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Abstract: The arcsine law for random walks on the line is well known and it was extended

greatly by Lamperti for a class of discrete-time stochastic processes. In the present paper we treat

its extreme case where the excursion intervals have very heavy tail probabilities. The result is a

refinement of Lamperti’s theorem. A functional limit theorem is also discussed.
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1. Introduction. It is well known that the

ratio of the time the simplest random walk spends

on the positive side obeys the arcsine law in the

long term. Lamperti [8] extended this result for the

following class of discrete-time stochastic processes:

Let X ¼ fXðnÞgn�0 be a stochastic process whose

state space S is divided into Sþ; S� and a one-point

set f�g. Assume that the process can get from one

of Sþ and S� to the other only by passing through �.

It is not necessary that X has the Markov property,

but instead we assume that the process visits the

state � infinitely many times with probability one

and starts afresh whenever it visits �.

Let AðnÞ denote the occupation time of the set

Sþ up to time n. The time spent on � is counted or

not according to whether the last state occupied

was in Sþ or not although this is not essential in

the present paper.

Lamperti [8] showed that the class of possible

limiting random variables in law of AðnÞ=n as n !
1 is fYp;�; 0 � p � 1; 0 � � � 1g: Yp;� is a ½0; 1�–
valued random variable with the Stieltjes transform

given by

E
1

�þ Yp;�

� �
¼

pð�þ 1Þ��1 þ ð1� pÞ���1

pð�þ 1Þ� þ ð1� pÞ��
;

for � > 0. If 0 < p < 1; 0 < � < 1, then the distri-

bution is continuous and the density is known

explicitly. He also obtained a necessary and suffi-

cient condition for the convergence in law to

Yp;�. Especially, when 0 < p < 1 and 0 � � < 1,

the condition can be rewritten as follows: � denoting

the first hitting time of X to � (i.e., � ¼
inffn � 1 jXn ¼ �g),

P�ð� > n;Xð1Þ 2 SþÞ �
cþ

n�LðnÞ ;ð1Þ

P�ð� > n;Xð1Þ 2 S�Þ �
c�

n�LðnÞð2Þ

as n ! 1 for cþ; c� > 0 and slowly varying LðxÞ.
Here, ‘�’ means that the ratio converges to 1. In

this case it holds that p ¼ cþ=ðcþ þ c�Þ. For details
we refer to Y. Yano et al. [3], which discusses the

functional limit theorem for Lamperti’s theorem.

Although half a century has already passed

since Lamperti’s result, many authors have been

interested in this kind of problems. Among them,

S. Watanabe [12] studied the case of diffusions

and obtained results which are quite similar to

Lamperti’s. See also Barlow et al. [1].

In the present paper we are interested in the

extreme case � ¼ 0 and hence Yp;� is a Bernoulli

random variable: P ðYp;0 ¼ 1Þ ¼ p; P ðYp;0 ¼ 0Þ ¼
1� p. In the case of diffusions this case is already

discussed by [6], and a refinement of Lamperti’s

theorem was obtained under a suitable nonlinear

normalization, which corresponds, roughly speak-

ing, to limit theorems under the log–log scale.

The aim of the present paper is to prove similar

theorems for discrete-time processes of the Lamp-

erti type instead of diffusions. Our main result is the

following

Theorem 1. Let LðxÞ be a slowly varying

function at 1. If (1) and (2) hold with � ¼ 0 and

cþ; c� > 0, then

lim
n!1

P�

�
L
�
AðnÞ

�
=LðnÞ � x

�

¼
c�x

c�xþ cþ
; 0 � x < 1,

1; x � 1.
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The proof will be given in Section 3. Here P�

means the law conditioned that X starts at �,

although it is not essential at all.

2. Preliminaries. Let fZðtÞgt�0 be a sym-

metric Cauchy process with Lévy measure dx=x2

and let us consider the Poisson point process

defined by its jumps �Zt :¼ ZðtÞ � Zðt� 0Þ. Define

nondecreasing processes mþ ¼ fmþðtÞgt�0 and

m� ¼ fm�ðtÞgt�0 by

mþðtÞ ¼ sup
0<s�t

�Zs; t > 0;

m�ðtÞ ¼ sup
0<s�t

ð��ZsÞ; t > 0

and mþð0Þ ¼ m�ð0Þ ¼ 0. In other words mþ is

the maximum process of a Poisson point process

with intensity dx=x2. mþ is often referred to as the

(canonical) extremal process. m� may be regarded

as an independent copy of mþ. Note that mþ
and m� are 1-self-similar; for every c > 0,

fm�ðc tÞgt�0 ¼
d fcm�ðtÞgt�0:

It is easy to write down the finite-dimensional

marginal distributions. Especially, we have

P ðm�ðtÞ � aÞ ¼ P ðm�1
� ðaÞ � tÞ ¼ e�t=a

for t � 0; a > 0. Here and throughout f�1 denotes

the right-continuous inverse of nondecreasing func-

tion f ; i.e., f�1ðtÞ ¼ inffx > 0 j fðxÞ > tg. Notice

that

fða� 0Þ � b if and only if a � f�1ðbÞ:ð3Þ

Now for given c� > 0, let

�þðtÞ :¼ cþmþðtÞ; ��ðtÞ :¼ c�m�ðtÞð4Þ

and define

�ðtÞ ¼ �ðcþ; c�; tÞ :¼ minft; �þð��1
� ðtÞÞg:

This process is in fact the same as the one which

appeared in [6], where �ðtÞ is represented in terms

of Brownian motion. Although the proof of the

equivalence is not difficult, we do not go into details

since we shall not use it in the sequel.

Note that, since �þ and �� are 1-self-similar, so

is �; i.e.,

f�ðc tÞgt�0 ¼d fc�ðtÞgt�0; c > 0:

The one-dimensional marginal distribution is given

as follows:

Lemma 1. For t � 0,

P
�
�ðtÞ � x

�
¼

c�x

c�xþ cþt
; 0 � x < t,

1; x � t.

8<
:

Proof. Since the assertion is trivial if x � t, let

us consider the case where 0 � x < t. Then �ðtÞ � x

holds if and only if �þð��1
� ðtÞÞ � x. Since �þð:Þ

does not have fixed discontinuities and furthermore

�þ is independent of ��, it is easy to see that

�þð��1
� ðtÞÞ ¼ �þð��1

� ðtÞ � 0Þ a.s.

Therefore,

P ð�ðtÞ � xÞ ¼ P
�
�þð��1

� ðtÞ � 0Þ � x
�
:

This combined with (3) implies that

P
�
�ðtÞ � x

�
¼ P

�
��1
� ðtÞ � ��1

þ ðxÞ
�

¼ P
�
m�1

� ðt=c�Þ � m�1
þ ðx=cþÞ

�
:

Since m�1
� ðt=c�Þ and m�1

þ ðt=cþÞ are independent and
exponentially distributed with means t=c� and t=cþ,
respectively, we see that the extreme right-hand

side equals

c�=t

ðc�=tÞ þ ðcþ=xÞ
¼

c�x

c�xþ cþt
:

�

Now let X be the process in Introduction and

let �n denotes the time of n-th visit to the special

state �:

�0 ¼ 0; �n ¼ inffk > �n�1 jXðkÞ ¼ �g ðn � 1Þ:

Let

YþðnÞ ¼ ð�n � �n�1Þ � 1SþðXð�n � 1ÞÞ;
Y�ðnÞ ¼ ð�n � �n�1Þ � 1S�[f�gðXð�n � 1ÞÞ

and put

TþðtÞ ¼
X
1�k�t

YþðkÞ; T�ðtÞ ¼
X
1�k�t

Y�ðkÞ; ðt � 0Þ

for n ¼ 0; 1; . . .. Thus TþðnÞ (or T�ðnÞ) denotes the

time spent on Sþ (resp. on S� [ f�g) during the first

n excursions and it holds

TþðtÞ þ T�ðtÞ ¼ �½t�; t � 0;

where ½t� denotes the integral part of t.

Let Dð½0;1Þ : RÞ denote the càdlàg function

space endowed with the Skorohod-Lindvall J1-top-

ology (see [2,9]).

Lemma 2. As � ! 1,
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1

�
L
�
Tþð�tÞ

�
;
1

�
L
�
T�ð�tÞ

�� �
�!L

�
�þðtÞ; ��ðtÞ

�
;

in Dð½0;1Þ : RÞ2, where �þ and �� are the same as

in (4) and ‘!L ’ denotes the convergence in law.

Proof. Notice that (1) and (2) (with � ¼ 0)
may be rewritten as

P�ðY�ð1Þ > nÞ �
c�

LðnÞ ; n ! 1:

The convergence in law of such i.i.d. random

variables are already known (see [4,10]). See also

[11]. Hence we know the convergence of each

component and hence it remains to study the joint

convergence. In other words, we need only to show

the asymptotic independence between fTþð�tÞgt�0

and fT�ð�tÞgt�0 as � ! 1: Notice that the asymp-

totic independence is not trivial because fðYþðnÞ;
Y�ðnÞÞgn are i.i.d. random vectors but YþðnÞ and

Y�ðnÞ are dependent. However, this difficulty can be

removed, for example, by the following easy argu-

ment: Let fNðtÞgt�0 be an usual Poisson process

which is independent of fðYþðnÞ; Y�ðnÞÞgn (extend-

ing the probability space, if necessary) and has

intensity 1 (i.e. E½Nð1Þ� ¼ 1). Then,

1

�
L
�
Tþð�tÞ

�
;
1

�
LðT�ð�tÞÞ

� �

and

1

�
L
�
TþðNð�tÞÞ

�
;
1

�
L
�
T�ðNð�tÞÞ

�� �
ð5Þ

have the same limiting processes. This assertion is

clear from the law of large numbers, at least for all

finite-dimensional marginal distributions. (In fact

the result holds also in J1-topology, although we

need not this fact here). Therefore, it is sufficient to

prove the asymptotic independence of the compo-

nents in (5). However, they are in fact independent

themselves. To see this fact notice that�
TþðNðtÞÞ; T�ðNðtÞÞ

�� �
t�0

is a vector-valued compound Poisson process and

the two components have no common discontinu-

ities because YþðnÞ > 0 implies Y�ðnÞ ¼ 0. This

proves the independence. �

In the sequel we need that the inverse function

L�1ðxÞ is defined for all x � 0. Therefore, we put

some additional conditions on the slowly varying

function L. They are of course inessential. Since the

left-hand side of (1) is nonincreasing in n, it is

harmless to assume that L is nondecreasing when

� ¼ 0. Furthermore, replacing L by another slowly

varying function L� such that LðxÞ � L�ðxÞ; x ! 1,

we can, without loss of generality, further assume

that LðxÞ is defined on ½0;1Þ and is a strictly

increasing, continuous function such that Lð0Þ ¼ 0.

Hence, in what follows L�1 is the inverse function

in the usual sense. A typical example for such L is

LðxÞ ¼ logðxþ 1Þ with L�1ðxÞ ¼ ex � 1.

Lemma 3. As � ! 1,

1

�
L
�
T�

�
T�1
þ

�
L�1ð�tÞ

���
�!f:d: ��ð��1

þ ðtÞÞ;

where ‘�!f.d. ’ denotes the weak convergence of all

finite-dimensional marginal distributions.

Proof. We use the idea of [5]. Let � denote the

totality of nondecreasing right-continuous functions

xðtÞ; t � 0 satisfying that xð0Þ ¼ 0 and xð1Þ ¼ 1.

If xn; yn 2 �ðn � 1Þ converge respectively to x; y 2
� at all continuity points of x and y, respectively,

then

ynðx�1
n ðtÞÞ ! yðx�1ðtÞÞ; n ! 1

for every t > 0 such that

yðx�1ðt� 0Þ � 0Þ ¼ yðx�1ðtÞÞ:

Now notice that the inverse process of the first

component in Lemma 2 is ð1=�ÞT�1
þ

�
L�1ð�tÞ

�
.

Therefore, substituting this process into the second

component in Lemma 2, we can deduce that

1

�
L
�
T�

�
T�1
þ

�
L�1ð�tÞ

���
�!f.d. ��ð��1

þ ðtÞÞ:

Of course we need to check the condition

��ð��1
þ ðt� 0Þ � 0Þ ¼ ��ð��1

þ ðtÞÞ; a.s.;ð6Þ

for every fixed t > 0. But this can easily be verified

if we note that ��1
þ and �� are mutually independent

and either of them do not have any fixed disconti-

nuities.

Here, we derived the convergence of finite-

dimensional distributions of YnðX�1
n ðtÞÞ from the

weak convergence of fðXnðtÞ; YnðtÞÞgt�0. For the

topological basis of this kind of argument we refer

to [7]. �

3. Functional limit theorem. In this sec-

tion we give a functional limit theorem for Theorem

1. Suppose that the conditions in Theorem 1 are

satisfied with a slowly varying function L.
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Let fAðnÞgn�0 be as in Section 1 and for real

t � 0 we define AðtÞ by the linear interpolation

AðtÞ ¼ AðnÞ þ ðt� nÞðAðnþ 1Þ �AðnÞÞ;
n � t < nþ 1:

Another definition for AðtÞ is also possible;

AðtÞ :¼ Að½t�Þ. However, since the difference be-

tween these two definitions is at most 1, there is

no significant difference in our limit theorems.

Theorem 2. Let L be a slowly varying func-

tion satisfying the supplementary conditions stated

before Lemma 3. Then, under the assumptions in

Theorem 1,

1

�
L
�
AðL�1ð�tÞÞ

�	 

t�0

�!f.d. �ðtÞf gt�0; � ! 1:

Proof. We first note the following representa-

tion so called William’s formula;

A�1ðtÞ ¼ tþ T�
�
T�1
þ ðtÞ

�
; t � 0:ð7Þ

This formula can easily be understood in the

following way. For given t > 0, A�1ðtÞ denotes

the necessary time for the occupation time on Sþ
of X to reach t. However, in this time interval,

the occupation times on Sþ and Sc
þ are t and

T�
�
T�1
þ ðtÞ

�
, respectively. The point is that the first

is not Tþ
�
T�1
þ ðtÞ

�
. Thus we deduce the formula (7).

We refer to [3] for details.

Suppose that functions f and g satisfy

lim
�!1

1

�
L
�
fð�Þ

�
¼ a; lim

�!1

1

�
L
�
gð�Þ

�
¼ b:

Then, since L is slowly varying, we have from

maxffð�Þ; gð�Þg � fð�Þ þ gð�Þ � 2maxffð�Þ; gð�Þg

that

lim
�!1

1

�
L
�
fð�Þ þ gð�Þ

�
¼ max a; bf g:

Therefore, by (7) we see that the limit process of

1

�
L
�
A�1

�
L�1ð�tÞ

��
is the larger of t and the limit process of

1

�
L
�
T�

�
T�1
þ ðL�1ð�tÞÞ

��
; t � 0:ð8Þ

Thus, by Lemma 3, we have

1

�
L
�
A�1

�
L�1ð�tÞ

��
�!f.d. maxft; ��ð��1

þ ðtÞÞg:ð9Þ

Notice here that the inverse process of the limit

process is f�ðtÞgt�0, which is a self-similar process

and hence has no fixed discontinuities. Now consid-

ering the inverse processes of the both sides of (9),

we complete the proof of Theorem 2. �

It remains to prove Theorem 1. However, it is

an easy corollary of Theorem 2 and Lemma 1.
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