso and Zhang [OZ1] have proved that the $K 3$ surface with non-symplectic automorphisms of order 25 is unique.

In Section 2, we shall give the classification of an even hyperbolic 3-elementary lattices admitting a primitive embedding in $K 3$ lattice. As a result, we get all lattices which are the Néron-Severi lattice of $K 3$ surfaces with non-symplectic automorphisms of 3 -power order which act trivially on S_{X}. In Section 3, we see that the number of isolated fixed points is determined by the Picard number of X. Here we use mainly the Lefschetz formula. In Section 4, we check that the existence and nonexistence of $K 3$ surfaces with a non-symplectic automorphism of 3 -power order. And we give Weierstrass equations of $K 3$ surfaces with a nonsymplectic automorphism of 3 -power order acting trivially on S_{X}. In Section 5 , we see fixed locus of non-symplectic automorphisms.
2. The Néron-Severi and p-elementary lattices. A lattice L is a free abelian group of finite rank r equipped with a non-degenerate symmetric bilinear form, which will be denoted by \langle,$\rangle . The bilinear form \langle$,$\rangle determines a canonical$ embedding $L \subset L^{*}=\operatorname{Hom}(L, \mathbf{Z})$. We denote by A_{L} the factor group L^{*} / L which is a finite abelian group. $L(m)$ is the lattice whose bilinear form is the one on L multiplied by m.

We denote by U the hyperbolic lattice defined by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ which is an even unimodular lattice of signature $(1,1)$, and by A_{m} or E_{n} an even negative definite lattice associated with the Dynkin diagram of type A_{m} or $E_{n}(m \geq 1, n=6,7,8)$.

Let p be a prime number. A lattice L is called p-elementary if $A_{L} \simeq(\mathbf{Z} / p \mathbf{Z})^{s}$, where s is the minimal number of generator of A_{L}. For a p elementary lattice we always have the inequality $s \leq r$, since $\left|L^{*} / L\right|=p^{s},\left|L^{*} / p L^{*}\right|=p^{r}$ and $p L^{*} \subset$ $L \subset L^{*}$.

Example 2.1. For all prime p, lattices E_{8}, $E_{8}(p), U$ and $U(p)$ are p-elementary. A_{2} and E_{6} are 3 -elementary.

Even indefinite $p(>2)$-elementary lattices were classified as follows:

Theorem 2.2 [RS]. An even indefinite p-elementary lattice of rank n for $p \neq 2$ and $n \geq 2$ is uniquely determined by its discriminant (i.e., the number s).

For $p \neq 2$ a hyperbolic lattice corresponding to a given value of $s \leq n$ exist if and only if the following conditions are satisfied: $n \equiv 0(\bmod 2)$ and

$$
\left\{\begin{array}{ll}
\text { for } s \equiv 0 \quad(\bmod 2), & n \equiv 2(\bmod 4) \\
\text { for } s \equiv 1 & (\bmod 2),
\end{array} \quad p \equiv(-1)^{n / 2-1} \quad(\bmod 4) .\right.
$$

And moreover $n>s>0$, if $n \not \equiv 2(\bmod 8)$.
Let ϕ be the Euler function. Then $\phi(9)=6$. Since $\phi(9)$ divides $\operatorname{rank} T_{X}, \operatorname{rank} T_{X}=18,12,6$. (see Section 1 and [Ni1].) Hence if X has a non-symplectic automorphisms of order 9 then $\operatorname{rank} S_{X}=4,10,16$. In the same way, if X has a non-symplectic automorphisms of order 27 then $\operatorname{rank} S_{X}=4$.

By Theorem 1.2, X has a non-symplectic automorphism φ of order 3 which acts trivially on S_{X} if and only if $22-\operatorname{rank} S_{X}-2 s \geq 0$. Hence if X has a non-symplectic automorphism of order 3^{k} which act trivially on S_{X} then $22-\operatorname{rank} S_{X}-$ $2 s \geq 0$.

Table I is a list of 3-elementary lattices which satisfy $22-\operatorname{rank} S_{X}-2 s \geq 0$ and $\operatorname{rank} S_{X}=4,10$, 16. Hence if X has a non-symplectic automorphisms of order 9 (resp. 27) which act trivially on S_{X} then S_{X} is one of the lattices in Table I (resp. $U \oplus A_{2}$ or $\left.U(3) \oplus A_{2}\right)$.

Remark 2.3. Let $\{e, f\}$ be a basis of U (resp. $U(3))$ with $\langle e, e\rangle=\langle f, f\rangle=0$ and $\langle e, f\rangle=1$ (resp. $\langle e, f\rangle=3$). If necessary replacing e by $\varphi(e)$,

Table I. 3-elementary lattices

$\operatorname{Rank} S_{X}$	s	S_{X}	T_{X}
4	1	$U \oplus A_{2}$	$U^{\oplus 2} \oplus E_{6} \oplus E_{8}$
4	3	$U(3) \oplus A_{2}$	$U \oplus U(3) \oplus E_{6} \oplus E_{8}$
10	0	$U \oplus E_{8}$	$U^{\oplus 2} \oplus E_{8}$
10	2	$U \oplus E_{6} \oplus A_{2}$	$U \oplus U(3) \oplus E_{8}$
10	4	$U \oplus A_{2}^{\oplus 4}$	$U \oplus U(3) \oplus E_{6} \oplus A_{2}$
10	6	$U(3) \oplus A_{2}^{\oplus 4}$	$A_{2}(-1) \oplus A_{2}^{\oplus 5}$
16	1	$U \oplus E_{8} \oplus E_{6}$	$U^{\oplus 2} \oplus A_{2}$
16	3	$U \oplus E_{8} \oplus A_{2}^{\oplus 3}$	$A_{2}(-1) \oplus A_{2}^{\oplus 2}$

where φ is a composition of reflections induced from non-singular rational curves on X, we may assume that e is represented by the class of an elliptic curve F and the linear system $|F|$ defines an elliptic fibration $\pi: X \rightarrow \mathbf{P}^{1}$. Note that π has a section $f-e$ in case U. In case $U(3)$, there are no (-2)-vectors r with $\langle r, e\rangle=1$, and hence π has no sections.

It follows from Remark 2.3 and Table I that X has an elliptic fibration $\pi: X \rightarrow \mathbf{P}^{1}$. In the following, we fix such an elliptic fibration.

The following lemma follows from [PS, $\S 3$ Corollary 3] and the classification of singular fibers of elliptic fibrations [Kd].

Lemma 2.4. Assume that $S_{X}=U(m) \oplus$ $K_{1} \oplus \cdots \oplus K_{r}$, where $m=1$ or 3 , and K_{i} is a lattice isomorphic to A_{2}, E_{6} or E_{8}. Then π has a reducible singular fiber with corresponding Dynkin diagram K_{i}.
3. The number of isolated fixed points. In this Section, we shall see that the number of isolated fixed points of non-symplectic automorphism of order 9 .

Lemma 3.1. Let X be an algebraic K3 surface and φ a non-symplectic automorphism of order 9 on X. Then we have:
(1) $\varphi^{*} \mid T_{X} \otimes \mathbf{C}$ can be diagonalized as:

$$
\left(\begin{array}{cccccc}
\zeta I_{q} & 0 & 0 & 0 & 0 & 0 \\
0 & \zeta^{2} I_{q} & 0 & 0 & 0 & 0 \\
0 & 0 & \zeta^{4} I_{q} & 0 & 0 & 0 \\
0 & 0 & 0 & \zeta^{5} I_{q} & 0 & 0 \\
0 & 0 & 0 & 0 & \zeta^{7} I_{q} & 0 \\
0 & 0 & 0 & 0 & 0 & \zeta^{8} I_{q}
\end{array}\right)
$$

where I_{q} is the identity matrix of size q, ζ is a primitive 9-th root of unity.
(2) Let P be an isolated fixed point of φ on X. Then φ^{*} can be written as

$$
\left(\begin{array}{cc}
\zeta^{i} & 0 \\
0 & \zeta^{j}
\end{array}\right) \quad(i+j \equiv 1 \quad \bmod 9)
$$

under some appropriate local coordinates around P.
(3) Let C be an irreducible curve in X^{φ} and Q a point on C. Then φ^{*} can be written as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right)
$$

under some appropriate local coordinates around Q. In particular, fixed curves are nonsingular.
Proof. (1) This follows form [Ni1, Theorem 3.1].
(2), (3) Since φ^{*} acts on $H^{0}\left(X, \Omega_{X}^{2}\right)$ as a multiplication by ζ, it acts on the tangent space of a fixed point as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
\zeta^{i} & 0 \\
0 & \zeta^{j}
\end{array}\right)
$$

where $i+j \equiv 1 \quad(\bmod 9)$.
Thus the fixed locus of φ consists of disjoint union of non-singular curves and isolated points. Hence we can express the irreducible decomposition of X^{φ} as

$$
X^{\varphi}=\left\{P_{1}, \ldots, P_{M}\right\} \amalg C_{1} \amalg \cdots \amalg C_{N},
$$

where P_{j} is an isolated point and C_{k} is a nonsingular curve.

Lemma 3.2. Let r be the Picard number of X. Then $\chi\left(X^{\varphi}\right)=r+2$.

Proof. We apply the topological Lefschetz formula:

$$
\chi\left(X^{\varphi}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\varphi^{*} \mid H^{i}(X, \mathbf{R})\right)
$$

Since φ^{*} acts trivially on $S_{X}, \operatorname{tr}\left(\varphi^{*} \mid S_{X}\right)=r$. By Lemma 3.1 (1), $\operatorname{tr}\left(\varphi^{*} \mid T_{X}\right)=q\left(\zeta+\zeta^{2}+\zeta^{4}+\zeta^{5}+\right.$ $\left.\zeta^{7}+\zeta^{8}\right)=-q\left(1+\zeta^{3}+\zeta^{6}\right)=0$. Hence we can calculate the right-hand side of the Lefschetz formula as follows: $\quad \sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\varphi^{*} \mid H^{i}(X, \mathbf{R})\right)=1-0+$ $\operatorname{tr}\left(\varphi^{*} \mid S_{X}\right)+\operatorname{tr}\left(\varphi^{*} \mid T_{X}\right)-0+1=r+2$.

By Table I and Lemma 2.4, the elliptic fibration $\pi: X \rightarrow \mathbf{P}^{1}$ has a reducible singular fiber. In the following, we check a detail of Theorem 1.2.

Lemma 3.3. We put $\sigma=\varphi^{3}$. All isolated fixed points of σ lie on reducible singular fibers. In particular, these are intersection points of compo-
nents of reducible singular fibers or a point of the component of a singular fiber of type $I I^{*}$ which is multiplicity 3 and meet the component with multiplicity 6.

Proof. Since σ also acts trivially on S_{X}, σ preserves reducible singular fibers. Hence intersection points of components of reducible singular fibers are fixed by σ. We will check the claim for each S_{X} individually.

Assume $S_{X}=U \oplus A_{2}$. By [Ta, Lemma 3.5] π has a singular fiber of type IV. By Theorem 1.2, $X^{\sigma}=C^{(4)} \amalg \mathbf{P}^{1} \amalg\left\{P_{1}\right\}$. Now X^{σ} contains $C^{(4)}$. This implies that the automorphism σ acts trivially on the base of π and the section (cf. Remark 2.3) is fixed by σ. Since an automorphism of order 3 on a smooth fiber has 3 fixed points, $C^{(4)} . F=2$ where F is a fiber of π. Thus $C^{(4)}$ does not pass the intersection point. Hence a singular fiber of type IV has exactly one isolated fixed point P_{1} at the intersection point of the three components of the singular fiber. This settles Lemma 3.3 in the case $S_{X}=U \oplus A_{2}$.

Assume $S_{X}=U \oplus E_{8}$. By Theorem 1.2, $X^{\sigma}=$ $C^{(3)} \amalg \coprod_{i=1}^{3} \mathbf{P}_{i}^{1} \amalg \coprod_{j=1}^{4}\left\{P_{j}\right\}$. Note π has a singular fibers of type II^{*}. The component D_{6} with multiplicity 6 is pointwisely fixed by σ. Since X^{σ} contains $C^{(3)}$, σ acts trivially on the base of π, the section (cf. Remark 2.3) is fixed by σ, and $C^{(3)}$ is a double section, that is, $C^{(3)} \cdot F=2$ where F is a fiber of π.

If F is a singular fiber of type II^{*} then $C^{(3)}$ meets the component with multiplicity 2 which meets the component with multiplicity 4 . Indeed, if $C^{(3)}$ meets another component D of F with multiplicity ≤ 2 then it is easy to see that D has three or more fixed points. Hence $C^{(3)}$ meets another pointwisely fixed curve D, a contradiction.

Therefore σ fixes the 5 intersection points Q_{1}, \cdots, Q_{5} of $F \backslash D_{6}$ and a point Q_{6} of the component with multiplicity 3 which meets D_{6}. Since X^{σ} contains exactly 4 isolated points P_{1}, \ldots, P_{4}, F contains one pointwisely fixed component containing Q_{i} and $Q_{j}(\exists i, j \leq 5)$ and $\left\{P_{1}, \ldots, P_{4}\right\}=$ $\left\{Q_{k} \mid k \neq i, j\right\}$. This settles Lemma 3.3 in the case $S_{X}=U \oplus E_{8}$.

In other cases we can check the claim by similar arguments.

Corollary 3.4. Let P be an isolated fixed point of φ^{3}. Then $\varphi(P)=P$.

Proof. By Lemma $3.3 P$ is a special point on reducible singular fibers. Since φ preserves such a singular fiber, these points are fixed by φ.

Proposition 3.5. Let r be the Picard number of X. Then the number of isolated points M is $(2 r+10) / 3$.

Proof. First we calculate the holomorphic Lefschetz number $L(\varphi)$ in two ways as in [AS1, page 542] and [AS2, page 567]. That is

$$
\begin{gathered}
L(\varphi)=\sum_{i=0}^{2} \operatorname{tr}\left(\varphi^{*} \mid H^{i}\left(X, \mathcal{O}_{X}\right)\right) \\
L(\varphi)=\sum_{j=1, u+v=10, u \leq v}^{m_{u, v}} a\left(P_{j}^{u, v}\right)+\sum_{l=1}^{N} b\left(C_{l}\right),
\end{gathered}
$$

where $P_{j}^{u, v}$ is an isolated point of type $\left(\begin{array}{cc}\zeta^{u} & 0 \\ 0 & \zeta^{v}\end{array}\right)$.
Here

$$
\begin{aligned}
a\left(P_{j}^{u, v}\right) & :=\frac{1}{\operatorname{det}\left(1-\varphi^{*} \mid T_{P_{j}^{u, v}}\right)} \\
& =\frac{1}{\operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
\zeta^{u} & 0 \\
0 & \zeta^{v}
\end{array}\right)\right)} \\
& =\frac{1}{\left(1-\zeta^{u}\right)\left(1-\zeta^{v}\right)}, \\
b\left(C_{l}\right) & :=\frac{1-g\left(C_{l}\right)}{1-\zeta}-\frac{\zeta C_{l}^{2}}{(1-\zeta)^{2}} \\
& =\frac{(1+\zeta)\left(1-g\left(C_{l}\right)\right)}{(1-\zeta)^{2}}
\end{aligned}
$$

where $T_{P_{j}}$ is the tangent space of X at $P_{j}, g\left(C_{l}\right)$ is the genus of C_{l}.

Using the Serre duality $H^{2}\left(X, \mathcal{O}_{X}\right) \simeq$ $H^{0}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)^{\vee}$, we calculate from the first formula that $L(\varphi)=1+\zeta^{8}$. From the second formula, we obtain

$$
\begin{aligned}
L(\varphi)= & \sum_{u+v=10, u \leq v} \frac{m_{u, v}}{\left(1-\zeta^{u}\right)\left(1-\zeta^{v}\right)} \\
& +\sum_{l=1}^{N} \frac{(1+\zeta)\left(1-g\left(C_{l}\right)\right)}{(1-\zeta)^{2}}
\end{aligned}
$$

Combing these two formulae, we have

$$
\left\{\begin{align*}
1= & m_{2,8}-m_{3,7}+m_{4,6}-2 m_{5,5} \\
1= & m_{3,7}-2 \sum_{l=1}^{N}\left(1-g\left(C_{l}\right)\right) \\
1= & m_{2,8}+m_{5,5}-3 \sum_{l=1}^{N}\left(1-g\left(C_{l}\right)\right) \\
2= & 2 m_{2,8}-m_{3,7}+m_{4,6}-m_{5,5} \\
& -3 \sum_{l=1}^{N}\left(1-g\left(C_{l}\right)\right)
\end{align*}\right.
$$

We remark that $\varphi^{3}\left(P^{u, v}\right)$ is a fixed point of a non-symplectic automorphism of order 3 . Since $\left(\begin{array}{cc}\zeta^{i} & 0 \\ 0 & \zeta^{j}\end{array}\right)^{3}=\left(\begin{array}{cc}\zeta^{3 i} & 0 \\ 0 & \zeta^{3 j}\end{array}\right), \varphi^{3}\left(P^{2,8}\right)$ and $\varphi^{3}\left(P^{5,5}\right)$ are isolated fixed points of φ^{3}. In the same way, $\varphi^{3}\left(P^{3,7}\right)$ and $\varphi^{3}\left(P^{4,6}\right)$ are points on a irreducible fixed curve of φ^{3}. By Corollary 3.4, isolated fixed points of φ^{3} are $P^{2,8}$ or $P^{5,5}$. By Theorem 1.2, we have

$$
\begin{equation*}
m_{2,8}+m_{5,5}=r / 2-1 \tag{1}
\end{equation*}
$$

Next we apply the topological Lefschetz formula: $\chi\left(X^{\varphi}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\varphi^{*} \mid H^{i}(X, \mathbf{R})\right)$. The left-hand side is

$$
\begin{equation*}
\chi\left(X^{\varphi}\right)=M+\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right) \tag{2}
\end{equation*}
$$

By (\sharp), (1), (2) and Lemma 3.2, we have $M=$ $(2 r+10) / 3$.
4. Existence. We show the existence of $K 3$ surfaces with a non-symplectic automorphism of 3-power order acting trivially on S_{X}. To do this, we shall give examples of such $K 3$ surfaces. In this Section, we denote by ζ_{ν} a primitive ν-th root of 1 .

Example 4.1 [Ko, (7.7)].

$$
\begin{gathered}
\left(S_{X}=U \oplus A_{2}\right) \\
\varphi_{1}(x, y, t)=
\end{gathered}
$$

$X_{1}: y^{2}=x^{3}+t \prod_{k=1}^{9}\left(t-\zeta_{27}^{3 k}\right)$, $\left(\zeta_{27}^{2} x, \zeta_{27}^{3} y, \zeta_{27}^{6} t\right)$.

Since φ_{1} is a non-symplectic automorphism of order $27, \varphi_{1}^{3}$ is of order 9 . Moreover X_{1} has a singular fiber of type IV and 10 singular fibers of type II.

Example $4.2[\mathrm{Ko},(3.2)] . \quad\left(S_{X}=U \oplus E_{8}\right)$ $X_{2}: y^{2}=x^{3}-t^{5} \prod_{k=1}^{6}\left(t-\zeta_{6}^{k}\right)$,

$$
\varphi_{2}(x, y, t)=
$$ $\left(\zeta_{9}^{2} x, \zeta_{9}^{3} y, \zeta_{9}^{6} t\right)$.

X_{2} has a singular fiber of type II^{*} and 7 singular fibers of type II.

Example 4.3. $\quad\left(S_{X}=U \oplus E_{6} \oplus A_{2}\right) X_{3}: y^{2}=$ $x^{3}-t^{4} \prod_{k=1}^{6}\left(t-\zeta_{6}^{k}\right), \varphi_{3}(x, y, t)=\left(\zeta_{9} x, \zeta_{9}^{6} y, \zeta_{9}^{3} t\right)$.
X_{3} has a singular fiber of type IV^{*}, a singular fiber of type IV and 6 singular fibers of type II.

Example $4.4[\mathrm{Ko},(7.8)] . \quad\left(S_{X}=U \oplus E_{8} \oplus\right.$ $\left.E_{6}\right) \quad X_{4}: y^{2}=x^{3}-t^{5} \prod_{k=1}^{3}\left(t-\zeta_{9}^{3 k}\right), \quad \varphi_{4}(x, y, t)=$ $\left(\zeta_{9}^{2} x, \zeta_{9}^{3} y, \zeta_{9}^{3} t\right)$.
X_{4} has a singular fiber of type II^{*}, a singular fiber of type IV^{*} and 3 singular fibers of type II.

It is easy to give Néron-Severi lattice S_{X} of these examples by checking singular fibers (see also Lemma 2.4.). And each irreducible singular fiber has no symmetry, φ_{i} acts on S_{X} trivially.

In the following, we treat cases where X has no non-symplectic automorphisms of 3 -power order.

The following Proposition has been proved by Oguiso and Zhang.

Proposition 4.5 [OZ1, §2]. Let φ be a nonsymplectic automorphism of 3-power order. Let ϕ be the Euler function. Then there exists, modulo isomorphisms, a unique $K 3$ surface X such that $\phi(\operatorname{ord} \varphi)=\operatorname{rank} T_{X}$.

Therefore we have the uniqueness of $K 3$ surfaces with a non-symplectic automorphism of order 27. In particular, if $S_{X}=U(3) \oplus A_{2}$ then X has no non-symplectic automorphisms of order 27 which act trivially on S_{X}. Similarly, there exists the uniqueness of $K 3$ surface with a non-symplectic automorphism of order 9 and $\operatorname{rank} S_{X}=16$. Hence by Example 4.4, if $S_{X}=U \oplus E_{8} \oplus A_{2}^{\oplus 3}$ then X has no non-symplectic automorphisms of order 9 which act trivially on S_{X}.

In the following, we treat non-symplectic automorphisms order 9 with $\operatorname{rank} S_{X}=4,10$.

Proposition 4.6. If $S_{X}=U \oplus A_{2}^{\oplus 4}$ or $U(3) \oplus$ $A_{2}^{\oplus 4}$, then X has no non-symplectic automorphisms of order 9 which act trivially on S_{X}.

Proof. We assume that $S_{X}=U \oplus A_{2}^{\oplus 4}$ and X has a non-symplectic automorphism φ of order 9 which acts trivially on S_{X}. Then φ induces an automorphism $\bar{\varphi}$ on \mathbf{P}^{1}. We see the order of $\bar{\varphi}$. A priori ord $\bar{\varphi}=1,3$ or 9 . If ord $\bar{\varphi}=1$ then a smooth fiber E is $\bar{\varphi}$-stable and $\bar{\varphi}_{\mid E}^{*} \omega_{E}=\zeta_{9} \omega_{E}$. But there exists no such elliptic curve. If ord $\bar{\varphi}=9$ then since X has 4 reducible singular fibers of type IV or of type $\mathrm{I}_{3}, \bar{\varphi}$ does not permute these fibers. Thus ord $\bar{\varphi}=3$.

We remark that $\bar{\varphi}$ has exactly 2 isolated fixed points Q_{1} and Q_{2}. Hence $\bar{\varphi}$ permutes 3 reducible singular fibers, and fixes a reducible singular fiber over Q_{1} and irreducible singular fiber over Q_{2}. Since reducible singular fibers which X has are of type IV or of type I_{3}, φ has at most 4 fixed points on a fiber over Q_{1} and at most 2 fixed points on a fiber over Q_{2}. Therefore φ has at most 6 fixed point on X. But this is a contradiction by Proposition 3.5.

Similarly we can see the same assertion in the case of $S_{X}=U(3) \oplus A_{2}^{\oplus 4}$.

By Theorem 1.2, if $S_{X}=U(3) \oplus A_{2}$ then X has a non-symplectic automorphism of order 3 which acts trivially on S_{X}. The following lemma follows from [AS, Proposition 4.9].

Lemma 4.7 [AS]. Let X be a K3 surface with $S_{X}=U(3) \oplus A_{2}$ then X is isomorphic to a smooth quartic in \mathbf{P}^{3} with equations of the form $X: F_{4}\left(x_{0}, x_{1}, x_{2}\right)+F_{1}\left(x_{0}, x_{1}, x_{2}\right) x_{3}^{3}=0$,
$g\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(x_{0}, x_{1}, x_{2}, \zeta_{3} x_{3}\right)$ where F_{i} is a homogeneous polynomials of degree i.

Proposition 4.8. If $S_{X}=U(3) \oplus A_{2}$ then X has no non-symplectic automorphisms of order 9 which act trivially on S_{X}.

Proof. Let φ be a non-symplectic automorphism of order 9 which acts trivially on S_{X}. By Lemma 4.7, $\varphi^{3}=g$. Hence $\varphi\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=$ $\varphi\left(f\left(x_{0}, x_{1}, x_{2}\right), \zeta_{9} x_{3}\right)$ where f is a non-trivial automorphism of order 3 on \mathbf{P}^{2}. Thus we can put $f\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}, x_{1}, \zeta_{9}^{3} x_{2}\right),\left(x_{0}, \zeta_{9}^{3} x_{1}, \zeta_{9}^{3} x_{2}\right)$ or $\left(x_{0}, \zeta_{9}^{3} x_{1}, \zeta_{9}^{6} x_{2}\right)$.

Since φ preserves X, if $f\left(x_{0}, x_{1}, x_{2}\right)=$ $\left(x_{0}, x_{1}, \zeta_{9}^{3} x_{2}\right)$ and $F_{1}\left(x_{0}, x_{1}, x_{2}\right)=G_{1}\left(x_{0}, x_{1}\right)$ then $f\left(F_{4}\left(x_{0}, \quad x_{1}, x_{2}\right)\right)=x_{2} G_{3}\left(x_{0}, x_{1}\right)$ where G_{i} is a homogeneous polynomials of degree i. Therefor $X^{\varphi}=\{(0,0,0,1)\} \amalg\{(0,0,1,0)\} \amalg\left\{\left(G_{3}\left(x_{0}, x_{1}\right)=0\right) \cap\right.$ $\left.\left(x_{2}=x_{3}=0\right)\right\}$, i.e. X^{φ} has 5 isolated fixed points. But these are contradictions by Proposition 3.5. Similarly if $F_{1}\left(x_{0}, x_{1}, x_{2}\right)=x_{2}$ then X^{φ} does not have exactly 6 isolated points. In the same way, a similar assertion holds in the other cases.
5. Fixed locus of non-symplectic automorphisms. By Proposition 4.5, we have the uniqueness of $K 3$ surfaces with a non-symplectic automorphism of order 27 . And it is easy to see the fixed locus is exactly 6 isolated points. In this section, we see fixed locus of non-symplectic automorphisms of order 9.

Proposition 5.1. Let $S_{X}=U \oplus A_{2}, U \oplus E_{8}$, $U \oplus E_{6} \oplus A_{2}$ or $U \oplus E_{8} \oplus E_{6}$. Then X has a nonsymplectic automorphism φ of order 9 acting trivially on S_{X}. Moreover X^{φ} has the form

$$
X^{\varphi}=\left\{\begin{array}{c}
\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \quad \text { if } S_{X}=U \oplus A_{2}, \\
\left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1} \\
\text { if } S_{X}=U \oplus E_{8} \text { or } U \oplus E_{6} \oplus A_{2}, \\
\left\{P_{1}, P_{2}, \ldots, P_{14}\right\} \amalg E_{1} \amalg E_{2} \\
\text { if } S_{X}=U \oplus E_{8} \oplus E_{6} .
\end{array}\right.
$$

Proof. We will check the claims for each S_{X} individually.

Assume $U \oplus E_{6} \oplus A_{2}$. Is is easy to see φ does not act trivially on the base of π (see also proof of Proposition 4.6.). Thus X^{φ} does not contain a nonsingular curve with genus greater than 2 . Note π has a singular fiber of type IV^{*}. The component with multiplicity 3 of the singular fiber is pointwisely fixed by φ. By Proposition 3.2 and Proposition 3.5, we have $X^{\varphi}=\left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1}$.

Similarly in other cases we can calculate fixed
locus by the same argument of the example. These results satisfy the assertion.

Therefore, we have proved Theorem 1.3.
Acknowledgments. I would like to express my gratitude to Prof. Shigeyuki Kondo for giving me much advice. I also thank Dr. Hisanori Ohashi for pointing out some mistakes and valuable advice. And I would like to thank to the referee for pointing out some mistakes and useful comments.

References

[AS] M. Artebani and A. Sarti, Non-symplectic automorphisms of order 3 on $K 3$ surfaces, Math. Ann. 342 (2008), no. 4, 903-921.
[AST] M. Artebani, A. Sarti, S. Taki, K3 surfaces with non-symplectic automorphisms of prime order. (to appear).
[AS1] M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) $\mathbf{8 7}$ (1968), 531-545.
[AS2] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.
[Kd] K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563-626; ibid. 78 (1963), 1-40.
[Ko] S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), no. 1, 75-98.
[Ni1] V. V. Nikulin, Finite automorphism groups of Kählerian surfaces of type k3, Trans. Moscow Math. Soc. 38 (1980), No 2, 71-135.
[Ni2] V. V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2 -reflections, Algebrogeometric applications, J. Soviet Math. 22 (1983), 1401-1475.
[OZ1] K. Oguiso and D.-Q. Zhang, On Vorontsov's theorem on $K 3$ surfaces with non-symplectic group actions, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1571-1580.
[OZ2] K. Oguiso and D.-Q. Zhang, K3 surfaces with order 11 automorphisms. (Preprint).
[PS] I. I. Pjatečkii-Sapiro and I. R. Šafarevič, A Torelli theorem for algebraic surfaces of type $K 3$, Math. USSR Izv. 5 (1971), 547-588.
[RS] A. N. Rudakov and I. R. Shafarevich, Surfaces of type $K 3$ over fields of finite characteristic, J. Soviet Math. 22 (1983), 1476-1533.
[Sc] M. Schütt, K3 surfaces with non-symplectic automorphisms of 2-power order, J. Algebra 323 (2010), no. 1, 206-223.
[Ta] S. Taki, Classification of non-symplectic automorphisms of order 3 on $K 3$ surfaces. (to appear).
[Vo] S. P. Vorontsov, Automorphisms of even lattices arising in connection with automorphisms of algebraic $K 3$-surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983, no. 2, 19-21.
[Xi] G. Xiao, Non-symplectic involutions of a K3 surface. (Preprint).

[^0]: 2010 Mathematics Subject Classification. Primary 14J28; Secondary 14J50.

