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Abstract:

Let p be an odd prime number, and F' a number field. We show that when F/Q

is unramified at p, any tame cyclic extension N/F of degree p has a normal integral basis if the
pushed up extension N({,)/F({,) has a normal integral basis.
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1. Introduction. Let p be a fized odd prime
number. Let I" be a cyclic group of order p. Let F' be
a number field, and K = F((,) where (, is a primi-
tive p-th root of unity. Gémez Ayala [4, Theorem
2.1] gave a very explicit criterion for a tame I'-exten-
sion over K to have a normal integral basis (NIB for
short) in terms of a Kummer generator. Thus, it is
natural to ask ‘“does a tame I'-extension N/F has a
NIB if NK/K has a NIB?”. Greither [6, Theorem
2.2] gave an affirmative answer to the question when
p=3 and F/Q is unramified at 3. The author [10,
Theorem 4] removed the assumption that F/Q is
unramified at 3. Further, it has an affirmative answer
for any p and F when N/F is unramified at all finite
primes (Brinkhuis [3], the author [8, 9]). The main
purpose of this note is to generalize Greither’s result
as follows:

Theorem 1. Let p be an odd prime number,
and let F be a number field and K = F((,). Assume
that F'/Q is unramified at p. Then any tame I'-exten-
sion N/F has a NIB if and only if NK/K has a NIB.

Let F' be a number field, O the ring of integers,
Clp the ideal class group of the Dedekind domain
Op, and hp =|Clp| the class number of F. Let
Cl(OpT") be the locally free class group of the group
ring OpT, and let CI°(OrI) be the kernel of the ho-
momorphism Cl(Opl') — Clp induced by the aug-
mentation O’ — Op. For a tame I'extension N/F,
the integer ring Oy is locally free over Opl', and
hence it determines a class [Oy] in CI(OpT"). The
class [Oy] is trivial if and only if the extension N/F
has a NIB as I' is an abelian group. It is known that
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[On] € CI°(OFT). Hence, Theorem 1 is an immedi-
ate consequence of the following

Theorem 2. Under the setting and the as-
sumption of Theorem 1, the natural map

CI°(OpT) — CI°(OxT)

induced by the scalar extension is injective.

Remarks 1. (I) In general, the locally free
class group CI°(OfT) is a very complicated object.
However, when F/Q is unramified at p, it is shown
by Brinkhuis [2, Proposition 2.1] that it is isomorphic
to the ray class group Clg, of K = F((,) defined
modulo m = (, — 1. But, we do not need this fact for
proving Theorem 2.

(I) Let L/F be a finite extension of a number
field F, and G an arbitrary finite group. Recently,
Greither and Johnston [7, Corollary 5.2] showed that
the natural map Cl(OrG) — CIl(OLG) is injective if
([L: F], |Cl(OpGQ)]|) =1 and Oy is free over Op.
Theorem 2 is not contained in this general result.
Actually, let F' be a number field such that F/Q is
unramified at p and hr = 1. Then we have Cl(OfpI') =
CI°(OpT) =2 Clg 5. If further (p— 1, hg) # 1, then
the triple (F, K, ') does not satisfy the first assump-
tion of [7, Corollary 5.2], while the natural map
Cl(OpI') — CIl(OgT) is injective by Theorem 2. For
example, the above conditions on F (and K) are
satisfied when p=3 and F = Q(v/7). (We have
hx = 2 in this case.)

(IT) Let R(Orl') be the subset of CI°(OT)
consisting of the locally free classes [On] for all tame
I-extensions N/F. In [12], McCulloh characterized
the realizable classes R(OpI") in terms of a ‘“‘Stickel-
berger ideal” acting on CI(OfT'), from which it fol-
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lows that the main part of R(OpI') is contained in
the “minus” part of CI°(OfI"). Therefore, Theorem
2 is an assertion much stronger than Theorem 1, and
if one obtains some nice results on the minus part,
then it might be possible to obtain a better result on
the Galois descent problem.

(IV) Let p be a prime number. We say that a
Galois extension N/F has a p-NIB when it has a
normal basis with respect to the p-integers O} =
Or[1/p]. One can consider an analogous Galois de-
scent problem; Does a cyclic extension N/F of de-
gree p" has a p-NIB if the extension N((p)/F(Gpn)
has a p-NIB? Here, (,» is a primitive p"-th root of
unity. When N/F is unramified outside p, a quite
general affirmative answer is given in Greither [5,
Theorem 1.2.1]. However, for the ramified case, the
matters are complicated. Such a Galois descent prop-
erty holds when p does not divide the degree
[F(¢pr) : F'], but does not hold in general when p
divides the degree [11, Theorems 1, 2].

2. A description of locally free class group.
In this section, we recall a description of the locally
free class group following a convenient exposition in
[12, pp. 112-113].

Let p be a fized prime number and F' a number
field. Let O% = Op[1/p] be the ring of p-integers of
F, and Op,, the elements of F' integral at the primes
over p. Clearly, we have

(1) Op = 0L N0F,.

Let I(O%I") be the group of fractional O%I'-ideals
in FT, and let P(O%T') be the subgroup consisting
of principal ideals aO}T' for units a € (Op,I')"
(C FT). Here, for a ring R containing a unity, R*
denotes the group of invertible elements of R. We
have a canonical isomorphism

(2) Cl(OpT) = I(O,T)/P(O}T).

Let K = F((,). Let x be a fixed nontrivial K-valued

character of I', and x( the trivial character of I". Let
t=tr=(p-1)/[K: F].

Let g be a primitive root modulo p. Then we see
that x, x7,- - ,XgH form a complete set of repre-
sentatives of the F-equivalent classes of nontrivial
K-valued characters of I'. As usual, we extend a
character of I" to a homomorphism from FT to K
by linearity. We have a Wedderburn decomposition

o=¢r: FT S FOKOK®--- 0K
with
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p(a) = (xo(a), x(a), x/(@), -, x7 ().
We easily see that
PO ) =0, 8O0 & --- 8 O

A fractional O';I'-ideal in FT' corresponds via ¢ to a
direct product of fractional ideals of the components.
Let I9(O'.T) be the subgroup of I(O%I") consisting
of fractional ideals A € I(O%T') for which the first
component of ¢(A) equals the trivial ideal O'. Let
PY(O%T') be the subgroup of I°(O%I") consisting of
principal ideals aO.I" for units a € (O ,I')* such
that xo(a) = 1. We easily see that

PY(O}T) = P(OD) NI°(O}T)
using (1). Therefore, the isomorphism (2) induces an
isomorphism

Cl1°(OfI") = 1°(0,.T)/P°(O,.T).

3. Proof of Theorem 2. Let p be an odd
prime number. We fix a primitive p-th root ¢ = ¢, of
unity, and put # = — 1. Let F' be a number field,
and K = F(¢). Throughout this section, we assume
that [K : F] =p— 1. Then we have tr = 1 and tx =
p — 1. Let x be a nontrivial K-valued character of T,
and xo the trivial character of I". As ¢t = 1, all non-
trivial characters of I' are conjugate to x over F.

Lemma 1. For z€ Oy, and ye Op,[C]",
there exists a unit o € (Op ,I)” such that xo(a) =
and x(a) = y if and only if £ = y mod .

Proof. For simplicity, write A = Op pI'. Let v
be a generator of I'. The trivial character x( induces
an isomorphism A/(y — 1) = Op,,, and x induces an
isomorphism A/(¢,(7)) 2 Op p[{las [K : F]=p— 1.
Here, ¢, is the p-th cyclotomic polynomial. We easily
see that (v — 1) N (,(7)) = {0}. Hence, we obtain a
Milnor square:

A X, Or,p
Xl jll
OFP[C} L 57
where S =A/(y—1, ¢,(7)) = Op,,/p and the map
j1 (resp. jo) is the reduction modulo p (resp. 7).

Here, we are identifying the quotient ring O ,[(]/m
with S by the map

Za,{i mod 7w — Zai mod p

with a; € OF . It is known that this diagram yields
the exact sequence:
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AL X =05, x0p, 0" 2 57,

where the map f sends o € A* to (xo(), x(a)) and

g sends (z,y) € X to xy ' mod m. For these, see

Theorem 5.3 and Example (5.5) in Bass [1, Chapter

9]. The assertion follows from the above exact

sequence. O
For a number field F', we put

Xrp={z €Ok, | x =1mod 7}

with K = F(¢). When F/Q is unramified at p, we
have [K : F] =p—1 and Ok , = Op ,[¢]. Therefore,
Theorem 2 is an immediate consequence of the
following

Theorem 3. Let F be a number field and
K =F((). Assume that [K: F]=p—1 and Xp, C
Or ,[¢]. Then the natural map

CI°(OfT") — CI°(OgT)
18 injective.

Proof of Theorem 3. Let A be an arbi-
trary element of I°(Q%T), and let A= A-O)I €
I°(O%T). Let p be the generator of the Galois group
Gal(K/F) sending ¢ to (9, where g is the primitive
root modulo p in Section 2. By the Wedderburn de-
composition, we have

ep(A) =0 eU

and

er(A) =

as tp=1 and tx =p— 1. Here, A is a fractional
ideal of . Assume that the class [A]; in
CI°(OkT) = I°(O%T)/PY(O%T) is trivial. Then
there exists a unit 3 € (Ok ,I')* (C KT) such that
xo0(8) =1 and A = SO’ T. In particular, x(8)O) =
A. Clearly, x(7) =1 mod © where v is, as before,
a generator of I'. It follows that 1= xo(0)=
x(B) mod m, and hence x(B) € Op,[(] by the as-
sumption Xp , C Op ,[¢]. Therefore, we see from
Lemma 1 that there exists a unit o € (O ,I')” such
that xo(a) =1 and x(«) = x(8). Hence, we obtain
A= a(’)/FF. O
Remarks 2. (I) Let p=3 and F a number
field with (3 € F'. Then we can easily show that the
second condition Xr , C Op [¢] in Theorem 3 is
satisfied. Therefore, by Theorem 3, we obtain an
alternative proof of [10, Theorem 4] mentioned in
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Section 1. However, when p > 5 and F'/Q is ramified
at p, the condition seems to be quite a hard one.

(II) When [K:F|<p—1 or Xp, ¢ Or,[¢],
the author has no idea, at present, as to whether or
not the injectivity in Theorem 3 holds.
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