88 Proc. Japan Acad., 83, Ser. A (2007)

[Vol. 83(A),

Note on imaginary quadratic fields satisfying the Hilbert-Speiser

condition at a prime p

By Humio ICHIMURA

Department of Mathematical Sciences, Faculty of Science, Ibaraki University
Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan

(Communicated by Heisuke HIRONAKA, M.J.A., June 12, 2007)

Abstract:

Let p be a prime number. A number field F satisfies the condition (H,) when

any tame cyclic extention N/F of degree p has a normal integral basis. For the case p = 2, it is
shown by Mann that F' satisfies (Hz) only when hp = 1 where hp is the class number of F. We
prove that if an imaginary quadratic field F' satisfies (H),) for some p, then hp = 1.
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1. Introduction. Let p be a prime number.
We say that a number field F' satisfies the condition
(Hp) when any tame cyclic extension N/F of degree
p has a normal integral basis (NIB for short). The
classical theorem of Hilbert and Speiser asserts that
the rationals @ satisfy (H,,) for all prime numbers p.
On the other hand, Greither et al. [3] recently proved
that a number field F' # @ does not satisfy (H,) for
infinitely many primes p. Thus, it is of interest to
determine which number field F satisfies (H),) or not.
In [1, 5, 8], all imaginary quadratic fields F' satisfying
(Hp) were determined for p = 2, 3, 5, 7 and 11. It
turned out that all of them satisfy hp = 1. Here,
hr is the class number of F. One naturally asks
“can there exist a number field F satisfying (Hp)
but hp > 1 7?7 For the case p = 2, it is already
shown by Mann [9] that if a number field F' satisfies
(Hs3), then hp = 1. More precisely, it is known that
F satisfies (Hy) if and only if the ray class group of
F defined modulo 2 is trivial [4]. In this note, we
give an answer to the above question when F' is an
imaginary quadratic field.

Theorem. Let p be a prime number. If an
imaginary quadratic field F satisfies the condition
(Hp), then hp = 1.

It is a well known result of Stark [12] that there
are exactly nine imaginary quadratic fields F with
hr = 1. Hence, we obtain the following

Corollary. For each prime number p, there
exist at most mine imaginary quadratic fields satis-
fying (Hp).

2. Proof of Theorem. In view of the result
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of Mann cited in Section 1, it suffices to deal with
the case where p is odd. Let p be a fized odd prime
number, and G = F; the multiplicative group of the
finite field F', of p elements. For an integer i € Z
with p t 4, let o; be the corresponding element of
G = F;. Let S¢ be the classical Stickelberger ideal
of the group ring Z[G|. Let

p—1
-3
i=1

be the Stickelberger element of conductor p. It is
known that the ideal S is generated over Z by Stick-
elberger elements

o, € Qla]

h<JIEH

2 I 1
(1)  0,=(r—o.)0 lzzl [p} o, € Z[G]
for all r € Z with p{r (cf. Washington [13, Lemma
6.9]). Here, for a real number x, [z] is the largest
integer < .

Let F be a number field, and put K = F((,)
where (, is a primitive p-th root of unity. When
F/Q is unramified at p, the Galois group Gal(K/F)
is identified with G through the Galois action on (.
Hence, the group ring Z[G] acts on the ideal class
group Clg of K. The following is a consequence of
a theorem of McCulloh [10].

Lemma 1 ([6, Theorems 5, 6], [8, Propositions
3,4]). Assume that F/Q is unramified at p. Then,
F satisfies the condition (Hp) only when Sg an-
nihilates the class group Clk and the natural map
Clp — Clg is trivial.

In all what follows, let F be an imaginary
quadratic field, and put K = F({,). The follow-
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ing lemma is an immediate consequence of [3, Theo-
rem 1]. See also Replogle [11, Theorem 4.3(c)] for a
“quantitative” version.

Lemma 2 ([8, Lemma 1]). When F/Q is ram-
ified at p, F satisfies (Hp) if and only if p =3 and
F=Q(V-3).

In view of this lemma, we may and shall assume
that F/Q is unramified at p in the following. Hence,
Gal(K/F) is identified with G = F . We fix a gen-
erator p of the Galois group G.

Lemma 3 ([8, Lemma 3)). If F satisfies (Hp),
then the exponent of Clp divides 2.

Lemma 4 ([8, Lemma 5]). Let p be a prime
number with p = 3 mod 4, and let E = F(\/—p). If
F satisfies the condition (Hp), then the natural map
Clp — Clg is trivial.

Proof. We give a proof for a comparison with
the case p = 1 mod 4 (Lemma 7). Let 2 be an
ideal of F. By Lemma 1, 20 = aOg for some
a € K*. Hence, it follows that AFlOL = B0g
with 8 = Nk, pa. This implies that A0 is principal
since [K : E] = (p — 1)/2 is odd and 22 is principal
by Lemma 3. g

Lemma 5. Under the setting of Lemma 4, as-
sume that p > 7 and that there exists a prime number

q satisfying
q|he, qthe, qf(p—1)/2
where k = Q(v/—p). Then, F does not satisfy (Hp).
Proof. Let E=F(/—p)=F -k, and let H =
Gal(K/E) C G. Assuming the existence of a prime
number ¢ satisfying the conditions, let ¢ be a class in
Clg of order q. As ¢t (p—1)/2, the lift ¢ of ¢ to K

is of order ¢g. Assume that F' satisfies (H,). Then,
by Lemma 4, the class ¢!*? = 1 in Clg, and hence

(2) ch=¢t

where p is a generator of G. For an integer r € Z,
write 0, = x + yp for some z,y € Z[H]. Letting
Lty Z[H] — Z be the augmentation, put a = 1y (x)
and b = 1y (y). As F satisfies (Hp), it follows from
Lemma 1 that ¢ = 1. Hence, we see from (2) that

(3) vl =1.

Let 9 be the quadratic character of conductor p.
Then, we see from (1) that

a—b=1v(0:) = (r—u(r) By
where By is the first Bernoulli number. As p =
3 mod 4, % is an odd character and hy = —Bj

Note on imaginary quadratic fields satisfying the Hilbert-Speiser condition at a prime p 89

by the analytic class number formula ([13, Theorem
4.17]). Hence, it follows that

a—b=(r)—r)- hg.

Noting that p > 7, we see that the ideal of Z gen-
erated by ¢(r) — r for all r with p { r equals Z.
Therefore, the relation (3) implies ¢+ = 1. This is
impossible as ¢ is of order ¢ and ¢ t hy. ]

Proof of Theorem for the case p =
3 mod 4. We use the same notation as in Lemma
5. Let F' be an imaginary quadratic field satisfying
(Hp). We may as well assume that p > 7 since the
assertion holds when p = 3. Assume that hp # 1.
Then, 2 ‘ hp by Lemma 3. As E/F is totally rami-
fied at p, it follows that 2 ‘ hg. It is well known that
hi is odd by genus theory. Hence, the prime ¢ = 2
satisfies the conditions in Lemma 5. Therefore, F’
does not satisfy (H,), a contradiction. U

In all what follows, let p be a prime number with
p = 1 mod 4, and let 2°t! be the highest power of
2 dividing p — 1. Let k be the intermediate field of
Q((p)/Q with [k : Q] = 2° Clearly, k is totally
real. Let F = Q(v/—d) be an imaginary quadratic
field unramified at p, where d is a square free positive
integer with ptd. Put

E=F-kCK and H=Gal(K/E)CG.

To show Theorem, we may as well assume that d #
1, 3.

Lemma 6.
Op =0.

Proof. Let W be the group of roots of unity
in E. Asd # 1,3, we have W = {£1}. Hence, it
suffices to show that the unit index Qg of E equals
1. Let J be the complex conjugation of E. As is
well known, €/e/ € W for any unit e € OF (cf. [13,
Lemma 1.6]). Consider the homomorphism

Under the above setting, we have

005 =W =W/W? e— /e

It is known that Qg = 1 if and only if the map ¢ is
trivial (cf. [13, page 40]). Assume to the contrary
that ¢ is nontrivial. Then, ¢/ = —¢ for some € € OF.
It follows from Kummer theory that e = xzv/—d for
some x € k* since E = k(v/—d) and k is the maximal
real subfield of E. However, this is impossible since
p1d and a prime ¢ dividing d is unramified at k. O

Lemma 7. Under the above setting, F' satis-
fies (Hp) only when the natural map Clp — Clg is

trivial.
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Proof. Assume that F satisfies (H,). By
Lemma 1, any ideal class ¢ € Clk satisfies 2 =1,
As the norm map Clg — Clg is surjective, any ideal
class ¢ € Clg satisfies the same relation. We write

2°—1

(4) 0y = Z zip’
i=0

for some z; € Z[H] where p is a generator of G. Let
a; = vy (x;) where vy is the augmentation of Z[H].
Then, it follows that

21

(5) A=1 with A= Z aip’
i=0

for any ¢ € Clg. By (1), we easily see that

2°—1

o e

Let ¢ be a character of G of order 2¢. Then, 1 is
even, and any nontrivial character of G of order di-
viding 2¢ is of the form 97 with 1 < j < 2¢ — 1.
These characters are regarded as those of the Ga-
lois group Gal(E/F) = G/H. Let ¢ = ¥(p) be a
primitive 2°-th root of unity. We see from (1) that

W (02) = (2—97(2)) - By y-s

where B; ,-; is the first Bernoulli number. However,
as 17 is nontrivial and even, we have By = 0.
Hence, it follows from (4) that

201

(7) ¢7(62) = > ai¢V =0 forl1<j<2¢—1.
=0

From (6) and (7), we obtain

p—1

Therefore, by (5), any ideal class ¢ € Clg satisfies
the relation

(cl+p+~~~+p2€*1)ao =1.

By Lemma 3, the order of the class Ng,/p(c) € Clp
divides 2. Therefore, as ag is odd, it follows that

o+’ T g
for all ¢ € Clg. As the norm map Clg — Clp is
surjectve, this implies that the map Clp — Clg is

trivial. O
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Proof of Theorem for the case p =
1 mod 4. Assume that F satisfies the condition
(Hp). Let —D be the discriminant of F. Let us
show the following

Claim. For a prime number ¢ dividing D, we
have D/q = a? for some integer a € Z.

Actually: Let g be a prime number dividing D,
and let £ be the prime ideal of F' over q; ¢Op =
02, By Lemma 7, QO0g = 2Ofg for some z € EX.
Because of Lemma 6, this implies that ¢ = ez? for
some unit € € 0. Noting that E = k(v/—D), we see
from Kummer theory that ¢ = ey? or ¢ = e(—D)y?
for some y € k™. However, the first equality can not
hold since k/Q is unramified outside p and pt D. Tt
follows from the second equality that D/q is a square
in Q@™ by the same reason.

By the Claim, there are only two possibilities
for —D according to whether D is even or odd:

(i)—D=-8, (i)—D=-—A\

Here, )\ is a prime number with A\ = 3 mod 4. When
—D = —8, we have hp = 1. When —D = —), it is
known that hr is odd by genus theory. This implies
hr = 1 since hp is a 2-power by Lemma 3. (]

Remark 1.
p > 7 remains prime in an imaginary quadratic field
F, then F does not satisfy (H,) (8, Lemma 2], [11,
Theorem 4.3(a)]). Therefore, we see from Theorem
that there exist infinitely many primes p for which
no imaginary quadratic field satisfies (H,).

Remark 2. An assertion similar to Lemma 1
holds also when F/Q is ramified at p ([6, Theorem

5)).

It is known that if a prime number

Remark 3. Let us say that a number field F
satisfies the condition (H,, »,) when any tame abelian
extension N/F of exponent p has a NIB. When p = 2,
it is known that F satisfies (H2,00) if and only if
the ray class group Clg(4) of F defined modulo 4 is
trivial ([4, Proposition 3]). As Clg(4) is trivial only
when F' is totally real ([7, Lemma 4]), there exists
no imaginary quadratic field satisfying (Hz, o).

For an odd prime number p and an imaginary
quadratic field F with (p, F) # (3, Q(v/-3)), we
can show that F satisfies (Hp o) if and only if it
satisfies (Hp), as follows. Let F be an imaginary
quadratic field satisfying (H,), and let N/F be a
tame abelian extension of exponent p. By Theo-
rem and (p, F) # (3, Q(v/—3)), p does not divide
hp x |Of|. Then, we see from class field theory
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that N is contained in the composite M =[], N; of
some tame cyclic extensions N;/F of degree p whose
conductors are prime ideals of F' different from each
other. As hp = 1, the extensions N;/F are linearly
disjoint. Therefore, since each N;/F has a NIB, the
composite M has a NIB by a classical theorem on
rings of integers (cf. [2, (2.13)]). Hence, N/F has a
NIB as N C M. The author thanks to an anonymous
mathematician for pointing out this argument. For-
merly, the author showed this assertion for the case
p = 3 using complicated Kummer theory argument.

Let p = 3 and F = Q(v/-3). We can show
that F' does not satisfy (Hs o). Actually, let & be a
copy of two cyclic groups of order p. Let Cl(Op[®])
be the locally free class group of the group ring
Or[8], and R(Or[®]) the subset of the locally free
classes [On] for all tame &-Galois extensions N/F.
Using the main theorem in [10], we can show that
R(Op[®]) # {0} by some hard hand-calculation.
This implies that there exists a tame &-Galois ex-
tension N/F without NIB.
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