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On new singular directions of some Schroder functions

By Nan Wu* and Zu-Xing XUAN®*9T)

(Communicated by Shigefumi MORI, M.J.A., Oct. 13, 2009)

Abstract:

In this paper, we study the Hayman 7" directions and the precise Borel directions

of maximal kind of meromorphic solutions f(z) of the Schréder equations f(sz) = R(f(z)), where
|s| > 1 and R(w) is a rational function with deg[R] > 2. We will show that, if arg[s]/27 ¢ Q, then
f(2) has any direction as Hayman T direction and maximus Borel direction as well. This is a con-
tinue work of [Ishizaki, K. and Yanaihara, N., Borel and Julia directions of meromorphic Schroder
functions, Math. Proc. Camb. Phil. Soc. 139 (2005), 139-147.] and [Yuan, W.J., Qi, J.M. and Seiki
Mori. Singular directions of meromorphic solutions of some non-autonomous Schroder equations,
Complex Analysis and its Applications Proceedings of the 15th ICFIDCAA held in Osaka (Japan),

July 30-August 3, 2007].
Key words:

1. Introduction and results. Let R(w) be
a rational function of degree p > 2 and s be a com-
plex number with |s| > 1. Consider the Schrdder
equation
(1.1) f(s2) = R(f(2)).
It is known that under some conditions (1.1) has
a transcendental meromorphic solution f(z), which
is called Schroder function and its order is A =
logp/log|s| > 0. We suppose that the readers are
familiar with the notations of the value distribution
theory of meromorphic functions, such as m(r, f),
N(r, f),T(r,f), for the detail see [12]. In order
to make our statement clear, let us begin with some
basic notations. Given an angular domain =
{z:a <argz < (}. Let f(2) be a meromorphic func-
tion in €2. Define

Vo= S =0

dt

where n(t,Q, f = a) is the number of the roots of
f(z)=a in QN {1 < |2 <t} counted according to
multiplicity. Let 7(t,Q, f = a) be the number of the
roots of f(z) =a in QN{l < |z] <t} counted only
once, then N(t,Q, f = a) can be defined in the same
way.
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The singular directions of the meromorphic solu-
tions of the Schroder equations are studied abroad
(see [7-9]). Ishizaki, K. and Yanaihara, N. [7] investi-
gated the Borel and Julia directions of some Schroder
equations and got the following result.

Theorem A. Let f(z) be a meromorphic solu-
tion of the Schroder equations f(sz) = R(f(z)), where
[s| > 1 and R(w) is a rational function with deg[R] >
2. If arg[s]/2m ¢ Q, then f(z) has any direction as
Borel direction.

Zheng [14] introduced a new singular direction,
which is called T direction. The existence of T' direc-
tion was first confirmed by Guo, Zheng and Ng [4].
We recall its definition as follows:

Definition 1.1. Let f(z) be a meromorphic
function in the complex plane. A direction arg z = 6
is called a T direction of f(z), provided that given

any b € C := C U {oo} and any small & > 0 we have

N(r,A(,¢), f =b)
T(r. f)

possibly with the exception of at most two values of
b, where A(f,e) ={z:0—ec<argz<0+¢e}. A di-
rection arg z = 60 is called a precise T direction of
f(z), if in (1.2), N(r,A(8,¢), f =) is replaced by
N(r,A(0,¢), f = ).

Later, Yuan, Qi and Seiki Mori [9] made some
discussion on the T direction and Nevanlinna direc-
tion (see [9] for its definition) of some Schréder func-
tions. And they got the following theorem.

Theorem B. Let f(z) be a meromorphic solu-
tion of the Schrider equations f(sz) = R(f(2)), where

(1.2) lim sup > 0,

r—00
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|s| > 1 and R(w) is a rational function with deg[R] >
2. If argls]/2m ¢ Q, then f(z) has any direction as
precise T direction and Nevanlinna direction as well.

According to the Hayman inequality (see [5]) on
the estimation of T'(r, f) in terms of only two inte-
grated counting functions for the roots of f(z) =a
and f®(2) = b with b # 0, Guo, Zheng and Ng pro-
posed in [4] a singular direction named Hayman T
direction as follows:

Definition 1.2. Let f(z) be a transcendental
meromorphic function. A direction arg z = 6 is called
a Hayman T direction of f(z) if for any small € > 0,
any positive integer k£ and any complex numbers a
and b # 0, we have

N(r,A0,¢), f = a) + N(r,A(0,¢), f*¥ =b)
T(r, f)

Most recently, Zheng and Wu [15] discussed the
existence of Hayman T directions of meromorphic
functions and they proved the following

Theorem C. Let f(z) be a transcendental
meromorphic function satisfying
T(r, f)

lim sup 3 = +oo
r—00

lim sup > 0.

r—00

(1.3) (log )

Then f(z) has a Hayman T direction which is a T
direction as well.

Remark 1. In the same paper, the authors
gave an example to show the growth condition (1.3)
is sharp. And they pointed out the Hayman T direc-
tion is different from the 7" direction.

It is interesting to investigate the Hayman T
directions of the Schroder functions. We will obtain
Theorem 1.1.

Theorem 1.1. Let f(z) be a meromorphic
solution of the Schroder equations f(sz) = R(f(z)),
where |s| > 1 and R(w) is a rational function with
deg[R] > 2. If arg[s]/27 ¢ Q, then f(z) has any di-
rection as Hayman T direction.

G. Valirion is the first one to introduce the con-
cept of a proximate order A(r) for a meromorphic
function f with finite positive order and the type
function U(r) = r*"). And the following result is
well known.

Proposition 1.1. Let T(r,f) be the Nevan-
linna characteristic function of f(z) with order

Af) = 1imsupM < 00

T—00 ].
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Then there exists a function A(r) with the following
properties
(1) A(r) is monotone and piecewise continuous dif-
ferentiable function for r > ry, with lim A(r) = A,
r—00
(2) lim N(r)rlogr = 0;

T
(3) h?isololp éj”(,rj;) =1;
(4) for each positive number d,
U(d .

The proof can be found in Chuang [3]. In 1932,
G. Valiron raised in terms of his type function the
concept of one Borel direction of maximal kind,
which is a direction such that for any small € > 0,
and any a € C, possibly except at most two values
of a, we have

n(r,A(f,¢), f = a)

o) > 0.

lim sup

In 1983, Pang [11] studied the U type directions
of meromorphic functions, and he obtained a theo-
rem as follows:

Theorem D. Let f(z) be a meromorphic func-
tion with order 0 < A < oo, A(r) be its prozimate
order, U(r) = ") then there exists an half line B :
arg z = 0, for any meromorphic function a(z), such
that T(r, a(2)) = o(U(r)), for any € > 0, we have

n(r,A(0,¢), f = a(z))
U(r)

with at most two exceptional functions.

From this, we should elicit the concept of the
precise maximal Borel direction dealing with small
functions.

Definition 1.3. Let f(z) be a transcendental
meromorphic function. A direction arg z = 6 is called
a precise Borel direction of maximal kind of f(z) if
for any small £ > 0, for any small functions a(z)
such that T'(r,a(z)) = o(U(r)) as r — oo, we have

ﬁ(?", A(97 5)7 f= a(z))
U(r)

with at most two exceptions.

What is the case for meromorphic solutions of
the Schroder equations? Next, we will prove Theo-
rem 1.2.

Theorem 1.2. Let f(z) be a meromorphic
solution of the Schroder equations f(sz) = R(f(2)),

>0

lim sup

r—00

lim sup >0,

r—00
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where |s| > 1 and R(w) is a rational function with
deg[R] > 2. If arg[s]/2m ¢ Q, then f(z) has any direc-
tion as precise Borel direction of mazximal kind deal-
ing with small functions, here the small function a(z)
is defined as T(r,a) = o(U(r)).

Remark 2. Obviously, the precise Borel direc-
tion of maximal kind must be the precise T' direction,
so we have obtained the existence of the precise T' di-
rections of the Schroder functions dealing with small
functions, here the small function a(z) is defined as
T(r,a) = o(T(r, f)).

2. Some lemmas. First, let us recall Ahlfors-
Shimizu characteristic in an angle (see [10]). Let
f(2) be a meromorphic function on an angle Q =

{z:a<argz<g}. Set
2
) do,

Q(r) =QN{z:1< |z <r}. Define
o 1 + |f z
"S(t, Q2
7o = [0
1
In order to prove our theorems, we need the fol-

lowing lemmas.
Lemma 2.1 [5]. Let f(z) be a meromorphic
function in the whole complex plane C. Then

[T(r, f) =T (r,C, f) —log" [f(O)]] < 5

Lemma 2.2 [8]. Let f(2) be a Schroder func-
tion of (1.1) with order X. Then it holds that
Kir* <T(r,C, f) < Ko

for some constants 0 < K1 < Ky, A=
> 0.

and

log 2.

log p/log |s|

Lemma 2.3 [8]. Let R(w) be a rational func-
tion, and f(z) be a meromorphic function on Q(«, ),
then for a constant L > 0, we have

TrQR(f)) <LT(r,Q, f).

The following lemma is a theorem in [15], which
is to control the term 7 (r,2.) with the counting
functions N(r,Q, f = a) and N(r,Q, f¥ =b).

Lemma 2.4. Let f(z) be meromorphic in an
angle Q ={z:a <arg z<f}. Then for any small
e >0, any positive integer k and any two complex
numbers a and b # 0, we have

T(Ta Qs, f) < K{N(ZT, Qa f = a)
+ N(2r, 9, f“‘“) =b)}+ O(log3 T)
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for a positive constant K depending only on k, where
Q. ={z:at+e<argz< f—ec}.

The following lemma is the second fundamental
theorem for the case of a meromorphic function of
slow growth, which is Theorem VIL.3 in [10].

Lemma 2.5 [10]. Let f(2) be meromorphic in
an angular domain Q. Then for any small € > 0 and
three distinct points a; (j =1,2,3) on C, we have

DN

J=1

w

T(r,Q, f) < (2r,Q, f = a;) + O(log® r)
forr > 1.

The following lemma is applicable in the discus-
sion of angular distribution of a meromorphic func-
tion dealing with small functions, which is Theorem
VIII in [10].

Lemma 2.6 [10]. Let f(z) and a;(z) (j=1,2,
3,4) be meromorphic functions in the complex plane
and

a1 (2)f(2) + as(2)
a3(2) f(2) + aa(2)”

Consider an angle Q(a, 8) with 0 < f — a < 2, then
for any e > 0, we have

9(z) =

T(r,Q, g) < 27T (64r,, f)

128t
+0</ / T”ddt)

where T(r, a) = Z;:I T(r, a).

The following lemma is Lemma 1.1.2 in [13],
which is useful for our study.

Lemma 2.7. Let T(r) be a non-negative and
non-decreasing function in 0 < r < oo. If

lim inf T(dr) >c>1
P T0)

for some d > 1, then
/ T(t) it < 2clog1d
1

c—

T(r)+ O(1).

By Lemma 2.7, we can establish the following
result.

Lemma 2.8. Let f(z) be a meomorphic func-
tion on the whole plane with order A, and U(r) be its
type function, if there exists a direction arg z =0
such that for any e > 0, the following holds

N(r,A(0,¢), f = a)

U(r) >0

lim sup

r—00
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with at most two values for exception, then arg z = 0
must be a precise Borel direction of mazximal kind of
1(2).

Proof. If the result is not true, then there exist
three complex numbers ay, as, az such that

n(r,A(0,e), f = a;) = o(U(1)),

then by Lemma 2.7, we have

o</1TUit)dt) = o(U(r)).

This leads a contradiction. |
Lemma 2.9. If a;(2) (1=1,2,3,4) be four
small functions such that T(r,a;) = o(U(r)), then

we have
rq sty
/ 1 / 19 4ot = o(U(r),
1 t 1 S

where T(r, a) = Z?:l T(r, a).

The proof of Lemma 2.9 is similar to Lemma
2.8, and we omit it.

3. Proof of Theorem 1.1.

Proof. We have known that the Schroder func-

tion f(z) of (1.1) satisfies that
Kir* <T(r,C,f) < Kyr.

Dividing C into two sectors € =A(0,7) and
Qy = A(m, %), we obtain that

N(r,A(f,e), f = a;) =

K
T(Tyﬁ,j,f)ZTIT’\, for j=1 or j=2.

When it holds for j (say j = 1), we divide §; into two
sectors. Repeating this procedure, we get a direction
arg z = 0" such that, for A} = A(@*,%—f), and we have
K
T(r A ) 2 5
for any n € N. Take any direction argz =6, and
a sector A(fy,e). Choose a ng such that 2% <.
Thus there is a jy such that j, > ny and |(6p+
Joargs) — 0% < §(mod 27). By (1.1), we obtain that
f(2) = R(f(s772)), where R/(w) is the jo-th itera-
tion of R(w). Thus by Lemma 2.3, with some con-
stant L(jo),
T(r, A}, f) =T(rA;, R (f(s77"2)))

j J
< L(jO)T(\srfor,A(ao,%),f)-

Suppose that the direction arg z = 6 does not satisfy
the property, then there exist a € C, and b # 0,
b € C, such that

(3.1)
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N(2r,A(0g,€), f = a) + N(2r, A(6p,e), f*) =)
=o(7T(2r,C, f)).

By Lemma 2.4, we have
€
T(r,A(GOE),f> =o(T(2r,C,f)) as r— .

Hence

S < T ) < LG0T (sl A (00,5, )
< L(jO)T(\srfor,A(eo,g),f)
= o(T(2]s| 77, C, f)) = o(Kx(2ls 7'r)"),

as Tr— 0oQ.

This is impossible. Thus f(z) has any direction as
Hayman T direction. The proof is completed. O
4. Proof of Theorem 1.2.
Proof. We will use Lemma 2.5, Lemma 2.6,
Lemma 2.8 and Lemma 2.9 to prove our theorem.
We have known that the Schréder function f(z)
of (1.1) satisfies that

Kirt < T(r,C,f) < Kor?.

Let U(r) be the type function of T'(r, f), then we
have

T(r,C
hIrrL igp (Z,T)’f) > 0.
Dividing C into two sectors ; = A(0,%) and Qy =
A(m, %), we obtain that
T(r,Q;
limsupM>0 for j=1 or j=2.
00 U(r)
When it holds for j (say j=1), we divide §; into
two sectors. Repeating this procedure, we get a direc-
tion arg z = 0* such that, for A* = A(Q*,%), and we
have
T(r,Af)
U(r)
for any n € N. Take any direction arg z =6y and a

sector A(fy, ). Choose a ng such that 2= < £ Thus
there is a jy such that jy > ng [(6o +

(4.1) lim sup

r—00

>0,

and
Jo arg s) — 0% < §(mod 27). By (1.1), we obtain that
f(z) = R°(f(s7792)), where RI%(w) is the jo-th
iteration of R(w). Thus by Lemma 2.3, with some
constant L(j),

T(r,45,.0) < LGOT (Is7*r, A (60,5). £).
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Suppose that the direction arg z = 6, does not satisfy
the property, then there exist three distinct small
functions a;(z),7 = 1,2, 3 such that

(42)  N(rA@ye), f = a) = o(U(r)).
Set
1@ —ai(2) as(2) - w(2)
1) = ) a2 as(e) — (o)
then
h(2)9(2) + ha(2)
13 = e T )
where

hi = az(az — ay), ho = a1(az — az),
hs = as — a1, hy = a3 — ay,

so that T(r,h;) = 0(23:1 T(r,aj) (i=1,2,3,4).
Since 23:1 T(r,aj) = o(U(r)), in view of Lemma 2.6
and Lemma 2.9, we have

T(r,A(QO,g),f) < 277’(647’,A(60,2—;),g>
+ o(U(r)).

Then in view of Lemma 2.5, we have

T<T,A(90é>,f) < 277(64T,A(00%>,9)

+o(U(r))

<81 {]\7(1287", A(Ho,%),g = 0>
+N(128r,A(90,%)a9: 1>

_ 3e
+ N(128T,A(907Z)ag = OO)}

+o(U(r))

3
=81 ZN(IQST, A(eo,%) ) f:a.7>

7=1
+o(U(r)).
Notice (4.2) and (4) in Proposition 1.1, we have

T(T,A(ﬁoé),f> =o(U(r)) as r— oo.
Hence

T(r. A5, f) < LGOT (Is7r, A (6.5 f)

j €
< I(i ~Jo €
< LG T (Jsl7r A (60,5 ). f)
=o(U(|s|™"'r)) = o(U(r)) as r— oo.
This contradicts (4.1). Thus the direction arg z = 6y
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is precise Borel direction of maximal kind dealing
with small functions. O

5. Conclusion. We can see that the Schroder
function is a good meromorphic function that if
arg[s]/2n ¢ Q, then f(z) has any direction as Borel
direction, precise T' direction, Nevanlinna direction,
Hayman direction, Hayman T direction and precise
Borel direction of maximal kind dealing with small
functions. And we make a conclusion that any direc-
tion of f(z) must be a Marty direction, here a half
line z =60 is a Marty direction if and only if for any
€ > 0 and any real number k, we have

A" (2)]

sup 3 = 100,

o 1+ |2 f(2)]

where Q = {z:1 < |z| < 400,60 —e < argz < 0+ ¢}.
The definition of Marty direction was posed in [1, 2,
6]. In [6], Jin and Song have a result that if arg z = 6
is not a Marty direction of f(z), then there exists a
positive number € > 0 such that

T (r, A0y, ¢), f) = O(log® ).

However, this contradicts (3.1).
Acknowledgment. The work is supported
by NSF of China (No. 10871108).

References

[ 1 ] J.Chang and G. Song, On singular directions of
entire and meromorphic functions, Northeast.
Math. J. 16 (2000), no. 4, 379-382.

J.M. Chang, Value distribution of mermorphic
functions without singular directions in an
angular region, J. of Math. (PRC), 23 (2003),
no. 3, 281-284. (in Chinese)

C.T. Chuang, Singular directions of a meromor-
phic funtion, Science Press of China, 1982. (in
Chinese)

H. Guo, J.H. Zheng and T.W. Ng, On a new sin-
gular direction of meromorphic functions, Bull.
Austral. Math. Soc. 69 (2004), no. 2, 277-287.

W.K. Hayman, Meromorphic functions, Claren-
don Press, Oxford, 1964.

J.L. Jing and G.D. Song, The singular direc-
tions corresponding to Marty’s criterion, J.
East China Norm. Univ. Natur. Sci. Ed. 1999,
no. 4, 33-37.

K. Ishizaki and N. Yanaihara, Borel and Julia
directions of meromorphic Schréder functions,
Math. Proc. Camb. Phil. Soc., 139 (2005),
139-147.

K. Ishizaki and N. Yanagihara, Borel and Julia di-
rections of meromorphic Schroder functions. II,
Arch. Math. (Basel) 87 (2006), no. 2, 172-178.

W.J. Yuan, J.M. Qi and Seiki Mori, Singular di-



128 N. WU and Z.-X. XUAN [Vol. 85(A),

rections of meromorphic solutions of some non- [ 12 ] L. Yang, Value Distribution And New Research,

autonomous Schroder equations, in the 15th Springer-Verlag, Berlin, 1993.

International Conference on Finite or Infinite [ 13 | J.H. Zheng, Value Distribution of Meromorphic

Dimensional Complex Analysis and Applica- Functions. (Preprint).

tions (Osaka, 2007), Complex Analysis and its [ 14 ] J. Zheng, On transcendental meromorphic func-

Applications, 2, OMUP, Osaka, 2008. tions with radially distributed values, Sci. China
[ 10 | M. Tsuji, Potential theory in modern function Ser. A 47 (2004), no. 3, 401-416.

theory, Maruzen, Tokyo, 1959. [ 15 ] J.H. Zheng and N. Wu, Hayman T directions of
[ 11 ] X. C. Pang, On singular directions of meromor- meromorphic functions. (to appear)

phic functions, Adv. in Math. (Beijing) 16
(1987), no. 3, 309-315.



