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Abstract: In this note we will show that an injection of the hyperbolic plane is Möbius if

and only if for some 0 < � < �, f preserves triangles with an interior angle equal to �.
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1. Introduction. Möbius transformations

have many beautiful properties. For example, a

map is Möbius if and only if it preserves cross ratios.

As for the geometrical aspect, circle-preserving is

the most well-known characterization of Möbius

transformations. Carathédory [2] proved that any

injective mapping of a domain D of C to C is the

restriction of a Möbius transformation if the image

of any circle contained with its interior in D is itself

a circle. This theorem is generalized by Höfer [7] to

arbitrary dimensions, where circles are replaced by

hyperspheres naturally. In these kinds of character-

izations, there are no regularity assumptions such

as differentiability or even continuity. This is the

theme of a modern field of geometric research which

is called characterizations of geometrical mappings

under mild hypotheses; see [7] and the references

therein. In [5], Haruki and Rassias gave a new

characterization of Möbius transformations by us-

ing Apollonius quadrilaterals. Recall that the

quadrilateral ABCD is said to be an Apollonius

quadrilateral if AB � CD ¼ BC �DA holds, where

AB denotes the length of the line segment joining

A and B. Then a quadrilateral is an Apollonius

quadrilateral if the absolute cross ratio of its four

vertices equals 1. Haruki and Rassias proved that

if f is meromorphic and if f sends Apollonius

quadrilaterals to Apollonius quadrilaterals, then f

is Möbius. See [3,4,6] for other related results.

On the other hand, Möbius transformations are

closely related to hyperbolic geometry since they

act as isometries on hyperbolic space (see Appendix

for a brief introduction of Möbius transformations

and hyperbolic geometry). There are also many

discussions in this direction. For example, Ungar [8]

introduced the so-called Möbius addition in the

open unit disk and even in the unit ball of any real

inner product space by employing Möbius trans-

formations. Recently, in [9], we considered the

hyperbolic disk B2 ¼ fzj jzj < 1g and presented a

new characterization of Möbius transformations

on B2 by using a class of hyperbolic geometric

objects as follows:

Theorem A. Suppose f : B2 ! B2 is a con-

tinuous injection. Then f is Möbius if and only if f

preserves Lambert quadrilaterals.

According to [1], the Lambert quadrilateral is

a hyperbolic quadrilateral which has exactly three

right interior angles.

The purpose of this note is to show the

continuity assumption in Theorem A can be re-

moved. Furthermore, we will prove that hyperbolic

triangles having angles with a fixed value can be

used to characterize Möbius transformations acting

on B2, too. Specifically, we have

Theorem 1. Suppose f : B2 ! B2 is an in-

jection. Then f is Möbius if and only if for some

0 < � < �, f preserves triangles with an interior

angle equal to �.

2. Proof of Theorem 1. We denote by a

prime the image under f , by ½A;B� the geodesic

segment connecting A and B, by AB the geodesic

through A and B, by A1A2 � � �An the hyperbolic

polygon with ordered vertices A1; A2; � � � ; An, and

by =�BAC the angle between ½A;B� and ½A;C�.
The following is useful for us, cf. [1, Theorem

7.16.2].

Proposition 2.1. Let �1; � � � ; �n be any or-

dered n-tuple with 0 � �j < ðn� 2Þ�; j ¼ 1; � � � ; n.
Then there exists a polygon P with interior angles

�1; � � � ; �n, occurring in this order around @P , if and

only if �1 þ � � � þ �n < ðn� 2Þ�.
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Lemma 2.2. Let f : B2 ! B2 be a continu-

ous injection. If f preserves right triangles, then it is

Möbius.

Proof. Let ABC be a triangle with =�BAC ¼ �

2
.

Claim that =�B0A0C0 ¼ �

2
. Otherwise, we may as-

sume that =�A0B0C0 ¼ �

2
. Then for any point D 2

½A;C�, it is easy to see ABD is a right triangle, while

the triangle A0B0D0 not. This is a contradiction.

Now given arbitrary Lambert quadrilateral

ABCD, with =�BCD <
�

2
. Obviously, there exist

three right triangles DAB, ABC and ADC by

the definition of Lambert quadrilaterals. The

preceding arguments shows that =�B0A0D0 ¼
=�A0B0C0 ¼ =�A0D0C0 ¼ �

2
, i.e., A0B0C0D0 is also a

Lambert quadrilateral. Hence f is Möbius by

Theorem A. �

In the following lemmas, we always assume

that 0 < � <
�

2
. Then by Proposition 2.1, there exist

quadrilaterals having interior angles
�

2
; �; �; � and

�� �; �; �; �, respectively, which we shall use later.

Lemma 2.3. Let f : B2 ! B2 be a continu-

ous injection and preserve quadrilaterals having

interior angles equal to
�

2
; �; �; �. Then f is Möbius.

Proof. By Lemma 2.2, we only need to show

that f preserves right angles. Otherwise, for some

quadrilateral ABCD, where =�A ¼ �

2
and =�B ¼

=�C ¼ =�D ¼ �, the angle at the vertex A0 is not

right, i.e., =�D0A0B0 ¼ �.

Since both =�ABC and =�ACB are strictly less

than
�

2
, there exists a point E 2 ½B;C� such that the

geodesic AE is orthogonal to BC. Thus =�BAE <
�

2
� � and then =�DAE > � because the angle sum of

a hyperbolic triangle is less than �. By the same

manner, for the point F on the geodesic ray DA

such that =�FBC ¼ �

2
, we have =�DFB < �. Hence

there exist G 2 ½A;F � and H 2 ½B;E�, such that

=�CHG ¼ �

2
and =�DGH ¼ �. By the assumption,

C0D0G0H 0 is also a quadrilateral with angles
�

2
; �; �; �. Then =�D0G0H 0 � �. Note that =�D0A0B0 ¼

�. However, it is easy to see =�D0A0B0 > =�D0G0H 0

since =�D0A0B0 þ =�G0A0B0 ¼ � > =�D0G0H 0 þ =�G0A0B0.
This is a contradiction. �

Lemma 2.4. Let f : B2 ! B2 be a continu-

ous injection. If f preserves triangles with an

interior angle equal to �, then it is Möbius.

Proof. First we shall show that for a given

triangle ABC with =�ABC ¼ �, =�A0B0C0 also

equals �. Construct a triangle ABD such that

=�ABD ¼ �� � >
�

2
. As in the proof of Lemma 2.2,

it follows that =�A0B0D0 ¼ �� �. Note that f

preserves triangles implies it preserves geodesics.

Then it follows that =�A0B0C0 ¼ �.

Now we want to show f preserves quadri-

laterals with angles
�

2
; �; �; � and hence f is Möbius

by using Lemma 2.3.

Suppose this is not the case for the quadri-

lateral ABCD, where =�A ¼ �

2
and =�B ¼ =�C ¼

=�D ¼ �. By Proposition 2.1, there exists a quadri-

lateral BCEF , such that =�CBF ¼ �� � and =�F ¼
=�E ¼ =�BCE ¼ �. Reflecting in the geodesic AF ,

we get two quadrilaterals ABC1D1 and BC1E1F ,

satisfying =�BAD1 ¼
�

2
, =�C1BF ¼ �� � and all the

left interior angles equal �.

Consider the image under f of these four

quadrilaterals. Note that f preserves angles equal

to � and �� �, respectively, since f preserves

geodesics. Reflecting B0C0E0F 0 in the geodesic

A0F 0, the quadrilateral we get is exactly B0C0
1E

0
1F

0

because they have the same interior angles and

then we can use the properties of �-transversals (cf.

[1, §7.26]). Thus the image of A0B0C0D0 under the

reflection in A0F 0 is A0B0C0
1G

0 for some point G0.
Since =�B0C0

1G
0 ¼ =�B0C0

1D
0
1 ¼ �, we have G0 2 C0

1D
0
1.

However, =�A0G0C0
1 ¼ =�A0D0

1C
0
1 ¼ �. This is a con-

tradiction. �

Remark. From the proof of Lemma 2.4, we

know that a by-product of preserving angles equal

to � is that f also preserves right angle. This is in

fact because f preserves geodesics, i.e., angles equal

to �. Thus by the same manner, induction deduces

that f preserves angles equal to
�

2n
.

Lemma 2.5. Let f : B2 ! B2 be an injec-

tion. If f preserves triangles with an interior angle

equal to �, then it is continuous.

Proof. Let a point A 2 B2 and any geodesic ray

l starting from A be given. Define the map

F : ½0;1Þ ! ½0;1Þ : t ¼ dðA;XÞ 7! dðA0; X0Þ;

where the point X runs through l and dðX;AÞ
denotes the hyperbolic distance between the points
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X and A. Obviously, F is monotone. Construct

a sequence of triangles ABCn such that for each

integer n, Cn 2 l, =�ABCn ¼
�

2n
and =�BACn ¼

�

2
.

By the hyperbolic Sine and Cosine Law, we have

sinh2 tn ¼
sinh2 a � sin2

�
�

2n

�

1� cosh2 a � sin2
�
�

2n

�;

where a ¼ dðA;BÞ; tn ¼ dðA;CnÞ. Then tn ! 0 as

n ! 1. By the remark after Lemma 2.4, we can

deduce F ðtnÞ ! 0 similarly. Hence F is continuous

and then the continuity of f at A follows

easily. �

Proof of Theorem 1. That f preserves geo-

desic segments implies f also preserves angles equal

to �� �. Hence when � 6¼ �

2
, it follows that f is an

isometry by Lemmas 2.4 and 2.5. Now the remain-

ing case is that f preserves right angles. Replacing

the quadrilaterals with interior angles
�

2
; �; �; � in

the proof of Lemma 2.4 by quadrilaterals with

interior angles
�

4
;
�

2
;
�

2
;
�

2
. Similarly, we also have f

preserves angles equal to
�

4
. Inductively, f pre-

serves angles equal to
�

2n
for each integer n. Thus

from the proof of Lemma 2.5, f is continuous and

then is Möbius by Lemma 2.2. �

Remark. From the proof of Theorem A in

[9], we know that if f preserves Lambert quadri-

laterals, then it also preserves right triangles. Then

we can show the continuity assumption in Theorem

A is irrelevant by the proof of Theorem 1.

Appendix. Classic Möbius transformations

are offspring of the theory of functions of one

complex variable. They are conformal homeomor-

phisms of the Riemann sphere identified either with

the extended plane �CC or with the 2-sphere S2 ¼
fx 2 R3: jxj ¼ 1g. Since Möbius transformations

have many beautiful properties in the language of

analysis, algebra and geometry, they have several

equivalent definitions. Here we just discuss two

dimensional Möbius transformations which is the

simplest but can mirror many natures of the general

case (see [1] for further details).

Let us start from the fractional linear trans-

formations, i.e., those given by

fðzÞ ¼ ðazþ bÞ=ðczþ dÞ;

where a; b; c; d 2 C and ad� bc 6¼ 0. All such f form

the (orientation-preserving) Möbius group M€oob(2).
Recall that the cross ratio of four points

x; y; z; w 2 �CC, where at least three of them are

distinct, is defined by

jx; y; z; wj ¼
ðx� zÞðy� wÞ
ðx� wÞðy� zÞ

with the understanding that
x�1
y�1

¼ 1. Since

fðxÞ � fðyÞ ¼ ðx� yÞðad� bcÞ
ðcxþ dÞðcyþ dÞ

, it is immediate that

the cross ratio is invariant under all Möbius

transformations in the sense that jx; y; z; wj ¼
jfðxÞ; fðyÞ; fðzÞ; fðwÞj. Furthermore, by [1, Theorem

3.2.7], one can say a map is a Möbius transforma-

tion (or a composition of a Möbius transformation

and the complex conjugation) if and only if it

preserves cross ratios.

The third equivalent definition is: a Möbius

transformation is even number of compositions of

reflections in circles or lines. This can be seen from

that both reflections in circles and lines have the

form fðzÞ ¼ ðazþ bÞ=ðczþ dÞ. Note that this defi-

nition plays an important role in the Poincaré

extension. Embed C ¼� fðz; 0Þg in R3 ¼ fðz; tÞg,
then each reflection in a circle S � C extends to

the reflection in the corresponding sphere in R3

whose equator is S. In an obvious way, each Möbius

transformation extends to a (Möbius) map acting

on R3. This is the Poincaré extension. An important

feature of the Poincaré extension is that each

Möbius transformation acts as an isometry of

the hyperbolic 3-space H3 ¼ fðz; tÞ : t > 0g with

the hyperbolic metric ds ¼ jdxj=t.
It is also known that a Möbius transformation

which preserves the hyperbolic plane H2 ¼ fz ¼
xþ iy : y > 0g is an isometry with respect to the

hyperbolic metric ds ¼ jdzj=y, or equivalently, a

Möbius transformation which preserves the hyper-

bolic disk B2 ¼ fz : jzj < 1g is an isometry with

respect to ds ¼ 2jdzj=ð1� jzj2Þ. In both models, a

hyperbolic geodesic is an arc which is orthogonal

to the boundary of hyperbolic 2-space.

Recall that the hyperbolic space is an example

of non-Euclidean geometry, in particular, the angle

sum of a hyperbolic (geodesic) triangle is less than

�. Besides the usual Sine and Cosine rules as

Euclidean geometry, there is a second Cosine rule

in hyperbolic geometry: given a hyperbolic triangle

with sides a; b and c and opposite angles �; � and �,
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then cosh c ¼ cos� cos� þ cos �

sin� sin �
. Note that this has

no analogue in Euclidean geometry. In hyperbolic

geometry, this means that if two triangles have the

same angles, then there is an isometry mapping one

triangle to the other.
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mations, Proc. Amer. Math. Soc. 128 (1999),
1197–1201.

[ 8 ] A. Ungar, The hyperbolic square and Möbius
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