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Abstract: We classify non-symplectic automorphisms of 3-power order on algebraic K3

surfaces which act trivially on the Néron-Severi lattice, i.e., we describe their fixed locus.

Moreover we give Weierstrass equations of K3 surfaces with a non-symplectic automorphism of

3-power order.
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1. Introduction. Let X be a smooth com-

pact complex surface. If its canonical line bundle

KX is trivial and dimH1ðX;OXÞ ¼ 0 then X is

called a K3 surface. In the following, for an

algebraic K3 surface X, we denote by SX, TX and

!X the Néron-Severi lattice, the transcendental

lattice and a nowhere vanishing holomorphic 2-form

on X, respectively.

An automorphism of X is symplectic if it acts

trivially on C!X. In particular, this paper is

devoted to study of non-symplectic automorphisms

of 3-power order which act trivially on SX.

We suppose that g is a non-symplectic auto-

morphism of order I on X such that g�!X ¼ �I!X

where �I is a primitive I-th root of unity. Then g�

has no non-zero fixed vectors in TX �Q and hence

�ðIÞ divides rankTX, where � is the Euler function.

In particular �ðIÞ � rankTX and hence I � 66

([Ni1], Theorem 3.1 and Corollary 3.2).

Non-symplectic automorphisms have been

studied by several authors e.g. Nikulin [Ni1,Ni2],

Vorontsov [Vo], Kondo [Ko], Xiao [Xi], Oguiso,

Zhang [OZ1,OZ2], Artebani, Sarti [AS] and Taki

[Ta]. Recently, we have the classification of non-

symplectic automorphisms of prime order on K3
surfaces [AST]. In particular we characterize their

fixed loci in terms of the invariants of p-elementary

lattices. Then Schütt [Sc] classified K3 surfaces

with non-symplectic automorphisms which the

order is 2-power and equals the rank of the tran-

scendental lattice.

We know the following

Proposition 1.1 [Vo,Ko]. Let k be a positive

integer. Assume that there exists a non-symplectic

automorphism ’ of order pk onX which acts trivially

on SX. Then SX is a p-elementary lattice, that is,

S�
X=SX is a p-elementary group where S�

X ¼
HomðSX;ZÞ.

In general, the inverse of Proposition 1.1 is

not true. For example, SX ¼ Uð3Þ � E8ð3Þ is a 3-

elementary lattice. But X has no non-symplectic

automorphisms of order 3 which act trivially on SX.

(See [AS,Ta].)

If I is 3-power then I ¼ 3, 9, 27. Non-symplec-

tic automorphisms of order 3 have been classified by

Artebani, Sarti [AS] and Taki [Ta]. They proved

the following

Theorem 1.2 [AS,Ta]. Let r be the Picard

number of X and let s be the minimal number of

generators of S�
X=SX.

X has a non-symplectic automorphism ’ of

order 3 which acts trivially on SX if and only if

22� r� 2s � 0. Moreover the fixed locus X’ :¼
fx 2 Xj’ðxÞ ¼ xg has the form

X’ ¼
fP1; P2; P3g if SX ¼ Uð3Þ � E�

6ð3Þ
fP1; . . . ; PMg q CðgÞ q E1 q � � � q EK otherwise

�

and M ¼ r=2� 1, g ¼ ð22� r� 2sÞ=4, K ¼ ð2þ r�
2sÞ=4, where we denote by Pi an isolated point, CðgÞ a
non-singular curve of genus g and by Ej a non-

singular rational curve.

Oguiso and Zhang [OZ1] have proved that the

K3 surface with non-symplectic automorphisms of

order 27 is unique. Then we mainly study non-

symplectic automorphisms of order 9.

And the main purpose of this paper is to prove

the following theorem.
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Theorem 1.3.

(1) X has a non-symplectic automorphism ’ of

order 9 acting trivially on SX if and only if SX ¼
U � A2, U � E8, U � E6 �A2 or U � E8 � E6.

Moreover the fixed locus X’ has the form

X’ ¼

fP1; P2; . . . ; P6g if SX ¼ U � A2,

fP1; P2; . . . ; P10g q E1

if SX ¼ U � E8 or U � E6 � A2,

fP1; P2; . . . ; P14g q E1 q E2

if SX ¼ U � E8 � E6.

8>>>>><
>>>>>:

(2) X has a non-symplectic automorphism ’ of

order 27 acting trivially on SX if and only if

SX ¼ U � A2. Moreover the fixed locus X’ has

the form X’ ¼ fP1; P2; . . . ; P6g.
Here we denote by Pi an isolated point and by Ej a

non-singular rational curve.

Remark 1.4. We have already had the clas-

sification of non-symplectic automorphisms of 5-

power order on K3 surfaces. If I is 5-power then

I ¼ 5, 25. Non-symplectic automorphisms of order 5

have been classified by Artebani, Sarti and Taki

[AST]. Oguiso and Zhang [OZ1] have proved that

the K3 surface with non-symplectic automorphisms

of order 25 is unique.

In Section 2, we shall give the classification of

an even hyperbolic 3-elementary lattices admitting

a primitive embedding in K3 lattice. As a result, we

get all lattices which are the Néron-Severi lattice of

K3 surfaces with non-symplectic automorphisms

of 3-power order which act trivially on SX. In

Section 3, we see that the number of isolated fixed

points is determined by the Picard number of X.

Here we use mainly the Lefschetz formula. In

Section 4, we check that the existence and non-

existence of K3 surfaces with a non-symplectic

automorphism of 3-power order. And we give

Weierstrass equations of K3 surfaces with a non-

symplectic automorphism of 3-power order acting

trivially on SX. In Section 5, we see fixed locus of

non-symplectic automorphisms.

2. The Néron-Severi and p-elementary

lattices. A lattice L is a free abelian group of

finite rank r equipped with a non-degenerate

symmetric bilinear form, which will be denoted by

h ; i. The bilinear form h ; i determines a canonical

embedding L � L� ¼ HomðL;ZÞ. We denote by AL

the factor group L�=L which is a finite abelian

group. LðmÞ is the lattice whose bilinear form is the

one on L multiplied by m.

We denote by U the hyperbolic lattice defined

by
0 1
1 0

� �
which is an even unimodular lattice of

signature ð1; 1Þ, and by Am or En an even negative

definite lattice associated with the Dynkin diagram

of type Am or En (m � 1, n ¼ 6; 7; 8).

Let p be a prime number. A lattice L is called

p-elementary if AL ’ ðZ=pZÞs, where s is the

minimal number of generator of AL. For a p-

elementary lattice we always have the inequality

s � r, since jL�=Lj ¼ ps, jL�=pL�j ¼ pr and pL� �
L � L�.

Example 2.1. For all prime p, lattices E8,

E8ðpÞ, U and UðpÞ are p-elementary. A2 and E6 are

3-elementary.

Even indefinite pð> 2Þ-elementary lattices were

classified as follows:

Theorem 2.2 [RS]. An even indefinite p-el-

ementary lattice of rank n for p 6¼ 2 and n � 2 is

uniquely determined by its discriminant (i.e., the

number s).

For p 6¼ 2 a hyperbolic lattice corresponding to

a given value of s � n exist if and only if the fol-

lowing conditions are satisfied: n 	 0 (mod 2Þ and
for s 	 0 (mod 2Þ; n 	 2 (mod 4Þ,
for s 	 1 (mod 2Þ; p 	 ð�1Þn=2�1 (mod 4Þ.

(

And moreover n > s > 0, if n 6	 2 (mod 8Þ.
Let � be the Euler function. Then �ð9Þ ¼ 6.

Since �ð9Þ divides rankTX, rankTX ¼ 18, 12, 6.

(see Section 1 and [Ni1].) Hence if X has a

non-symplectic automorphisms of order 9 then

rankSX ¼ 4, 10, 16. In the same way, if X has a

non-symplectic automorphisms of order 27 then

rankSX ¼ 4.

By Theorem 1.2, X has a non-symplectic

automorphism ’ of order 3 which acts trivially on

SX if and only if 22� rankSX � 2s � 0. Hence if

X has a non-symplectic automorphism of order

3k which act trivially on SX then 22� rankSX �
2s � 0.

Table I is a list of 3-elementary lattices which

satisfy 22� rankSX � 2s � 0 and rankSX ¼ 4, 10,

16. Hence if X has a non-symplectic automorphisms

of order 9 (resp. 27) which act trivially on SX then

SX is one of the lattices in Table I (resp. U �A2 or

Uð3Þ � A2).

Remark 2.3. Let fe; fg be a basis of U

(resp. Uð3Þ) with he; ei ¼ hf; fi ¼ 0 and he; fi ¼ 1

(resp. he; fi ¼ 3). If necessary replacing e by ’ðeÞ,
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where ’ is a composition of reflections induced

from non-singular rational curves on X, we may

assume that e is represented by the class of an

elliptic curve F and the linear system jF j defines an
elliptic fibration � : X ! P1. Note that � has a

section f � e in case U . In case Uð3Þ, there are no

ð�2Þ-vectors r with hr; ei ¼ 1, and hence � has no

sections.

It follows from Remark 2.3 and Table I that X

has an elliptic fibration � : X ! P1. In the follow-

ing, we fix such an elliptic fibration.

The following lemma follows from [PS, §3

Corollary 3] and the classification of singular fibers

of elliptic fibrations [Kd].

Lemma 2.4. Assume that SX ¼ UðmÞ �
K1 � � � � �Kr, where m ¼ 1 or 3, and Ki is a lattice

isomorphic to A2, E6 or E8. Then � has a reducible

singular fiber with corresponding Dynkin diagram

Ki.

3. The number of isolated fixed points.

In this Section, we shall see that the number of

isolated fixed points of non-symplectic automor-

phism of order 9.

Lemma 3.1. Let X be an algebraic K3 sur-

face and ’ a non-symplectic automorphism of order

9 on X. Then we have:

(1) ’� j TX �C can be diagonalized as:

�Iq 0 0 0 0 0

0 �2Iq 0 0 0 0

0 0 �4Iq 0 0 0

0 0 0 �5Iq 0 0

0 0 0 0 �7Iq 0

0 0 0 0 0 �8Iq

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where Iq is the identity matrix of size q, � is a

primitive 9-th root of unity.

(2) Let P be an isolated fixed point of ’ onX. Then

’� can be written as�
�i 0

0 �j

�
ðiþ j 	 1 mod 9Þ

under some appropriate local coordinates

around P .

(3) Let C be an irreducible curve in X’ and Q a

point on C. Then ’� can be written as

1 0

0 �

� �

under some appropriate local coordinates

around Q. In particular, fixed curves are non-

singular.

Proof. (1) This follows form [Ni1, Theorem 3.1].

(2), (3) Since ’� acts on H0ðX;�2
XÞ as a

multiplication by �, it acts on the tangent space of

a fixed point as

1 0

0 �

� �
or

�
�i 0

0 �j

�

where iþ j 	 1 (mod 9Þ. �

Thus the fixed locus of ’ consists of disjoint

union of non-singular curves and isolated points.

Hence we can express the irreducible decomposition

of X’ as

X’ ¼ fP1; . . . ; PMg q C1 q � � � q CN;

where Pj is an isolated point and Ck is a non-

singular curve.

Lemma 3.2. Let r be the Picard number of

X. Then �ðX’Þ ¼ rþ 2.

Proof. We apply the topological Lefschetz

formula:

�ðX’Þ ¼
X4
i¼0

ð�1Þi trð’�jHiðX;RÞÞ:

Since ’� acts trivially on SX, trð’�jSXÞ ¼ r.

By Lemma 3.1 (1), trð’�jTXÞ ¼ qð� þ �2 þ �4 þ �5 þ
�7 þ �8Þ ¼ �qð1þ �3 þ �6Þ ¼ 0. Hence we can calcu-

late the right-hand side of the Lefschetz formula

as follows:
P4

i¼0ð�1Þi trð’�jHiðX;RÞÞ ¼ 1� 0þ
trð’�jSXÞ þ trð’�jTXÞ � 0þ 1 ¼ rþ 2. �

By Table I and Lemma 2.4, the elliptic fibra-

tion � : X ! P1 has a reducible singular fiber. In

the following, we check a detail of Theorem 1.2.

Lemma 3.3. We put � ¼ ’3. All isolated

fixed points of � lie on reducible singular fibers. In

particular, these are intersection points of compo-

Table I. 3-elementary lattices

RankSX s SX TX

4 1 U �A2 U�2 �E6 �E8

4 3 Uð3Þ � A2 U � Uð3Þ �E6 � E8

10 0 U �E8 U�2 � E8

10 2 U �E6 � A2 U � Uð3Þ �E8

10 4 U � A�4
2 U � Uð3Þ � E6 �A2

10 6 Uð3Þ � A�4
2 A2ð�1Þ �A�5

2

16 1 U � E8 �E6 U�2 �A2

16 3 U �E8 �A�3
2 A2ð�1Þ �A�2

2
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nents of reducible singular fibers or a point of the

component of a singular fiber of type II� which is

multiplicity 3 and meet the component with multi-

plicity 6.

Proof. Since � also acts trivially on SX, �

preserves reducible singular fibers. Hence intersec-

tion points of components of reducible singular

fibers are fixed by �. We will check the claim for

each SX individually.

Assume SX ¼ U � A2. By [Ta, Lemma 3.5] �

has a singular fiber of type IV. By Theorem 1.2,

X� ¼ Cð4Þ qP1 q fP1g. Now X� contains Cð4Þ. This
implies that the automorphism � acts trivially on

the base of � and the section (cf. Remark 2.3) is

fixed by �. Since an automorphism of order 3 on

a smooth fiber has 3 fixed points, Cð4Þ:F ¼ 2 where

F is a fiber of �. Thus Cð4Þ does not pass the

intersection point. Hence a singular fiber of type IV

has exactly one isolated fixed point P1 at the

intersection point of the three components of the

singular fiber. This settles Lemma 3.3 in the case

SX ¼ U � A2.

Assume SX ¼ U � E8. By Theorem 1.2, X� ¼
Cð3Þ q

‘3
i¼1 P

1
i q

‘4
j¼1fPjg. Note � has a singular

fibers of type II�. The component D6 with multi-

plicity 6 is pointwisely fixed by �. Since X� con-

tains Cð3Þ, � acts trivially on the base of �, the

section (cf. Remark 2.3) is fixed by �, and Cð3Þ is

a double section, that is, Cð3Þ:F ¼ 2 where F is a

fiber of �.

If F is a singular fiber of type II� then Cð3Þ

meets the component with multiplicity 2 which

meets the component with multiplicity 4. Indeed,

if Cð3Þ meets another component D of F with

multiplicity � 2 then it is easy to see that D has

three or more fixed points. Hence Cð3Þ meets

another pointwisely fixed curve D, a contra-

diction.

Therefore � fixes the 5 intersection points

Q1; � � � ; Q5 of F nD6 and a point Q6 of the compo-

nent with multiplicity 3 which meets D6. Since X�

contains exactly 4 isolated points P1; . . . ; P4, F

contains one pointwisely fixed component contain-

ing Qi and Qj (9i; j � 5) and fP1; . . . ; P4g ¼
fQkjk 6¼ i; jg. This settles Lemma 3.3 in the case

SX ¼ U � E8.

In other cases we can check the claim by

similar arguments. �

Corollary 3.4. Let P be an isolated fixed

point of ’3. Then ’ðP Þ ¼ P .

Proof. By Lemma 3.3 P is a special point on

reducible singular fibers. Since ’ preserves such a

singular fiber, these points are fixed by ’. �

Proposition 3.5. Let r be the Picard num-

ber of X. Then the number of isolated points M is

ð2rþ 10Þ=3.
Proof. First we calculate the holomorphic

Lefschetz number Lð’Þ in two ways as in

[AS1, page 542] and [AS2, page 567]. That is

Lð’Þ ¼
X2
i¼0

trð’�jHiðX;OXÞÞ;

Lð’Þ ¼
Xmu;v

j¼1;uþv¼10;u�v

aðPu;v
j Þ þ

XN
l¼1

bðClÞ;

where Pu;v
j is an isolated point of type

�u 0
0 �v

� �
.

Here

aðPu;v
j Þ :¼

1

detð1� ’�jTPu;v
j
Þ

¼ 1

det
1 0

0 1

� �
�

�u 0

0 �v

� �� �

¼ 1

ð1� �uÞð1� �vÞ
;

bðClÞ :¼
1� gðClÞ
1� �

� �C2
l

ð1� �Þ2

¼
ð1þ �Þð1� gðClÞÞ

ð1� �Þ2
;

where TPj
is the tangent space of X at Pj, gðClÞ is

the genus of Cl.

Using the Serre duality H2ðX;OXÞ ’
H0ðX;OXðKXÞÞ_, we calculate from the first for-

mula that Lð’Þ ¼ 1þ �8. From the second formula,

we obtain

Lð’Þ ¼
X

uþv¼10;u�v

mu;v

ð1� �uÞð1� �vÞ

þ
XN
l¼1

ð1þ �Þð1� gðClÞÞ
ð1� �Þ2

:

Combing these two formulae, we have

1 ¼ m2;8 �m3;7 þm4;6 � 2m5;5,

1 ¼ m3;7 � 2
PN

l¼1ð1� gðClÞÞ,
1 ¼ m2;8 þm5;5 � 3

PN
l¼1ð1� gðClÞÞ,

2 ¼ 2m2;8 �m3;7 þm4;6 �m5;5

�3
PN

l¼1ð1� gðClÞÞ.

8>>>>>><
>>>>>>:

ð]Þ
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We remark that ’3ðPu;vÞ is a fixed point of a

non-symplectic automorphism of order 3. Since

�i 0

0 �j

� �3

¼ �3i 0

0 �3j

� �
, ’3ðP 2;8Þ and ’3ðP 5;5Þ are

isolated fixed points of ’3. In the same way, ’3ðP 3;7Þ
and ’3ðP 4;6Þ are points on a irreducible fixed curve

of ’3. By Corollary 3.4, isolated fixed points of

’3 are P 2;8 or P 5;5. By Theorem 1.2, we have

m2;8 þm5;5 ¼ r=2� 1:ð1Þ

Next we apply the topological Lefschetz

formula: �ðX’Þ ¼
P4

i¼0ð�1Þi trð’�jHiðX;RÞÞ. The

left-hand side is

�ðX’Þ ¼ M þ
XN
l¼1

ð2� 2gðClÞÞ:ð2Þ

By (]), (1), (2) and Lemma 3.2, we have M ¼
ð2rþ 10Þ=3. �

4. Existence. We show the existence of K3

surfaces with a non-symplectic automorphism of

3-power order acting trivially on SX. To do this,

we shall give examples of such K3 surfaces. In

this Section, we denote by �� a primitive �-th root

of 1.

Example 4.1 [Ko, (7.7)]. (SX ¼ U � A2)

X1 : y
2 ¼ x3 þ t

Q9
k¼1ðt� �3k27Þ, ’1ðx; y; tÞ ¼

ð�227x; �327y; �627tÞ.
Since ’1 is a non-symplectic automorphism of

order 27, ’3
1 is of order 9. MoreoverX1 has a singular

fiber of type IV and 10 singular fibers of type II.

Example 4.2 [Ko, (3.2)]. (SX ¼ U � E8)

X2 : y
2 ¼ x3 � t5

Q6
k¼1ðt� �k6Þ, ’2ðx; y; tÞ ¼

ð�29x; �39y; �69tÞ.
X2 has a singular fiber of type II� and 7 singular

fibers of type II.

Example 4.3. (SX ¼U � E6 � A2) X3 : y
2 ¼

x3 � t4
Q6

k¼1ðt� �k6Þ, ’3ðx; y; tÞ ¼ ð�9x; �69y; �39tÞ.
X3 has a singular fiber of type IV�, a singular

fiber of type IV and 6 singular fibers of type II.

Example 4.4 [Ko, (7.8)]. (SX ¼ U � E8 �
E6) X4 : y

2 ¼ x3 � t5
Q3

k¼1ðt� �3k9 Þ, ’4ðx; y; tÞ ¼
ð�29x; �39y; �39tÞ.

X4 has a singular fiber of type II�, a singular

fiber of type IV� and 3 singular fibers of type II.

It is easy to give Néron-Severi lattice SX of

these examples by checking singular fibers (see also

Lemma 2.4.). And each irreducible singular fiber

has no symmetry, ’i acts on SX trivially.

In the following, we treat cases where X has no

non-symplectic automorphisms of 3-power order.

The following Proposition has been proved by

Oguiso and Zhang.

Proposition 4.5 [OZ1, §2]. Let ’ be a non-

symplectic automorphism of 3-power order. Let �

be the Euler function. Then there exists, modulo

isomorphisms, a unique K3 surface X such that

�ðord’Þ ¼ rankTX.

Therefore we have the uniqueness of K3
surfaces with a non-symplectic automorphism of

order 27. In particular, if SX ¼ Uð3Þ � A2 then X

has no non-symplectic automorphisms of order 27

which act trivially on SX. Similarly, there exists the

uniqueness of K3 surface with a non-symplectic

automorphism of order 9 and rankSX ¼ 16. Hence

by Example 4.4, if SX ¼ U � E8 � A�3
2 then X has

no non-symplectic automorphisms of order 9 which

act trivially on SX.

In the following, we treat non-symplectic auto-

morphisms order 9 with rankSX ¼ 4, 10.

Proposition 4.6. If SX ¼ U � A�4
2 or Uð3Þ �

A�4
2 , then X has no non-symplectic automorphisms

of order 9 which act trivially on SX.

Proof. We assume that SX ¼ U � A�4
2 and X

has a non-symplectic automorphism ’ of order 9

which acts trivially on SX. Then ’ induces an

automorphism �’’ on P1. We see the order of �’’. A

priori ord �’’ ¼ 1, 3 or 9. If ord �’’ ¼ 1 then a smooth

fiber E is �’’-stable and �’’�
jE!E ¼ �9!E. But there

exists no such elliptic curve. If ord �’’ ¼ 9 then since

X has 4 reducible singular fibers of type IV or of type

I3, �’’ does not permute these fibers. Thus ord �’’ ¼ 3.
We remark that �’’ has exactly 2 isolated fixed

points Q1 and Q2. Hence �’’ permutes 3 reducible

singular fibers, and fixes a reducible singular fiber

over Q1 and irreducible singular fiber over Q2. Since

reducible singular fibers which X has are of type IV

or of type I3, ’ has at most 4 fixed points on a fiber

over Q1 and at most 2 fixed points on a fiber over

Q2. Therefore ’ has at most 6 fixed point on X. But

this is a contradiction by Proposition 3.5.

Similarly we can see the same assertion in the

case of SX ¼ Uð3Þ � A�4
2 . �

By Theorem 1.2, if SX ¼ Uð3Þ � A2 then X has

a non-symplectic automorphism of order 3 which

acts trivially on SX. The following lemma follows

from [AS, Proposition 4.9].

Lemma 4.7 [AS]. Let X be a K3 surface

with SX ¼ Uð3Þ � A2 then X is isomorphic to

a smooth quartic in P3 with equations of

the form X : F4ðx0; x1; x2Þ þ F1ðx0; x1; x2Þx3
3 ¼ 0,
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gðx0; x1; x2; x3Þ ¼ ðx0; x1; x2; �3x3Þ where Fi is a ho-

mogeneous polynomials of degree i.

Proposition 4.8. If SX ¼ Uð3Þ � A2 then X

has no non-symplectic automorphisms of order 9

which act trivially on SX.

Proof. Let ’ be a non-symplectic automor-

phism of order 9 which acts trivially on SX.

By Lemma 4.7, ’3 ¼ g. Hence ’ðx0; x1; x2; x3Þ ¼
’ðfðx0; x1; x2Þ; �9x3Þ where f is a non-trivial

automorphism of order 3 on P2. Thus we can

put fðx0; x1; x2Þ ¼ ðx0; x1; �
3
9x2Þ, ðx0; �

3
9x1; �

3
9x2Þ or

ðx0; �
3
9x1; �

6
9x2Þ.

Since ’ preserves X, if fðx0; x1; x2Þ ¼
ðx0; x1; �

3
9x2Þ and F1ðx0; x1; x2Þ ¼ G1ðx0; x1Þ then

fðF4ðx0; x1; x2ÞÞ ¼ x2G3ðx0; x1Þ where Gi is a

homogeneous polynomials of degree i. Therefor

X’ ¼fð0; 0; 0; 1Þgqfð0; 0; 1; 0ÞgqfðG3ðx0; x1Þ ¼ 0Þ \
ðx2 ¼ x3 ¼ 0Þg, i.e. X’ has 5 isolated fixed points.

But these are contradictions by Proposition 3.5.

Similarly if F1ðx0; x1; x2Þ ¼ x2 then X’ does not

have exactly 6 isolated points. In the same way, a

similar assertion holds in the other cases. �

5. Fixed locus of non-symplectic auto-

morphisms. By Proposition 4.5, we have the

uniqueness of K3 surfaces with a non-symplectic

automorphism of order 27. And it is easy to see the

fixed locus is exactly 6 isolated points. In this

section, we see fixed locus of non-symplectic auto-

morphisms of order 9.

Proposition 5.1. Let SX ¼ U � A2, U � E8,

U � E6 � A2 or U � E8 � E6. Then X has a non-

symplectic automorphism ’ of order 9 acting

trivially on SX. Moreover X’ has the form

X’ ¼

fP1; P2; . . . ; P6g if SX ¼ U � A2,

fP1; P2; . . . ; P10g q E1

if SX ¼ U � E8 or U � E6 � A2,

fP1; P2; . . . ; P14g q E1 q E2

if SX ¼ U � E8 � E6.

8>>>>><
>>>>>:

Proof. We will check the claims for each SX

individually.

Assume U � E6 � A2. Is is easy to see ’ does

not act trivially on the base of � (see also proof of

Proposition 4.6.). Thus X’ does not contain a non-

singular curve with genus greater than 2. Note � has

a singular fiber of type IV�. The component with

multiplicity 3 of the singular fiber is pointwisely

fixed by ’. By Proposition 3.2 and Proposition 3.5,

we have X’ ¼ fP1; P2; . . . ; P10g q E1.

Similarly in other cases we can calculate fixed

locus by the same argument of the example. These

results satisfy the assertion. �

Therefore, we have proved Theorem 1.3.
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