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Abstract: We consider the initial value problem for the reduced fifth order KdV type
equation: dyu — &Pu — 109,(u*) + 50,(d,u)* = 0 which is obtained by removing the nonlinear
term 100, (ud?u) from the fifth order KdV equation. We show the existence of the local solution
which is real analytic in both time and space variables, if the initial data ¢ € H*(R) (s > 1/8)

satisfies the condition

k=0

> U @0 bl < oo,

for some constant Ap(0 < Ay < 1). Moreover, the smoothing effect for this equation is obtained.
The proof of our main result is based on the argument used in [5].

Key words:

1. Introduction. The KdV hierarchy is well
known as the series of the Lax pair formulation
[7,8], which are presented as

(1.1)g O — dpu =0,

(1.1)1 O+ Pu — 6ud,u =0,

(1.1)y  u — u — 100, (u®) + 58,(d,u)’

+ 100, (ud?u) = 0.

We are interested in the existence theory of the
analytic solution and the smoothing effect of the
KdV hierarchy. T. Kato-Masuda [6] proved the
existence of the analytic solution in the space
variable for the generalized KdV equation. K.
Kato-Ogawa [5] proved that (1.1); has the real
analytic solution in both time and space variables
and the smoothing effect. Recently, it is shown that
the nonlinear dispersive equations including the
KdV hierarchy has the local analytic solution in the
space variable (see [4]). However, neither the
existence of the real analytic solution in both time
and space variables nor the smoothing effect is
obtained for (1.1).

On the other hand, we may expect that the
method used in [5] can work for the reduced
equations given by removing some nonlinear terms
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from the higher order KdV equations (1.1); with
J=2.

In this paper, as a starting point for this at-
tempt, we consider the following initial value prob-
lem of the reduced fifth order KdV type equation:

(1.2) { O — 0% = 0, (1) + 0,(D,u)",
u(()’z) = QS(I’)) T € R,

where we may take all coefficients of the nonlinear
terms to be equal to 1 without loss of generality.
This equation is obtained by removing the non-
linear term 100, (ud?u) from the original fifth order
KdV equation (1.1);. Our main purpose is to prove
not only the existence of a local real analytic
solution of (1.2) in both time and space variables
but also the smoothing effect.

Before stating the main result precisely,
we introduce the function space introduced by
Bourgain (see [2]). For s,b € R,

X;={feS®R; |Ifl

t,x € R,

x; < oo},
where
1 = [ =€) a1 o arde,

and f (or Fiaf) is the Fourier transform of f in
both = and ¢ variables; that is,

f(ﬂ &) =(2n)" / / - f(t,z)e T dtd,
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Our main result is described in the following

Theorem 1.1. Let s>1/8 and let be
(1/2,23/40). Then for any ¢(x) € H(R) such that
(xaz)k¢($) € Hé(R) (k:O71727"')u
>, Ak ,
(1.3) Zk_f 1(20,) | e < 00

k=0
for some constant Ay (0 < Ay < 1),
there exist a constant T =T(¢) >0 and a unique
solutionu € C((—T, T), H*) N X} of (1.2) satisfying
Ptuw e C((-T, T), H) N X},

o0 k

A k
Z i )| P ull; < oo,

where P = 5t0; + x0,, is the generator of dilation for
the linear part of the equation of (1.2).

Moreowver, this solution becomes real analytic in
both time and space variables; that is, there exist the
positive constants C and Ay such that

(1.4) 00 u(t, z)| < CAPH (m + 1)
holds for all (t,z) € (=T,0)U(0,T) x R and l,m =
0,1,2,- -

The proof of this theorem is given in Sections 2
and 3. The detailed version of this paper will be
submitted for publication elsewhere [9].

Notations. Let F, be the Fourier transform
in the x variable, and let .7-"5_ and F_ 1 be the
Fourier inverse transform in the ¢ and (1,8
variables, respectively. The Riesz operator D, and
its fractional derivative (D,)* are defined by

D, =FE|F, and (D,)" = F (&) Fu,

respectively, where (-) = (14| - |). Similarly, (D; )"

is defined by
(Dia)” = Foellrl + 16) Fra.
[A, B] denotes the commutator relation of two

operators given by AB— BA. LVLY denotes the
space LP(Ry; LY(R;)) for 1 < p, g < oo with the norm

o0 00 pla \ P
”f“LfLZ:(/ (/ |f(t,m)|‘1dx) dt)

We use the Sobolev space with both time and space
variables

H; ,(R*) ={ueS'R*) : (D) e L7L2},
with the norm || - || g2) = = ||(Diz)” - |22~ More-

over, L?(R; H?) denotes the space L* (Rt,HG(R )
with the norm || - ||Lf ) = [[{D o) ||LfL2.- For the
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constant A appearing in Theorem 1.1 we put

AAU(XIf) = {f (anfla"');fk’ S X}f (k: 0717)

e’} Ak
ond 1L,y =D 38 Uil < ).

For simplicity we make use of the notation
k

2. Existence and uniqueness. In this sec-
tion we give the existence and uniqueness of the
solution of (1.2). Let wup= Pfu and ¢p(x) =
(20,)"¢(z), and we derive the equation which uy
and ¢y, (z) satisfy. Since [20,, ;] = —3,, it follows that

(21) (P+0*0, = 0.(P+ (1 —1)" k1=0,1,2,--

k=ki+ko+k3+ky

Using (2.1) and the following relations
[0 = 33, P] = 5(0; — ;)
and
(0 = R)P* = (P+5)"(8, ~ 3)),

we have from (1.2)

Oy, — 821% = By(u), t,z € R,
(22) k:071727"'7
uk(oax) = st(I), VS Ra
where
Bi(u) = 0:(P + 4)"(u®) 4 0,(P + 4)"((9,u)?).

Using the Leibniz rule and (2.1), we can see that

:axf:< )4k 'Pl(u?)

1=

+ 0, Z( )3“P+1)(au)

e
= Z T o (ur, )

ki3 (—1)"
+ ; T oo lhea! 0:((Orur, ) (Oruy,))-

We will show the existence and uniqueness of the
solution of (2.2).
Proposition 2.1. Let

(2.3) s>—1/4, and b e (1/2,1/2 + o),

where o = min{s/5 + 1/20,3/16}. Then for any ¢ =
(¢o, @1, ) such that ¢, € H*(R) (k=0,1,---) and
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(2.4) Il rrey < 00

there exist a constant T =T(¢.) >0 and a unique
solutionuy, € C((=T, T), H°) N X} of (2.2) satisfying

(2.5) H|u|||AA(,(X;) <00, u= (ug,ur, ).

Remark 2.1. The uniqueness of the solution
of (2.2) yields u, = P*u for k=0,1,2---. Moreover
ug becomes a solution of (1.2), the uniqueness of
which also follows.

To prove this proposition we prepare three
lemmas, which play an important role in applying
the contraction principle to the following system of
the integral equations:

(2.6)  W(t)u = P(t)e'% gy,
+ 1(t) / % (8) B(w) (¢ dt
0

where
¢ = FE (1 (9))

(t) denotes a cut-off function in CJ°(R) satisfy-

ing

L

v ={
and (1) = (1)),

Lemma 2.1.

if |t <1,
it |t > 2,

Let0<T <1 and let
seR,be (1/2,1),d,a € (0,1/2) (a' < a).
Then

2.7) @) é(@)]lx; < Cosalldlge,
(2.8) Hw(t) =00 p (¢ dt!
X
(29) H X, < 027377{14’70/T(afa’)/zl(lfal)||h| X

where Cysp, Cisp and Chyy oo are constants
depending on s, b, —a and —a’.

Lemma 2.2. Let

s> —1/4, and b,V € (1/2,1/2+ o) (b < V),

where o = min{s/5 + 1/20,3/16}. Then
(2.10)  [|0:((0:u)(020))llx; | < Caspirlul

v-1
where Cs 5 s a constant depending on s, b and V.
Proof. We can prove by proceeding to estimate
carefully the potential which appears in an expres-
sion of the Bourgain norm of 9,((9,u)(d,v)) via
duality. We note that this estimate is given by

vl

ApENAG
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dividing the domain of integration of the potential
into 30 subregions. [
Lemma 2.3. Let

s> —1/4, and b,V €
Then
(2.11)

(1/2,3/4) (b <?').

10 (uow)]

xS Cuswllullx Xp

where Cy 44y 15 a constant depending on s, b and b'.
Proof. This lemma is proved by improving

Chen, Li, Miao and Wu’s argument used in the case

where b =10 € (1/2,3/4) [3]. O
Proof of Proposition 2.1. We define

Xory = {f € An,(XD): NFlll4,, (x) < 2C0 Mo},

where My = H|¢|||AAU(H°‘)'
We define a map ®: Xy, — Xy, by @(u) =
(Do (u), Py(uw),---) and

(212)  By(u) = b(1)e”
+wmA =0y (1) Bi(u) (¢ ).

Let ¥ and T be positive constants satisfying b <
b <1/2+ 0 and
(2.13) T < min{1, (24C2C5e* M2 + 8C,Coe™ My) ™/},
respectively, where Cy = Cp 5,

Cs =Ci55Co5p-1-1Ca b,

Co = C155Co5p-1-1C3,5p.00-

We now show that ® is a contraction mapping from
X, to itself. According to Lemmas 2.1, 2.2 and 2.3,
we have for u € Ay, (X})

1@ (w)l|x: < Co

+C5T" Zk ks 'k ky! sl

k13 k
+ CT" Zm ||uk1||X9||uk9||X )

for any k> 0. Here p= (V' = b)/{4(2-V)} > 0. By

taking a sum over k, we have

0 Aok:
1900 ) = S0 2 ()
k=0 °
(44p)"

< Golloll 4 Ay, H~)+CT“Z T Z

1=0 4: k1=0

Algl [ee] Akf) o0 Aé:‘

X k—l!HuquX Z;) ke ! ” k2||X z::ok—s'u’u,]ﬂ e
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k_1 00 k: kq
cmz z“z/*o |
ky=

k3=0
00 Algz
xS
520 kg' b

Since u € Xyy,, we have from (2.13)
@)l 4, x5) < Coll@lla,, o)
1) 3 , 1 2
4 Oyt |||uH|A‘4(.<X£) + Cge*MTH |H“H|AAK,(X
< CoMy + 8C3C5e* 0 TH M + AC2Cse* T M2

1 3
< CoMy + §COMO =3 CoM,,

which implies ®(u) € X}y, Similarly, we have for u

and @ € Ay, (X})

(2.14) [l|(u) = (@), x;) < Coe™ T (([|ullly,, (xp)
+ all Ly, e Ml )+ 0 ()

* [l = @l o) + Cge4AoTﬂ(|| el )

1l Ly, o)l = 8l
S (12080564A0Mg + 40006€4A0M0)TH

< |[lu— 'ﬁ"HAA(,(Xf))
< B l[lu— ﬂ"HAA“(X;’)'

Thus the mapping @ is contraction from X}y, to itself.
We obtain a unique fixed point u;, € X satisfying

wi(t) = P(t)e'® gy
+wwA 0 () By () (1)t

on the time interval [-7,T] and k=0,1,2,---

Uniqueness of the solution is also shown by using
Bekiranov, Ogawa, and Ponce’s argument in [1].
This completes the proof. O
3. Analyticity of the solution. In this
section we prove the analyticity of the solution u =
ug given in Proposition 2.1. The proof is established
by Propositions 3.1 and 3.2. To prove these
propositions we prepare three lemmas.
Lemma 3.1. Let (ty,zo) be an arbitrary fized
point in (—=T,0) U (0,T) x R.
(1) Suppose that b€ (0,1], r € (—
sufficiently small e > 0

5b
(3.1)  [[(Dra) gHLf(R;H;(R)) SKUJ‘J?{HQ”XLI
+ ||t829|‘xg71 + ||P59HX;71}
holds for all g € X} _, satisfying

00,0]. Then for a

[Vol. 86(A),

supp g C Ba(to, z0), and t@jg, P’ge X 4,

where Ky, is a constant depending on r and b.
(2) Let u > 0. Then for a sufficiently small € > 0

(32)  Dee)"dllizre < Kip{llgl s me)
+ 160390 s ey + 1P gl sy }
holds for all g € Hé‘f’(R?) satisfying
supp g C Ba.(tg, xp), and tdg, P’g € Hﬁ;s(RQ),

where Ky, is a constant depending on f.

Proof. We can prove these estimates by the
localization argument and the L2-boundedness
theorem of some pseudo-differential operators. [J

Lemma 3.2 [3]. Let

s> =T/4and be (1/2,1/2 + o)
where o = min{1/4, (4s + 11)/8,(s+ 6)/5}. Then
10, (uv)] X:, < K2.s,b||u|

X; gl X
where Koy s a constant depending on s and b.
Let p(t,z) be a smooth cut-off function
around the freezing point (typ,z9) such that
p e CSO(BQS(t(),.'I}())).
Lemma 3.3. Lets,be R. Then

Ipfllx; < Kssnpe £

holds for all f(t,x) € XgH‘b| (R?), where
Ky = Ko uoll (7 — €)1 3M5(r. ¢
Ky is a constant depending on s and b.
Proof. We can prove by proceeding to estimate
the potential which appears in an expression of the
Bourgain norm of pf via duality. O
Proposition 3.1. Let s>1/8 and let be
(1/2,23/40). Then for a sufficiently small € > 0,
there exist positive constants K5 and Ay such that

(3.3)

holds for all k=0,1,2,---
Proof. By Plancherel Theorem and Lemma 3.1
with g = pP*u we have

s+r1“/\

)HLILI and

o ul s ey + o P ull oy < K5 AYK!

(34)  llpP ull e + 1P el 2mmy
2 5b k
< D )" pP | r2R. 17 R))»
< (27r)2 [{Dea)”p HLf(R,HI(R))
k
_Q%?KMJWPMWA
+ (P ) + PP (pP w0l
where
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if 1/8<s<2,

{r—5—2
—-15/8 <r <0, if s> 2.

We mnote that r<s—2 holds. Put Kg,p=
|||u|H-AAO(XZ>' Since (2.5) and Remark 2.1 yield
(35) [|PMully; < Keso(AgH)RL, k=0,1,2,---,

it follows from Lemma 3.3 that

(3'6) ||pPkuHXL]§ Ksrp-1, 67‘7"79‘b71‘||Pku||X74
< Kosp-1Kspo1, e 70 (AT R
(3.7) [P (P )y,
- 5! 5—1 I+k
<X oI
=0
: 5! —lr|=9lb-1] )| pl+k
< G- Ksrb-1p€ 1P ullx,
=0
< max K31, ¢ 7001
0<I<5
: 51 (k4D 4 1k
~1)l (9 A=1\kpy
X K&,s,bfl ZZ( l)'l' 2]‘]{3' 0 ) (QAU ) k!
< K7 ARRL
where p; = P°7!p, K; is a some constant and A; =
(2451).

Now we estimate [|[t02(pP*u)| x; - By using
(3:8) 102 (pP*u)= tp(02 P*u) + 5t02((629) (0, P*w))
+ 5t0:((02p) (82Pku)) + t(@iP)Pk%

and

1
(3.9) t(akau) = {PkHu — :c('“)ZPku} + tBi(u),
we have

(3.10) 40 (pP u)ly,

X}
+ltpBuwllx, + 5102 (H@20) (0 Pu))l,
+5(10: (4(0p) (93P u)) | | + [11(20) Prully, -
In the same manner as (3.6), we have
(8:11) [loP*
< K3,T,b71,p€7‘r‘79‘b71‘HPkJrlu”X(;?l

(k+1)!
kK]

1 5 3
< AlpPH ully  + [lped. Prul

S K&T,bfl,pg_‘r‘_g‘b_l‘Kﬁ,s,bfl (A[Tl)(QA[Tl)kk'
< Kz AFR,

where Kjg is a some constant. By Lemmas 3.3 and
3.2, we have

(312)  [lped.Pruly,
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< 9. (pePru)ly, -+ [1(s(pw)) P*
X;fznP ul

X5
+ K&,T,b—lﬂ,,(/11')57'7“79“)71‘ ||Pku|‘)(li1
< {Karpllpzll xoe + K, p10,pme M0}
x Koo (Ay) KL
By Lemmas 2.2, 2.3 and 3.3, we have

(3.13) [ltpBu(w)]

—|r|-9|b—1
Xr SKS,r,b—l,tpE Iri=9] ‘X

{C/lsbzk % 'k |k ] Hpk1u|

K13k o o
+Cssp Zk: PRTRTT 1P| [Pl x

X; PZU”X;HPJ

4k‘
< Kyppo1gy € 170 1{04 bKﬁst

ky+ko+k A
(A )1+ 2+3+C3sng,S,bij'k' A 1) +2}k!

(k+1)

: —|r|-9lb—1] 4/ A*
< KS,T,b—l,z‘p € e’ 04 bKG s,b 2]\7

2
+ GLSJ’KO',SJ)

(k+ 1;£k +2) }(ZAol)kk'

< Ko ARk,

where Ky is a some constant. We also have
(3.14)  I03(H(3;p)(0: PFu))ll x|
<100 (HD20) (9 P*u)) | -
< Oy 14]|t02pl| 1 | PFul
< C55-1,6K6,5-1,]|t0xp]

X!
AgHR!,

o
and

(315)  [10:(£(02p) (F2P™w)) |,

< Cysm2alltpll ;2 10; PFul

5—2
Xb

< Cy-2,|tp

X;*?HPkU”Xg

< C 595 Ke,5,|tp] A(Tl)kkL

o

In the same manner as (3.6), we have

(3.16)  [t(d2p)P"

< Ky 1059 Kos0-1(Ag ) KL
Hence
(3.17) [t2(pPu)ly, < KioATK!,

where K7 is some constant. Putting
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1
672
—|r|-9|b—1
x max{ Koy 1K3,5-1, ¢ "1 Ky Ko},

Ky = Ko

we have (3.3). O

Proposition 3.2. Under the same assump-
tion as in Proposition 3.1, there exist positive
constants Cjys and Aj(j=2,3,4) depending on
(to, o) and € such that

(318) ”plPkuHH}_i_/?(R) S C7Aék',

(3.19)  sup [@1°0,) Prullyngy, ) < CsAf(k+1)!
tely, -

and

(3.20) sup (1070, ull g1, ) < CoAY (5 +1)!

te][o.f

hold for all k1,57 =0,1,2,---, where
Ito,s = (t() —&t+ 5)1 Ixo,e = (.’Eo —&,20 + E)v

p1 is a smooth cut-off function such that py =1 on
Ito.e X Izo.e-

Proof. The inequality (3.18) can be shown by
using (3.2) with g = p; P*u and the similar method
to the proof of Proposition 3.1. By induction on [ we
can prove (3.19). Here, we use (3.18) and the
following relation given by (3.9):

(321)  (#°8,) Pty = t=9/59175 (487 P*u)
- _ 1 t(l—5)/581—5{Pk+1u _ mazpku}
5 xr
+ (1/7)0,7° By(u),
where [ > 5.

Now we show (3.20). From (3.19) it follows
that

(3:22)  sup |0, P ull gy, ) < CsAFAG(k +1)!

tely .

< CsAETN k41D, Kk 1=0,1,2,---,

where As; = max{As|t) — 5|_1/5,A3}. Hence, by in-
duction on m we have
(3:23)  sup [|(28,)" 8, Prull iy,

to,e
< CgAFTmCm (K + 1+ m)! Kk l,m=0,1,2,--,

where Cjo is a constant satisfying Cjg > (|xo] +
£+ 1)e 4. Since td; = (P — 20,)/5 and

[Vol. 86(A),

PO :a;lz(P_HQ)m’ (n1,me =0,1,2,---),

it follows from (3.23) that
(3.24) sup ||(t@t)mﬁiu||H1<LW) < Cg AL (1 +m)!

tel, .

forall ,m =0,1,2,---, where

A()’ = max{A5, CIO; 1}(2 + (A5 max{l, Cl[)})il).

By induction on j we can prove that (3.24) implies
(3.25) sup |[(t0)" 3 ull s,

Lty
SCSA‘%JF"EJF]C{I(]"FW‘FZ)!, j7l’m:07172’...’

where Cyy > |tg — €|7le’Aﬁ. Choosing m = 0 and Cy =
Cs and Ay = max{AsCi1, 4} in (3.25), we have
(3.20). This completes the proof of Proposition 3.2. O
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