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Abstract: We study Humbert’s modular equation which characterizes curves of genus two

having real multiplication by the quadratic order of discriminant 5. We give it a simple, but gen-

eral expression as a polynomial in x1; . . . ; x6 the coordinate of the Weierstrass points, and show
that it is invariant under a transitive permutation group of degree 6 isomorphic to S5. We also

prove the rationality of the hypersurface in P5 de�ned by the generalized modular equation.
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1. Introduction. In [8], Humbert studied

abelian functions in two variables which have real

multiplications. He found, among others, conditions

under which the jacobian variety of a curve X of
genus two has real multiplication. We say that X

has real multiplication (RM) of �, if the endomor-

phism ring of its jacobian contains the ring of inte-
gers of the real quadratic �eld of discriminant �.

The following result of Humbert should be compared

with the works of Mori [9, 10], see also [4].
Theorem 1 (Humbert [8]). The curve X of

genus two de�ned by the equation

y2 ¼ ðx� x1Þ � � � ðx� x5Þ
has real multiplication by the quadratic order of dis-

criminant 5 if and only if H5ðx1; . . . ; x5Þ ¼ 0 for some

ordering of xi’s, where the polynomial H5 is given by

H5ðx1; . . . ; x5Þ ¼
X4

i¼0

�iðx2
1ðx3 � x4Þðx2 þ x5ÞÞ

 !2

� 4
X4

i¼0

�iðx2
1ðx3 � x4ÞÞ

 !
X4

i¼0

�iðx2
1x2x5ðx3 � x4ÞÞ

 !
;

and � ¼ ð12345Þ denotes the cyclic permutation

x1 7! x2 7! x3 7! x4 7! x5 7! x1:

Note that H5 is invariant under the permutation
group of order 10 on x1; . . . ; x5 generated by �, and

� ¼ ð14Þð23Þ.
The purpose of this note is to give the most gen-

eral form of the modular equation for real multiplica-

tion of discriminant 5, corresponding to the curve X
de�ned by

y2 ¼ ðx� x1Þ � � � ðx� x6Þ;ð1Þ
and study the group of permutations on x1; . . . ; x6

under which it remains invariant. This is an impor-

tant step toward the descent of the �eld over which
X is de�ned. Indeed the initial motivation of the

present study was to obtain a family of sextic poly-

nomials fðxÞ 2 Q½x� for which the curve y2 ¼ fðxÞ
has real multiplication of discriminant 5. We also study

the structure of the solutions of our generalized mod-

ular equation. For the discriminant 8 case, see [5] x5.
2. Correspondence on a conic. Let D be a

conic in P2, the projective plane over C, de�ned by

ðx; y; 1ÞS tðx; y; 1Þ ¼ 0;ð2Þ

S ¼
2c1 c3 c4

c3 2c2 c5

c4 c5 2c6

0
@

1
A:

We denote by D� the dual of D, which is the set of

tangent lines of D. If we identi�es a line axþ byþ
cz ¼ 0 with the point ða; b; cÞ, it is well known that
D� is de�ned by ða; b; cÞS� tða; b; cÞ ¼ 0, where S� is

the adjoint matrix of S. Let C and D be two di�erent

conics, and P be a point on C. If P is not lying on D,
then one can draw two tangent lines from P to D.

Thus we obtain a correspondence T on C of degree 2:

T ¼ fðP;QÞ 2 C � C j ‘ :¼ PQ 2 D�g;
where ‘ ¼ PQ denotes the line which passes two
points P and Q.
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Our �rst problem is to �nd the de�ning equation
of T . To simplify the argument it is convenient to

choose the special conic y ¼ x2 as C, while the sec-
ond conic D can be arbitrary, and is de�ned by the

equation with general coef�cients as (2). Here we

denote the equations of C and D in af�ne form,
although we are studying conics in P2. The equation

of T is obtained by the condition that the line ‘ pass-

ing thorough the two points P ¼ ðx; x2Þ and Q ¼
ðz; z2Þ of C becomes tangent to D. From the above

remark on D�, it is easy to see that T is given by

Aðx; zÞ ¼ 0,

Aðx; zÞ :¼ a2xzðxþ zÞ þ a3ðxþ zÞ2ð3Þ

þ a6 þ a4xzþ a1x
2z2 þ a5ðxþ zÞ

where the coef�cients a1; . . . ; a6 are given by the
equality

2a3 �a5 �a2

�a5 2a6 a4

�a2 a4 2a1

0

@

1

A ¼ �2S�:ð4Þ

Namely we have

a1 ¼ c2
3 � 4c1c2;

a2 ¼ �2ð2c2c4 � c3c5Þ;
a3 ¼ c2

5 � 4c2c6;

a4 ¼ �2ðc3c4 � 2c1c5Þ;
a5 ¼ 2ðc4c5 � 2c3c6Þ;
a6 ¼ c2

4 � 4c1c6:

8
>>>>>>>><

>>>>>>>>:

ð5Þ

Since D is taken to be arbitrary, the coef�cients

c1; . . . ; c6 of its equation are regarded as free parame-
ters in our discussion. However, it is often convenient

to consider a1; . . . ; a6 as the initial parameters in-
stead of c1; . . . ; c6 and recover D from T . One can re-

write (4) as

Adj
2a3 �a5 �a2

�a5 2a6 a4

�a2 a4 2a1

0
@

1
A ¼ 4 detðSÞS;

from which it follows that

�c1 ¼ a4
2 � 4a1a6;

�c2 ¼ a2
2 � 4a1a3;

�c3 ¼ 2ða2a4 � 2a1a5Þ;
�c4 ¼ 2ða4a5 � 2a2a6Þ;
�c5 ¼ 2ð2a3a4 � a2a5Þ;
�c6 ¼ a5

2 � 4a3a6:

8
>>>>>>>><

>>>>>>>>:

ð6Þ

where � :¼ �8 detS. This means that the trans-

formation (5) is birational when ða1; . . . ; a6Þ and
ðc1; . . . ; c6Þ are regarded as coordinates of P5.

Remark. If detS ¼ 0, the conic D is reduced

to the union of two lines. The converse is also true.
In what follows, we assume detS 6¼ 0.

3. Poncelet’s pentagon. Let C;D be as

above, and n be a positive integer. A sequence of
points P0; . . . ; Pn 2 C s.t.

‘i :¼ PiPiþ1 2 D� ð0 � i � nÞ;
is called Poncelet’s chain of length n. It is called

Poncelet’s n-gon, if P0 ¼ Pn and P0; . . . ; Pn�1 are dis-
tinct points (as in [2] and [12]). Now a classical theo-

rem of Poncelet is stated as follows:

Theorem 2 (Poncelet,1822). Let C ;D be two

conics in P2 which are in general position. Suppose,

for an integer not less than 3, that there exists a

sequence P0; . . . ;Pn�1 of points of C which forms a

Poncelet’s n-gon. Then for all but a �nite number of

Q0 2 D, there exists a sequence of points Q1; . . . ;Qn�1

on C which forms a Poncelet’s n-gon.

In this paper we deal with the case n ¼ 5, al-

though we deal with the case n ¼ 4 in [5] x3 and x4.
Let Pi ¼ ðxi; xi 2Þ be points on C ð1 � i � 5Þ such

that K ¼ ðP1; . . . ; P5Þ is a Poncelet’s pentagon.

Then we have the following equalities:

Aðx1; x2Þ ¼ � � � ¼ Aðx5; x1Þ ¼ 0:ð7Þ
One can view them as a system of linear equations in
a1; . . . ; a6 with free parameters x1; . . . ; x5. Then one

sees immediately that the rank of this system is 5, so

that ða1; . . . ; a6Þ is uniquely determined up to con-
stant, or as a point of P5. In this way, we obtain a

Fig. 1. Poncelet’s pentagon.
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general solution for a1; . . . ; a6 as rational functions in
x1; . . . ; x5. More precisely, put

D ¼ �ðx1 � x3Þðx3 � x5Þðx5 � x2Þðx2 � x4Þðx4 � x1Þ;

then applying Cramer’s formula, we see that

Da1; . . . ; Da6 are respectively expressed by the deter-

minant of the following matrices.

x1x2ðx1 þ x2Þ ðx1 þ x2Þ2 x1x2 x1 þ x2 1

x2x3ðx2 þ x3Þ ðx2 þ x3Þ2 x2x3 x2 þ x3 1

x3x4ðx3 þ x4Þ ðx3 þ x4Þ2 x3x4 x3 þ x4 1

x4x5ðx4 þ x5Þ ðx4 þ x5Þ2 x4x5 x4 þ x5 1

x1x5ðx1 þ x5Þ ðx1 þ x5Þ2 x1x5 x1 þ x5 1

0
BBBBBB@

1
CCCCCCA
;

x2
1x

2
2 ðx1 þ x2Þ2 x1x2 x1 þ x2 1

x2
2x

2
3 ðx2 þ x3Þ2 x2x3 x2 þ x3 1

x2
3x

2
4 ðx3 þ x4Þ2 x3x4 x3 þ x4 1

x2
4x

2
5 ðx4 þ x5Þ2 x4x5 x4 þ x5 1

x2
1x

2
5 ðx1 þ x5Þ2 x1x5 x1 þ x5 1

0

BBBBBB@

1

CCCCCCA
;

x1x2ðx1 þ x2Þ x2
1x

2
2 x1x2 x1 þ x2 1

x2x3ðx2 þ x3Þ x2
2x

2
3 x2x3 x2 þ x3 1

x3x4ðx3 þ x4Þ x2
3x

2
4 x3x4 x3 þ x4 1

x4x5ðx4 þ x5Þ x2
4x

2
5 x4x5 x4 þ x5 1

x1x5ðx1 þ x5Þ x2
1x

2
5 x1x5 x1 þ x5 1

0

BBBBBB@

1

CCCCCCA
;

x1x2ðx1 þ x2Þ ðx1 þ x2Þ2 x2
1x

2
2 x1 þ x2 1

x2x3ðx2 þ x3Þ ðx2 þ x3Þ2 x2
2x

2
3 x2 þ x3 1

x3x4ðx3 þ x4Þ ðx3 þ x4Þ2 x2
3x

2
4 x3 þ x4 1

x4x5ðx4 þ x5Þ ðx4 þ x5Þ2 x2
4x

2
5 x4 þ x5 1

x1x5ðx1 þ x5Þ ðx1 þ x5Þ2 x2
1x

2
5 x1 þ x5 1

0
BBBBBBB@

1
CCCCCCCA

;

x1x2ðx1 þ x2Þ ðx1 þ x2Þ2 x1x2 x2
1x

2
2 1

x2x3ðx2 þ x3Þ ðx2 þ x3Þ2 x2x3 x2
2x

2
3 1

x3x4ðx3 þ x4Þ ðx3 þ x4Þ2 x3x4 x2
3x

2
4 1

x4x5ðx4 þ x5Þ ðx4 þ x5Þ2 x4x5 x2
4x

2
5 1

x1x5ðx1 þ x5Þ ðx1 þ x5Þ2 x1x5 x2
1x

2
5 1

0
BBBBBBB@

1
CCCCCCCA

;

x1x2ðx1 þ x2Þ ðx1 þ x2Þ2 x1x2 x1 þ x2 x2
1x

2
2

x2x3ðx2 þ x3Þ ðx2 þ x3Þ2 x2x3 x2 þ x3 x2
2x

2
3

x3x4ðx3 þ x4Þ ðx3 þ x4Þ2 x3x4 x3 þ x4 x2
3x

2
4

x4x5ðx4 þ x5Þ ðx4 þ x5Þ2 x4x5 x4 þ x5 x2
4x

2
5

x1x5ðx1 þ x5Þ ðx1 þ x5Þ2 x1x5 x1 þ x5 x2
1x

2
5

0

BBBBBBB@

1

CCCCCCCA

:

Since the determinant of a matrix is a skew-
symmetric form of its rows, one sees that the deter-

minants of these matrices are all divisible by D, so
that the solutions a1; . . . ; a6 of (7) are polynomials

in x1; . . . ; x5. By a simple computation we have

a1 ¼
X4

i¼0

�iðx2
1 ðx4 � x3ÞÞ;

a2 ¼
X4

i¼0

�iðx2
1 ðx3 � x4Þðx2 þ x5ÞÞ;

a3 ¼
X4

i¼0

�iðx1x
2
2x3ðx4 � x5ÞÞ;

a4 ¼
X4

i¼0

�iðx2
1x

2
2 ðx3 � x5Þ þ x2

1x
2
3 ðx5 � x4ÞÞ;

a5 ¼
X4

i¼0

�iðx2
1x

2
2x4ðx5 � x3Þ þ x2

1x
2
3x2ðx4 � x5ÞÞ;

a6 ¼
X4

i¼0

�iðx2
1x

2
2x

2
4 ðx3 � x5ÞÞ:

4. Modular equation for � ¼ 5. Let X be a

curve of genus 2 which is de�ned by (1). We recall

the following result of Humbert [8] on the condition
for xi ð1 � i � 6Þ under which X has real multiplica-

tion of � ¼ 5 (see also [13] for an elementary proof).

Theorem 3 (Humbert [8]). X has a real mul-

tiplication by the quadratic order of discriminant 5

if and only if there exists a conic D satisfying the

following two conditions:

(i) The sequence of points Pi ¼ ðxi; xi
2Þ ð1 � i � 5Þ

form a Poncelet’s pentagon for conics C ;D.

(ii) Pi ¼ ðx6; x6
2Þ 2 C \D.

Combining the results of the previous paragraph
and the above theorem, we obtain the following

Theorem 4. X has real multiplication by

the quadratic order of discriminant 5 if and only if

H 05ðx1; . . . ; x6Þ ¼ 0 for some ordering of xi’s, where

the polynomial H 05 is given by

H 05ðx1; . . . ; x6Þ ¼
X4

i¼0

�iP ðx1; . . . ; x6Þ;ð8Þ

P :¼ ðx1 � x2Þðx1 � x3Þðx1 � x4Þðx1 � x5Þðx2 � x6Þ

� ðx3 � x6Þðx4 � x6Þðx5 � x6Þðx3 � x4Þ2ðx2 � x5Þ2:

Proof. Let Pi ¼ ðxi; xi 2Þ be points on C

ð1 � i � 6Þ. By Theorem 3, we may assume that

K ¼ ðP1; . . . ; P5Þ is a Poncelet’s pentagon, and P6 2
C \D for a conic D. From the last condition we

have the following equation for x6:
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c6 þ c4x6 þ c1x
2
6 þ c5x

2
6 þ c3x

3
6 þ c2x

4
6 ¼ 0:

From this and birational transformation (6) we ob-
tain a polynomial equation in a1; . . . ; a6 and x6. On

the other hand, as in the previous paragraph, we

can express a1; . . . ; a6 by x1; . . . ; x5. Then substitu-
tion of (8) gives us an equation H 05ðx1; . . . ; x6Þ ¼ 0.

By direct computation, we observe that H 05 is homo-

geneous of degree 12, and is of degree 4 for each xi.
Now we regard H 05 as a polynomial of x6 and observe

the following remarkable equalities:

H 05jx6¼x1
¼ ððx1 � x2Þðx1 � x3Þ
� ðx1 � x4Þðx3 � x4Þðx1 � x5Þðx2 � x5ÞÞ2;

H 05jx6¼x2
¼ ððx1 � x2Þðx1 � x3Þ
� ðx2 � x3Þðx2 � x4Þðx2 � x5Þðx4 � x5ÞÞ2;

H 05jx6¼x3
¼ ððx1 � x3Þðx2 � x3Þ
� ðx2 � x4Þðx3 � x4Þðx1 � x5Þðx3 � x5ÞÞ2;

H 05jx6¼x4
¼ ððx1 � x2Þðx1 � x4Þ
� ðx2 � x4Þðx3 � x4Þðx3 � x5Þðx4 � x5ÞÞ2;

H 05jx6¼x5
¼ ððx2 � x3Þðx1 � x4Þ
� ðx1 � x5Þðx2 � x5Þðx3 � x5Þðx4 � x5ÞÞ2:

Then the expression (8) for H 05 is easily obtained
if we apply the interpolation formula of Lagrange to

the above equalities. r
Remark. One can show, by direct compu-

tation, that if we put x6 ¼ 1, the equation

H 05ðx1; . . . ; x6Þ ¼ 0 is reduced to the Humbert’s equa-

tion H5ðx1; . . . ; x5Þ ¼ 0.
We observe, as are shown immediately from the

expression (8) in Theorem 4, that the polynomial H 05
has the following remarkable properties:

Theorem 5. H 05ðx1; . . . ; x6Þ satis�es

H 05ðax1 þ b; . . . ; ax6 þ bÞ

¼ a12H 05ðx1; . . . ; x6Þ; ð8 a; b 2 CÞ;

H 05ðx�1
1 ; . . . ; x�1

6 Þ

¼ 1

ðx1x2x3x4x5x6Þ4
H 05ðx1; . . . ; x6Þ:

Furthermore, it is invariant under the transitive

permutation group G on x1; . . . ; x6, generated by

ð12Þð34Þð56Þ and ð12345Þ, which is isomorphic to

S5, the symmetric group of degree 5.

Now it is an interesting question to ask the

structure of the hypersurface of de�ned by H 05. We
shall show the following theorem.

Theorem 6. The hypersurface H in P5 de-

�ned by H 05ðx1; . . . ; x6Þ ¼ 0 is birationally equivalent

to P4.

Proof. We recall that the cross ratios are invari-

ant under the linear fractional transformations, and

that two hyperelliptic curves de�ned as in (1) are
isomorphic if and only if the corresponding sets

fx1; . . . ; x6g of rami�cation points are mutually

transformed by a linear fractional transformation.
Taking these facts into consideration, we put

s ¼ x4 � x1

x4 � x2

. x1 � x3

x2 � x3
;

t ¼ x5 � x1

x5 � x2

.x1 � x3

x2 � x3
;

z ¼ x6 � x1

x6 � x2

.x1 � x3

x2 � x3
:

8
>>>>>>><

>>>>>>>:

Then we have

x4 ¼
sx2x3 � x1ððs� 1Þx2 þ x3Þ
�sx1 þ x2 þ ðs� 1Þx3

;

x5 ¼
tx2x3 � x1ððt� 1Þx2 þ x3Þ
�tx1 þ x2 þ ðt� 1Þx3

;

x6 ¼
�ðx1ðx3 þ x2ðz� 1ÞÞÞ þ x2x3z

x2 þ x3ðz� 1Þ � x1z
;

8
>>>>>>>>><

>>>>>>>>>:

and that the equation H 05ðx1; . . . ; x6Þ ¼ 0 is trans-
formed to H5ðs; t; zÞ ¼ 0, where

H5ðs; t; zÞ :¼ ðs� tÞ2z4 þ ðs� 1Þ2s2t2

þ 2ðs� 1Þstðs� 2st� s2tþ t2 þ st2Þz

þ ðs2�2s2t�4s2t2 þ 4s3t2 þ s4t2þ4st3

� 2s2t3 � 2s3t3 þ t4 � 2st4 þ s2t4Þz2

� 2ðs� tÞðs� 2stþ s2t� t2 þ st2Þz3:

It follows that the function �eld of the hypersurface

H in P5 de�ned by H 05ðx1; . . . ; x6Þ ¼ 0 is

CðHÞ ¼ Cðx1; . . . ; x6 jH 05 ¼ 0Þ

¼ Cðx1; x2; x3; s; t; z jH5ðs; t; zÞ ¼ 0Þ

¼ Cðx1; x2; x3Þððs; t; zÞ jH5ðs; t; zÞ ¼ 0Þ:

Hence it suf�ces to show the rationality of the

surface H0 de�ned by H5ðs; t; zÞ ¼ 0. Using results

stated in Theorem 7 below, we see that the last equa-
tion has a system of solutions
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s ¼ ðu� yÞð1� 2xþ ux 2 � uyþ x2yþ ux 2yÞ
ðu� xÞð�1þ yþ uyÞð�1þ xþ xyÞ ;

t ¼ ð�1þ uþ uxÞðu� yÞð�1þ xþ xyÞ
ðu� xÞð�1þ uþ uyÞð�1þ yþ xyÞ ;

z ¼ ð�1þ xþ uxÞðu� yÞð�1þ yþ xyÞ
ðu� xÞð1� ux� 2yþ uy2 þ xy2 þ uxy 2Þ :

8
>>>>>>>>>>><

>>>>>>>>>>>:

This shows that

Cðs; t; z jH5ðs; t; zÞ ¼ 0Þ � Cðx; y; uÞ:

In other words, H0 is unirational. Now the assertion
follows from a simple application of the theorem of

Zariski-Castelnuovo [14] (c.f. Nagata [11], p. 133,

exercise x3.A). r
5. Examples. We recall here a family of

genus two curves having real multiplication with

� ¼ 5, found by Brumer [1]. It was reconstructed
in [3] by one of the authors, as a consequence of the

positive solution of a Cremona version of Noether’s
problem for A5, the alternating group of degree 5,

acting on the function �eld Qðx; y; uÞ. We shall dis-

cuss it again from a di�erent point of view. Let
x; y; u be independent variables and let Rf be the

system consisting of the following six elements of

Qðx; y; uÞ:
n
x; y; u; fðx; y; uÞ; fðy; u; xÞ; fðu; x; yÞj

o

fðx; y; uÞ ¼ 1� x� uy
1� ðuþ yÞx� uxy :

Theorem 7 [3]. As an ordered set, Rf gives a

solution of H 05ðx1; . . . ; x6Þ ¼ 0. Moreover, as a set,

Rf is stable under the substitution ’ : ðx; y; uÞ 7!
ð f ðx; y; uÞ; y; uÞ, as well as the permutations of varia-

bles x; y; u. Two substitutions ’ and  : ðx; y; uÞ 7!
ðy; u; xÞ generate a transitive subgroup G0 of the sym-

metric group on the set Rf , which is isomorphic

to A5.

Using the natural ordering of Rf , one has ’ ¼
ð14Þð56Þ;  ¼ ð123Þð456Þ so that ’ 	  ¼ ð12346Þ as
elements of S6. Thus G0 is a subgroup of G given in

Proposition 5, such that ½G : G0� ¼ 2.

Let si ¼ siðx; y; uÞ ði ¼ 1; . . . ; 6Þ be the i-th ele-
mentary symmetric polynomial in ðx1; . . . ; x6Þ ¼ Rf .

Then we can easily show that s1; . . . ; s6 satisfy the

following relations

�3þ s2 � s4 � s5 ¼ 0;

�3þ s1 � s5 � 3s6 ¼ 0;

1� s3 þ 2s4 � s5 � s2
5 � 4s6 þ s3s6

þ 2s4s6 � 3s5s6 � 5s2
6 ¼ 0:

8
>>><

>>>:

Putting s6 ¼ cþ 1; s5 ¼ 2b� 2; s4 ¼ 1þ b2 � ac, we

see that the �eld consisting of G0-invariant elements
of Qðx; y; uÞ is Qða; b; cÞ. And we recover the poly-

nomial of Brumer discussed in [3] (see also [6]).

F ðX; a; b; cÞ :¼ X6 � ð4þ 2bþ 3cÞX5

þ ð2þ 2bþ b2 � acÞX4 þ ð�6� 4a� 6bþ 2b2 � 5c

� 2acÞX3 þ ð1þ b2 � acÞX 2 þ ð2� 2bÞX þ ðcþ 1Þ:

From the proof of Theorem 6, we have the fol-

lowing theorem.
Theorem 8. Any curve of genus two with real

multiplication by � ¼ 5 is isomorphic over C to a

member of the family Y 2 ¼ FðX ; a; b; cÞ.
As a matter of fact, we see that any such

curve over Q which is known to arise as a quotient
of a modular curve X0ðNÞ, is de�ned by Y 2 ¼
F ðX; a; b; cÞ for some a; b; c 2 Q. We tabulate exam-

ples of such curves which are computed by Hasegawa
[7]. We show that they are all members of the family

given in Theorem 8.


 Atkin-Lehner quotient of X0ðNÞ=G with RM
of � ¼ 5.

N y 2 ¼ fðxÞ

23
y 2 ¼ F ð�29; 17;�12 ;x� 1Þ
¼ ðx3 � xþ 1Þðx3 � 8x 2 þ 3x� 7Þ

31
y 2 ¼ F ð�19; 8;�4 ;xÞ
¼ ðx3 � 2x 2 � xþ 3Þðx3 � 6x 2 � 5x� 1Þ

67
y 2 ¼ F ð0;�1; 0 ; 1� xÞ
¼ x6 � 4x5 þ 6x4 � 6x3 þ 9x 2 � 14xþ 9

73
y 2 ¼ F ð2;�1; 0 ;�x� 1Þ
¼ x6 þ 8x5 þ 26x4 þ 50x3 þ 61x 2 þ 38xþ 9

87
y 2 ¼ F ð�7; 4;�4 ;xÞ
¼ ðx3 � 2x 2 � x� 1Þðx3 þ 2x 2 þ 3xþ 3Þ

93
y 2 ¼ F ð�4; 1; 0 ; 1� xÞ
¼ ðx3 � 2x 2 � xþ 3Þðx3 þ 2x 2 � 5xþ 3Þ

103
y 2 ¼ F ð�2; 1; 0 ; 1� xÞ
¼ x6 � 10x4 þ 22x3 � 19x 2 þ 6xþ 1

107
y 2 ¼ F ð8;�4; 0 ;�xÞ
¼ x6 � 4x5 þ 10x4 � 18x3 þ 17x 2 � 10xþ 1
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115
y 2 ¼ F ð0; 1; 0 ; 1� xÞ
¼ ðx3 � 2x 2 þ 3x� 1Þðx3 þ 2x 2 � 9xþ 7Þ

125
y 2 ¼ F ð0; 2;�4 ;�xÞ
¼ x6 � 4x5 þ 10x4 � 10x3 þ 5x 2 þ 2x� 3

133
y 2 ¼ F ð2; 3; 0 ; 1� xÞ
¼ x6 þ 4x5 � 18x4 þ 26x3 � 15x 2 þ 2xþ 1

161
y 2 ¼ F ð12;�8; 4 ;�xÞ
¼ ðx3 � 2x 2 þ 3x� 1Þðx3 þ 2x 2 þ 3x� 5Þ

167
y 2 ¼ F ð�2; 2;�4 ;�xÞ
¼ x6 � 4x5 þ 2x4 � 2x3 � 3x 2 þ 2x� 3

177
y 2 ¼ F ð2;�2; 0 ;�xÞ
¼ x6 þ 2x4 � 6x3 þ 5x 2 � 6xþ 1

191
y 2 ¼ F ð4;�2; 0 ;�xÞ
¼ x6 þ 2x4 þ 2x3 þ 5x 2 � 6xþ 1

205
y 2 ¼ F ð6;�2; 0 ;�xÞ
¼ x6 þ 2x4 þ 10x3 þ 5x 2 � 6xþ 1

213
y 2 ¼ F ð�6; 4;�4 ;�xÞ
¼ x6 þ 2x4 þ 2x3 � 7x 2 þ 6x� 3

221
y 2 ¼ F ð0; 0; 0 ;�xÞ
¼ x6 þ 4x5 þ 2x4 þ 6x3 þ x 2 � 2xþ 1

287
y 2 ¼ F ð�10; 8;�8 ;�xÞ
¼ x6 � 4x5 þ 2x4 þ 6x3 � 15x 2 þ 14x� 7

299
y 2 ¼ F ð�11; 6;�4 ;xÞ
¼ x6 � 4x5 þ 6x4 þ 6x3 � 7x 2 � 10x� 3

Here G ¼ 1 for N ¼ 23; 31, and G ¼W ðNÞ for

N > 31.
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