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Abstract: This article is essentially an announcement of the papers [7–10] of the authors,

though some of the examples are not included in those papers. We consider what is called

zeta and L-functions of root systems which can be regarded as a multi-variable version of

Witten multiple zeta and L-functions. Furthermore, corresponding to these functions, Bernoulli

polynomials of root systems are defined. First we state several analytic properties, such as

analytic continuation and location of singularities of these functions. Secondly we generalize the

Bernoulli polynomials and give some expressions of values of zeta and L-functions of root systems

in terms of these polynomials. Finally we give some functional relations among them by our

previous method. These relations include the known formulas for their special values formulated

by Zagier based on Witten’s work.

Key words: Multiple zeta-function; Witten zeta-function; root systems; simple Lie
algeras; analytic continuation; functional relation.

1. Zeta and L-functions of root sys-

tems. Let N, N0, Z, Q, R and C be the set of

all positive integers, non-negative integers, inte-

gers, rational numbers, real numbers and complex

numbers respectively.

Let g be a complex semisimple Lie algebra

with rank r. The Witten zeta-function associated

with g is defined by

�W ðs; gÞ ¼
X
’

ðdim’Þ�s;ð1:1Þ

where the summation runs over all finite dimen-

sional irreducible representations ’ of g. It is

known that

�W ð2k; gÞ ¼ CW ð2k; gÞ�2kn

for any k 2 N, where n is the number of all positive

roots and CW ð2k; gÞ 2 Q. This is called Witten’s

volume formula (Witten [20], Zagier [21]).

In this paper, we introduce its multi-variable

version and character analogues defined as follows:

Let V be an r-dimensional real vector space

equipped with an inner product h�; �i. We denote the

norm of v 2 V by kvk ¼ hv; vi1=2. The dual space V �

is identified with V via the inner product of V . Let

� be a finite reduced root system in V and � ¼
f�1; . . . ; �rg its fundamental system. Let �þ and

�� be the set of all positive roots and negative

roots respectively. Then we have a decomposition

of the root system � ¼ �þ
‘

��. Let Q_ be the

coroot lattice, P the weight lattice, Pþ the set of

integral dominant weights and Pþþ the set of

integral strongly dominant weights respectively

defined by

Q_ ¼
Mr
i¼1

Z�_
i ; P ¼

Mr
i¼1

Z�i;

Pþ ¼
Mr
i¼1

N0 �i; Pþþ ¼
Mr
i¼1

N�i;

where the fundamental weights f�jgrj¼1 are a basis

dual to �_ satisfying h�_
i ; �ji ¼ �ij. Let

� ¼
1

2

X
�2�þ

� ¼
Xr
j¼1

�j

be the lowest strongly dominant weight. Then

Pþþ ¼ Pþ þ �.

We define the reflection �� with respect to a

root � 2 � as

�� : V ! V ; �� : v 7! v� h�_; vi�

and for a subset �� � �, let W ð��Þ be the group

generated by reflections �� for � 2 ��. Let W ¼
W ð�Þ be the Weyl group. Then �j ¼ ��j

(1 � j � r)

generates W . Namely we have W ¼ W ð�Þ. Any two

fundamental systems �, �0 are conjugate under W .
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Let Autð�Þ be the subgroup of all the

automorphisms GLðV Þ which stabilizes � (see

[3, §12.2]). Then the Weyl group W is a normal

subgroup of Autð�Þ and there exists a subgroup

� � Autð�Þ such that Autð�Þ ¼ �nW . The

group Autð�Þ is called the extended Weyl group.

For w 2 Autð�Þ, we set �w ¼ �þ \ w�1�� and

the length function ‘ðwÞ ¼ j�wj (see [4, §1.6]). The

subgroup � is characterized as w 2 � if and only if

‘ðwÞ ¼ 0. Note that w�w ¼ �� \ w�þ ¼ ��w�1

and ‘ðwÞ ¼ ‘ðw�1Þ.
Let n ¼ j�þj and r be the rank of �. Let � be

the quotient of � obtained by identifying � and ��.

For s ¼ ðs�Þ�2� 2 Cn we define an action of Autð�Þ
by ðwsÞ� ¼ sw�1�. For y 2 V , s 2 Cn and �� � �þ
such that for any fundamental weight �i there exists

a root � 2 �� satisfying h�_; �ii > 0, we define

�rðs;y; ��Þ ¼
X
�2Pþþ

e2�
ffiffiffiffiffi
�1

p
hy;�i

Y
�2��

1

h�_; �is�
;

which is called the zeta-function of the roots ��

with exponential factors, introduced in [7,8]. When

y ¼ 0 and �� ¼ �þ is of type Xr, where X ¼
A;B; . . . ; G, we denote it simply by �rðs; �Þ or

�rðs;XrÞ which is called the zeta-function of the

root system Xr. In particular when s ¼ ðsÞ, namely

s� ¼ s for each �, this coincides with (1.1) up to

some exponential function part.

In the case of rank one, �1ðs;A1Þ is just the

Riemann zeta-function �ðsÞ. In the case of rank two,

analytic properties of �2ðs;A2Þ and �2ðs;B2Þ have

been studied in, for example, [12,14,17–19,21]. In

the case of rank three, �3ðs;A3Þ has been studied

in [2,5,15]. Now we consider the cases of B3 and C3

types, namely

�3ðs1; s2; s3; s4; s5; s6; s7; s8; s9;B3Þ

¼
X1

m1;m2;m3¼1

m�s1
1 m�s2

2 m�s3
3 ðm1 þm2Þ�s4

� ðm2 þm3Þ�s5ð2m2 þm3Þ�s6ðm1 þm2 þm3Þ�s7

� ðm1 þ 2m2 þm3Þ�s8ð2m1 þ 2m2 þm3Þ�s9 ;

and

�3ðs1; s2; s3; s4; s5; s6; s7; s8; s9;C3Þ

¼
X1

m1;m2;m3¼1

m�s1
1 m�s2

2 m�s3
3 ðm1 þm2Þ�s4

� ðm2 þm3Þ�s5ðm2 þ 2m3Þ�s6ðm1 þm2 þm3Þ�s7

� ðm1 þm2 þ 2m3Þ�s8ðm1 þ 2m2 þ 2m3Þ�s9 :

By the same method as introduced in the papers

[11–14] of the second named author, we see that

there is a certain recursive structure in the family of

those zeta-functions corresponding to inclusion

relations among certain sets of roots. This consid-

eration gives the analytic continuation of these

functions to the whole complex space, and further-

more, determines the location of possible singular-

ities (cf. [7,15,16]). For example, we obtain

Theorem 1.1 [7]. The possible singularities

of �3ðs;B3Þ and of �3ðs;C3Þ are located only on the

subsets of C9 defined by one of the following:

s1 þ s4 þ s7 þ s8 þ s9 ¼ 1� ‘;

s3 þ s5 þ s6 þ s7 þ s8 þ s9 ¼ 1� ‘;

s2 þ s4 þ s5 þ s6 þ s7 þ s8 þ s9 ¼ 1� ‘;

s1 þ s2 þ s4 þ s5 þ s6 þ s7 þ s8 þ s9 ¼ 2� ‘;

s1 þ s3 þ s4 þ s5 þ s6 þ s7 þ s8 þ s9 ¼ 2� ‘;

s2 þ s3 þ s4 þ s5 þ s6 þ s7 þ s8 þ s9 ¼ 2� ‘;

s1 þ s2 þ s3 þ s4 þ s5 þ s6 þ s7 þ s8 þ s9 ¼ 3;

where ‘ 2 N0.

It is to be noted that the above recursive

structure can be explained in terms of Dynkin

diagrams; a recursive step corresponds to a cut of

one edge of the diagram. For example, by cutting

one of the rightmost edges in the Dynkin diagram

of type B3 or C3, we obtain that of A3 type, which

corresponds to the equation

�3ðs;A3Þ ¼ �3ðs1; s2; s3; s4; s5; 0; s6; 0; 0;B3 or C3Þ:

In fact, �3ðs; B3 or C3Þ can be expressed as an

integral involving �ð�; A3Þ in the integrand. Con-

sequently, we have the following recursion diagram

B3 or C3 � � �

→ A3 � � �

→ A2× A1 � � �

→ A1× A1× A1 � � �

by repeating the same type of procedure.

Define

Sðs;y; �Þ ¼

X
w2W

Y
�2�w�1

ð�1Þ�s�

0
@

1
A�rðw�1s; w�1y; �Þ:

This Sðs;y; �Þ is a ‘‘Weyl group symmetric’’ linear

combination of zeta-functions of root systems,

which plays a fundamental role in the study of
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value-relations and functional relations in [8].

Let �� be a Dirichlet character modulo f� 2 N

for � 2 �. Set � ¼ ð��Þ�2�. We define an action of

Autð�Þ on characters by

ðw�Þ� ¼ �w�1�:

Now we define the L-function by

Lrðs;�; �Þ ¼
X
�2Pþþ

Y
�2�þ

��ðh�_; �iÞ
h�_; �is�

;

and more generally, define the L-function of �� by

Lrðs;�; ��Þ ¼
X
�2Pþþ

Y
�2��

��ðh�_; �iÞ
h�_; �is�

for any �� � �þ such that for any fundamental

weight �i, there exists a root � 2 �� satisfying

h�_; �ii > 0. Using the method introduced in

[11–14], we have

Theorem 1.2 [9]. The L-function Lrðs;�;��Þ
can be continued meromorphically to the whole Cn�

space, where n� ¼ j��j.
2. Bernoulli polynomials. Let V be the

set of all linearly independent subsets V ¼
f	1; . . . ; 	rg � �þ and let LðV_Þ ¼

L
	2V Z	_. For

V 2 V , let f
V
	 g be the dual basis of V_ ¼ f	_g. Let

R be the set of all linearly independent subsets

R ¼ f	1; . . . ; 	r�1g � �, HR_ ¼
Lr�1

i¼1 R 	_
i the hy-

perplane passing through R_ [ f0g and

HR :¼
[
R2R
q2Q_

ðHR_ þ qÞ:

Then it can be shown that V n HR is a disjoint union

of open subsets. Hence we denote by D
ð�Þ each open

connected component of V n HR so that

V n HR ¼
a
�2J

D
ð�Þ;

where J is a set of indices. Fix a vector � 2 V such

that

� 62
[
R2R

HR_ � HR:

Then h�; 
V
	 i 6¼ 0 for all V 2 V and 	 2 V. For

x 2 R, we denote its fractional part x� ½x� by fxg.
For y 2 V , V 2 V and 	 2 V, we define

fygV;	 ¼
fhy; 
V

	 ig ðh�; 
V
	 i > 0Þ,

1� f�hy; 
V
	 ig ðh�; 
V

	 i < 0Þ.

(

We note that fxg ¼ 1� f�xg holds for x 2 R n Z
and that fxg is right continuous while 1� f�xg is

left continuous. For y 2 V and t ¼ ðt�Þ�2� 2 Cn,

we define

F ðt;y; �Þ ¼
X
V2V

Y

2�þnV

t


t
 �
P

	2V t	h
_; 
V
	 i

0
@

1
A

� 1

jQ_=LðV_Þj
X

q2Q_=LðV_Þ

�
Y
	2V

t	 expðt	fyþ qgV;	Þ
et	 � 1

 !
;

and in particular F ðt; �Þ ¼ F ðt;0; �Þ. It should be

noted that in the A1 case, we have

F ðt;y;A1Þ ¼
tetfyg

et � 1

¼
X1
k¼0

BkðfygÞ
tk

k!
;

with y ¼ hy; �1i, t ¼ t�1
and � ¼ �_

1 , where fBkðxÞg
are the classical Bernoulli polynomials. Let T ¼
ft 2 C j jtj < 2�gn.

Theorem 2.1 [8,9]. Fix y2 V . Then F ðt;y;
�Þ is holomorphic on T with respect to t.

For k ¼ ðk�Þ�2� 2 Nn
0 and y 2 V , we define

P ðk;y; �Þ and Bkð�Þ by

F ðt;y; �Þ ¼
X
k2Nn

0

P ðk;y; �Þ
Y
�2�þ

tk��
k�!

;

F ðt; �Þ ¼
X
k2Nn

0

Bkð�Þ
Y
�2�þ

tk��
k�!

:

Let yi ¼ hy; �ii for 1 � i � r and we identify y with

ðyiÞ1�i�r 2 Rr. We set Q ½y� ¼ Q ½ðyiÞ1�i�r�.
Theorem 2.2 [8,9]. The function P ðk;y; �Þ is

analytically continued to a polynomial function

B
ð�Þ
k ðy; �Þ 2 Q ½y� from each Dð�Þ to the whole space

C� V with its total degree at most jkj ¼
P

�2�þ
k�.

Let S ¼ fs ¼ ðs�Þ 2 Cn j <s� > 1 for � 2 �þg
and K ¼ S \Nn. Note that both S and K are

Autð�Þ-invariant sets.
Theorem 2.3 [8].

Sðk;y; �Þ ¼ ð�1Þn
Y
�2�þ

ð2�
ffiffiffiffiffiffiffi
�1

p
Þk�

k�!

 !
P ðk;y; �Þ

for k 2 K.

In the A1 case, this theorem reduces to the

formula X
j2Znf0g

e2�
ffiffiffiffiffi
�1

p
jy

jk
¼ �

ð2�
ffiffiffiffiffiffiffi
�1

p
Þk

k!
BkðfygÞð2:1Þ
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for k 	 2. Hence the function P ðk;y; �Þ may be

regarded as a generalization of the Bernoulli peri-

odic functions, Bkð�Þ ¼ P ðk; 0;�Þ the Bernoulli

numbers and B
ð�Þ
k ðy; �Þ the Bernoulli polynomials

(see [1]). We have shown in [8] that P ðk;y; �Þ is

continuous in y on V and F ðt;y; �Þ is continuous on
T� V if � is not of type A1.

We define generalized Bernoulli numbers

Bk;�ð�Þ by its generating function Gðt;�; �Þ as
Gðt;�; �Þ

¼
Xf�
a�¼1
�2�þ

Y
�2�þ

��ða�Þ=f�

 !
F ðf t;yða; fÞ; �Þ

¼
X
k2Nn

0

Bk;�ð�Þ
Y
�2�þ

tk��
k�!

;

where f t ¼ ðf�t�Þ�2�þ
and

yða; fÞ ¼
X
�2�þ

a�

f�
�_:

Theorem 2.4 [9]. Let k 2 K. Assume

k� ¼ k	, �� ¼ �	 if k�k ¼ k	k, and assume

ð�1Þ�k���ð�1Þ ¼ 1 for all � 2 �þ. Then

Lrðk;�; �Þ

¼
ð�1Þjkjþn

jW j
Y
�2�þ

ð2�
ffiffiffiffiffiffiffi
�1

p
Þk�

k�!f
k�
�

gð��Þ
 !

Bk;�ð�Þ;

where gð�Þ is the Gauss sum.

Theorem 2.5 [9]. Assume that � is an

irreducible root system. Moreover assume that f� >

1 if � is of type A1. Then for w 2 Autð�Þ,

Bw�1k;w�1�ð�Þ ¼
Y

�2�w�1

ð�1Þ�k���ð�1Þ

0
@

1
ABk;�ð�Þ:

Theorem 2.6 [9]. We have Bk;�ð�Þ ¼ 0 if

there exists an element w 2 Autð�Þk \ Autð�Þ�
such that Y

�2�w�1

ð�1Þ�k���ð�1Þ 6¼ 1;

where Autð�Þk and Autð�Þ� are the stabilizers of k

and � respectively.

A more explicit form of the generating function

F ðt;y; �Þ can be calculated. For example,

F ðt;y;B2Þ is given as follows:

Example 2.7. The set of positive roots of

type B2 consists of �1, �2, 2�1 þ �2 and �1 þ �2. Let

t1 ¼ t�1
, t2 ¼ t�2

, t3 ¼ t2�1þ�2
and t4 ¼ t�1þ�2

. Let

� ¼ �_
1 þ "�_

2 where " > 0 is sufficiently small. Then

we have

F ðt;y;B2Þ ¼ t1t2t3t4

�
�

efy1gt1þfy2gt2

ðet1 � 1Þðet2 � 1Þðt1 þ t2 � t3Þðt1 þ 2t2 � t4Þ

þ
efy1�y2gt1þfy2gt3

ðet1 � 1Þðet3 � 1Þðt1 þ t2 � t3Þðt1 � 2t3 þ t4Þ

�
2ðefy1�

y2
2 þ

1
2gt1þfy22 þ

1
2gt4 þ efy1�

y2
2 gt1þfy22 gt4Þ

ðet1 � 1Þðet4 � 1Þðt1 þ 2t2 � t4Þðt1 � 2t3 þ t4Þ

� eð1�fy1�y2gÞt2þfy1gt3

ðet2 � 1Þðet3 � 1Þðt1 þ t2 � t3Þðt2 þ t3 � t4Þ

þ
eð1�f2y1�y2gÞt2þfy1gt4

ðet2 � 1Þðet4 � 1Þðt1 þ 2t2 � t4Þðt2 þ t3 � t4Þ

þ
ef2y1�y2gt3þð1�fy1�y2gÞt4

ðet3 � 1Þðet4 � 1Þðt2 þ t3 � t4Þðt1 � 2t3 þ t4Þ

�
:

By using the generating functions, we

can explicitly calculate Bk;�ð�Þ. Hence, from

Theorem 2.4, we obtain the following examples.

Example 2.8. Let 11 be the trivial character.

In the case when � ¼ f11g ¼ ð11; . . . ; 11Þ, k ¼ f2g ¼
ð2; . . . ; 2Þ and y ¼ 0, we have

�2ðf2g;B2Þ ¼
�8

302400
;

�3ðf2g;B3Þ ¼
19

8403115488768000
�18;

�3ðf2g;C3Þ ¼
19

8403115488768000
�18;

which are examples of Witten’s volume formulas

with explicit values of the constants. Let �5 the

quadratic character of conductor 5. Then we have

L2ð2; 2; 2; 2;�5; �5; �5; �5;B2Þ ¼
92

29296875
�8;

L2ð2; 4; 4; 2;�5; �5; �5; �5;B2Þ ¼
133676

17303466796875
�12;

L2ð2; 2; 2; 2; 11; �5; �5; 11;B2Þ ¼ �
3679

1230468750
�8;

L3ð2; 2; 2; 2; 2; 2;�5; �5; �5; �5; �5; �5;A3Þ

¼ �
1856

213623046875
�12:

Also, let �7 be the even cubic character of conductor

7 defined by

�7ð1Þ ¼ 1; �7ð2Þ ¼ e2�
ffiffiffiffiffi
�1

p
=3; �7ð3Þ ¼ e4�

ffiffiffiffiffi
�1

p
=3:

Then we obtain
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L2ð2; 2; 2; 2; �7; �7; �7; �7;B2Þ

¼
�8

gð�7Þ4
�

3406

86472015
�

1294
ffiffiffiffiffiffiffi
�3

p

17294403

 !

¼ gð�7Þ4�8 �
3406

207619308015
�

1294
ffiffiffiffiffiffiffi
�3

p

41523861603

 !
;

L2ð2; 4; 4; 2; 11; �7; �7; 11;B2Þ

¼ gð�7Þ2�12

�
69967019

181289027372537700

þ
102810289

ffiffiffiffiffiffiffi
�3

p

181289027372537700

�
:

3. Functional relations. By using the

method introduced in the papers [18,19] of the

third named author, we can prove some functional

relations among zeta-functions and also among L-

functions of root systems which include Witten’s

volume formulas as follows:

Example 3.1. In the case of A3 type, we

have

2�3ð2; 2; s; 2; 2; 2;A3Þ þ �3ð2; s; 2; 2; 2; 2;A3Þ
þ �3ð2; 2; 2; 2; s; 2;A3Þ þ 2�3ð2; 2; 2; 2; 2; s;A3Þ

¼ 339�ðsþ 10Þ � 256�ð2Þ�ðsþ 8Þ
þ 74�ð4Þ�ðsþ 6Þ þ 2�ð6Þ�ðsþ 4Þ:

This equation, as well as the functional equations

stated below, holds for all s 2 C except for singular

points of functions on the both sides.

In particular, putting s ¼ 2 in the above

equation, we obtain

�3ðf2g;A3Þ ¼
23

2554051500
�12

which was obtained by Gunnells and Sczech [2].

Note that Nakamura [17] considers functional

relations of A3 type in a different way.

By using our method, we can further obtain

�3ðf1g;A3Þ ¼ �
62

105
�ð2Þ3 þ 2�ð3Þ2;

which is not included in Witten’s volume formulas.

Example 3.2. In the case of C3 type, we

have

�3ð2; 2; s; 2; 2; 2; 2; 2; 2;C3Þ
þ �3ð2; 2; 2; 2; s; 2; 2; 2; 2;C3Þ
þ �3ð2; 2; 2; 2; 2; 2; s; 2; 2;C3Þ

¼
184775

4096
�ðsþ 16Þ �

16875

512
�ð2Þ�ðsþ 14Þ

þ
513

64
�ð4Þ�ðsþ 12Þ þ

25

64
�ð6Þ�ðsþ 10Þ

þ
1

32
�ð8Þ�ðsþ 8Þ:

Putting s ¼ 2, we obtain

�3ðf2g;C3Þ ¼
19

8403115488768000
�18;

which coincides with a result stated in Example 2.8.

Example 3.3. We further consider the case

of G2 type in [10], for example,

�2ð2; s; 2; 2; 2; 2;G2Þ þ �2ð2; 2; s; 2; 2; 2;G2Þ
þ �2ð2; 2; 2; s; 2; 2;G2Þ

¼ �
5

1458
2�s þ

5519

4

� �
�ðsþ 10Þ

�
1

162
2�s � 466ð Þ�ð2Þ�ðsþ 8Þ:

Putting s ¼ 2, we obtain

�2ð2; 2; 2; 2; 2; 2;G2Þ ¼
23

297904566960
�12:

Example 3.4. Concerning the L-function of

B2 type, we obtain

L2ð2; 2; s; 2;�5; �5; �5; �5;B2Þ
þ L2ð2; s; 2; 2;�5; �5; �5; �5;B2Þ

¼
1

50

�
3�

ffiffiffiffiffiffiffi
�1

p n
Li sþ 5; e2�

ffiffiffiffiffi
�1

p
=5

� �
� Li sþ 5; e�2�

ffiffiffiffiffi
�1

p
=5

� �o
þ 6�

ffiffiffiffiffiffiffi
�1

p n
Li sþ 5; e4�

ffiffiffiffiffi
�1

p
=5

� �
� Li sþ 5; e�4�

ffiffiffiffiffi
�1

p
=5

� �o
� 2�2 Li sþ 4; e2�

ffiffiffiffiffi
�1

p
=5

� �
þ Li sþ 4; e�2�

ffiffiffiffiffi
�1

p
=5

� �n o
� 2

5
�2 Li sþ 4; e4�

ffiffiffiffiffi
�1

p
=5

� �
� Li sþ 4; e�4�

ffiffiffiffiffi
�1

p
=5

� �n o
þ

24

5
�2�ðsþ 4Þ

�
;

where Liðs; zÞ ¼
P

n	1 z
nn�s. Putting s ¼ 2 and

using �ð6Þ ¼ �6=945,

X1
m¼1

sinð2�m=5Þ
m7

¼ 1112

3515625
�7;

and so on, we obtain

L2ð2; 2; 2; 2;�5; �5; �5; �5;B2Þ ¼
92

29296875
�8
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which is also a result in Example 2.8.

Remark 3.5. As mentioned above, the func-

tional relations stated in this section can be

obtained by the method in [18,19]. However we

can also obtain them by using a certain general-

ization of the method stated in Section 2. This

result will be given in a forthcoming paper.

References

[ 1 ] T. M. Apostol, Introduction to Analytic Number
Theory, Springer, New York, 1976.

[ 2 ] P. E. Gunnells and R. Sczech, Evaluation of
Dedekind sums, Eisenstein cocycles, and special
values of L-functions, Duke Math. J. 118
(2003), 229–260.

[ 3 ] J. E. Humphreys, Introduction to Lie algebras
and representation theory, Graduate Texts in
Mathematics, Vol. 9, Springer-Verlag, New
York-Berlin, 1972.

[ 4 ] J. E. Humphreys, Reflection groups and Coxeter
groups, Cambridge Univ. Press, Cambridge,
1990.

[ 5 ] Y. Komori, K. Matsumoto and H. Tsumura, Zeta-
functions of root systems, in ‘‘Proceedings of
the Conference on L-functions’’ (Fukuoka,
2006), L. Weng and M. Kaneko (eds), World
Scientific, 2007, pp. 115–140.

[ 6 ] Y. Komori, K. Matsumoto and H. Tsumura, Zeta-
functions of root systems, their functional
relations, and Dynkin diagrams, in ‘Analytic
Number Theory’ (Kyoto, 2006), RIMS Kokyu-
roku. (to appear).

[ 7 ] Y. Komori, K. Matsumoto and H. Tsumura, On
Witten multiple zeta-functions associated with
semisimple Lie algebras II. (Preprint).

[ 8 ] Y. Komori, K. Matsumoto and H. Tsumura, On
Witten multiple zeta-functions associated with
semisimple Lie algebras III. (Preprint).

[ 9 ] Y. Komori, K. Matsumoto and H. Tsumura, On
multiple Bernoulli polynomials and multiple
L-functions of root systems. (Preprint).

[ 10 ] Y. Komori, K. Matsumoto and H. Tsumura, On
Witten multiple zeta-functions associated with
semisimple Lie algebras IV. (in preparation).

[ 11 ] K. Matsumoto, Asymptotic expansions of double
zeta-functions of Barnes, of Shintani, and
Eisenstein series, Nagoya Math J. 172 (2003),
59–102.

[ 12 ] K. Matsumoto, On the analytic continuation of
various multiple zeta-functions, in Number
theory for the millennium, II (Urbana, IL,
2000), 417–440, A K Peters, Natick, MA.

[ 13 ] K. Matsumoto, The analytic continuation and
the asymptotic behaviour of certain multiple
zeta-functions I, J. Number Theory 101 (2003),
223–243.

[ 14 ] K. Matsumoto, On Mordell-Tornheim and other
multiple zeta-functions, in ‘Proceedings of
the Session in analytic number theory and
Diophantine equations’ (Bonn, January-June
2002), D. R. Heath-Brown and B. Z. Moroz
(eds.), Bonner Mathematische Schriften Nr.
360, Bonn 2003, n.25, 17pp.

[ 15 ] K. Matsumoto and H. Tsumura, On Witten
multiple zeta-functions associated with semi-
simple Lie algebras I, Ann. Inst. Fourier
(Grenoble) 56 (2006), no. 5, 1457–1504.

[ 16 ] K. Matsumoto and H. Tsumura, Functional
relations for various multiple zeta-functions,
in ‘Analytic Number Theory’ (Kyoto, 2005),
RIMS Kokyuroku No. 1512 (2006), 179–190.

[ 17 ] T. Nakamura, Double L-value relations and
functional relations for Witten zeta functions,
Tokyo J. Math. (to appear).

[ 18 ] H. Tsumura, On some functional relations be-
tween Mordell-Tornheim double L-functions
and Dirichlet L-functions, J. Number Theory
120 (2006), no. 1, 161–178.

[ 19 ] H. Tsumura, On functional relations between
the Mordell-Tornheim double zeta functions
and the Riemann zeta function, Math. Proc.
Cambridge Philos. Soc. 142 (2007), no. 3,
395–405.

[ 20 ] E. Witten, On quantum gauge theories in two
dimensions, Comm. Math. Phys. 141 (1991),
no. 1, 153–209.

[ 21 ] D. Zagier, Values of zeta functions and their
applications, in First European Congress of
Mathematics, Vol. II (Paris, 1992), 497–512,
Progr. Math., 120, Birkhäuser, Basel, 1994.
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