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Abstract:

We denote by hp the class number and by pp the Ono number of the imaginary

quadratic fields Q(v/—D). Sairaiji-Shimizu [2] showed that there are infinitely many imaginary
quadratic fields such that the inequality hp > c¢P? holds for any real number. On the other hand
we have the possibility that hp < ¢P? holds for infinitely many imaginary quadratic fields for the
same real number c. In this paper, given a real number ¢, we consider whether hp < ¢P? holds for
infinitely many imaginary quadratic fields or not.
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1. Introduction. Given a square-free inte-
ger d > 0, we define D by

{4d ifd=1,2 (mod 4)
D = d

iftd=3 (mod 4),
and call —D the discriminant of the imaginary
quadratic field Kp = Q(v/—D). We denote by hp
the class number of Kp. Let v(n) be the number of
(not necessarily different) prime factors of an
integer n, then we define the Ono number pp as
follows:

max{v(fp(z)) | = are integers
in the interval 0 < = < D/4 — 1}
ifd#1,3
1 ifd=1,3,
where we define fp(z) by
2> 4d if d=1,2 (mod 4)
fD(x) = 2 . _
4+x+(1+d)/4 ifd=3 (mod 4).
A motivation of this study was raised by the
inequality

Pp =

hD é 2[)[77

which conjectured by T. Ono [1]. Sairaiji-Shimizu
[2] showed that the inequality hp < 2P? does not
hold for all D, by giving infinite many imaginary
quadratic fields such that hp > ¢P? holds for any
real number. Further in [3] we also showed that
hp < 2P0 holds for all Dif D=7 (mod 8).
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We consider the supremum ¢ of real numbers ¢
such that the inequality hp < ¢P? holds for only
finitely many D. At first we show:

Proposition 2.1. There is a constant c
which satisfies the following conditions (1) and (2).
(1) If ¢ < ¢y, then there are finitely many D such that
hp < cPr.

(2) If ¢ > ¢, then there are infinitely many D such
that hp < ¢Pp,

We want to calculate the constant ¢y, but we
can not do now. In this paper, we show the following
theorems.

Theorem 2.4. The inequality co < /2 holds.
Theorem 3.3. The inequality v2 < ¢y holds.

In Section 2 we discuss an upper bound for cgy
and we give the Proof of Theorem 2.4. In Section 3
we discuss a lower bound for ¢y and we give the
Proof of Theorem 3.3.

2. An upper bound for ¢y. At first we con-
sider the existence of the following real number c¢;.

Proposition 2.1. There is a constant c
which satisfies the following conditions (1) and (2).
(1) If ¢ < ¢y, then there are finitely many D such that
hp < cPr.
(2) If ¢ > co, then there are infinitely many D such
that hp < ¢Pp,

Proof. Put S :={c| hp < ¢’" holds for finitely
many D}. Since there are only finitely many D such
that hp = 1, we have 1 € S. Since in [3] we have the
fact that hp < 2P2 holds for infinitely many D, we
see that S C [1,2). Thus there exists the supremum
cg of S, and we have the assertion. ([l
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For giving an upper bound for ¢y, we show
Propositions 2.2 and 2.3.

Proposition 2.2. For real numbers £, m,
a>1 and k > 0, if there are infinitely many D such
that pp > klog,({D + m), then the inequality ¢y <
/a holds.

Proof. Siegel [4] showed that the inequality
hp < (3/7)v/Dlog D holds for all D. By this in-
equality and the assumption of this proposition,
there are infinitely many D such that

DD klog,({D + m)

> ;
loghp = log((3/7)v/Dlog D)
that is,
pploga klog(¢D + m)
loghp = log((3/m)v/Dlog D)
Putting
klog(¢D +m
o(p) = oBDLm)_
log((3/7)v/Dlog D)
we have
(D) klog({D + m)
~ log(3/m) + (1/2) log D + loglog D
B klog(¢D +m)/log D
~ log(3/m)/log D +1/2 +1loglog D/log D"
Since
gim log(¢/D +m)/logD =1,
[}im log(3/m)/log D = 0,
and
Dlim loglog D/log D =0,
we have

lim (D) = 2.

For any 7 such that 0 < n < 2k, there are infinitely
many D such that

pploga

22k —m.
loghp — K
This inequality implies
pploga
2> log hp,
2k—n — D

and consequently

< PD
2k—
hD = a=,

Inequalities of Ono numbers and class numbers 47

that is, there are infinitely many D such that
2D
hD § a2k,

Hence, for e = £(n) > 0 there are infinitely many D
such that hp < a(%ﬁg)m.

Let c(e) = a?Lk'*E, then it holds that /a < c(e)
and hp < ¢(e)" for infinitely many D.

Thus given a real number ¢ > $/a, then there is
a positive number € such that /a < ¢(e) < ¢, and it
holds hp < c¢(e)’” £ ¢PP for infinitely many D.
Hence we get

¢ £ V.

O

Proposition 2.3. There are infinitely many
D such that pp > log,(D/4 — 1).

Proof. By Sairaiji-Shimizu [3], we have the
inequality pp >log, (D/4—1) for D >4. If
d=7 (mod 8), then ¢p = 2. Hence there are infin-
itely many D such that pp > log,(D/4 — 1). O

By Propositions 2.2 and 2.3, we immediately
obtain the following theorem.

Theorem 2.4. The inequality ¢y < /2 holds.

3. A lower bound for c¢y. For giving a
lower bound for ¢y, we show Propositions 3.1 and
3.2.

Proposition 3.1. For real numbers £, m,
a>1 and k> 0, if there exists a constant Dy such
that pp < klog,(¢D + m) for all D > Dy, then ¥/a <
Cp-

Proof. Siegel [4] showed the following formula
related to class numbers, that is,

1 loghp
im =
n—oc log/ D

For any e >0, there exists a constant Do
depending on ¢ such that the inequality

loghp
log VD

holds for all D > D,. From this, we have

1—e<

1—¢

log D < log hp.
By this inequality and the assumption of this
proposition, for all D > max{D;, D2} we have

DD klog,(¢D + m)
12;5 log D

log hp
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B 2k . log(¢D + m)
(1—¢)loga log D
1 log(¢D + m)
- log o ~ logD
Since
Dliiigo log(¢D +m)/logD =1,
we obtain
i 1 log(tD+m) 1

log D

Do l-e - e
log a2 log a™2*

Hence for any 1 > 0 there is a constant D3 depend-
ing on n, we get

—_

Pp
l—¢ >
log a"2F - loghp

for all D > max{D, Do, D3}, that is,

1—¢
pploga2 " < loghp.
Therefore we get
(1‘;,6*7/)1)0
a'2k < hp,
and consequently
(3r—35—")PD
a\2k "2k < hp.

Let c(g,m) :aififn, then we have c(e,n) < ¥a
and c(e,n)"”” < hp for all D > max{Dy, Dy, Ds}.
Hence there are only finitely many D such that
hp < c(e,n)'".
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Thus given a real number ¢ < ¥/a, then there
are positive numbers € and 7 such that ¢ < ¢(e,n) <
{/a, and it implies that hp < cPP holds for finitely
many D. Therefore we get /a < cp. O

Proposition 3.2 (Sairaiji-Shimizu [3]). The
inequality pp < 2logy D holds for all D.

By Propositions 3.1 and 3.2, we immediately
obtain the following theorem.

Theorem 3.3. The inequality v2 < ¢y holds.

From Theorems 2.4 and 3.3 we have showed
that the inequality v'2 < ¢y £ v/2 holds. We want to
obtain sharper lower bounds and upper bounds for
cg, and determine the value ¢y itself. Furthermore
we wonder whether ¢y is an algebraic number or a
transcendental number, and whether the inequality
hp £ ¢ holds for infinitely many D or not.
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