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Note on imaginary quadratic fields satisfying the Hilbert-Speiser

condition at a prime p
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Abstract: Let p be a prime number. A number field F satisfies the condition (Hp) when
any tame cyclic extention N/F of degree p has a normal integral basis. For the case p = 2, it is
shown by Mann that F satisfies (H2) only when hF = 1 where hF is the class number of F . We
prove that if an imaginary quadratic field F satisfies (Hp) for some p, then hF = 1.

Key words: Hilbert-Speiser number field; imaginary quadratic field.

1. Introduction. Let p be a prime number.
We say that a number field F satisfies the condition
(Hp) when any tame cyclic extension N/F of degree
p has a normal integral basis (NIB for short). The
classical theorem of Hilbert and Speiser asserts that
the rationals Q satisfy (Hp) for all prime numbers p.
On the other hand, Greither et al. [3] recently proved
that a number field F �= Q does not satisfy (Hp) for
infinitely many primes p. Thus, it is of interest to
determine which number field F satisfies (Hp) or not.
In [1, 5, 8], all imaginary quadratic fields F satisfying
(Hp) were determined for p = 2, 3, 5, 7 and 11. It
turned out that all of them satisfy hF = 1. Here,
hF is the class number of F . One naturally asks
“can there exist a number field F satisfying (Hp)
but hF > 1 ?” For the case p = 2, it is already
shown by Mann [9] that if a number field F satisfies
(H2), then hF = 1. More precisely, it is known that
F satisfies (H2) if and only if the ray class group of
F defined modulo 2 is trivial [4]. In this note, we
give an answer to the above question when F is an
imaginary quadratic field.

Theorem. Let p be a prime number. If an
imaginary quadratic field F satisfies the condition
(Hp), then hF = 1.

It is a well known result of Stark [12] that there
are exactly nine imaginary quadratic fields F with
hF = 1. Hence, we obtain the following

Corollary. For each prime number p, there
exist at most nine imaginary quadratic fields satis-
fying (Hp).

2. Proof of Theorem. In view of the result
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of Mann cited in Section 1, it suffices to deal with
the case where p is odd. Let p be a fixed odd prime
number, and G = F×

p the multiplicative group of the
finite field F p of p elements. For an integer i ∈ Z

with p � i, let σi be the corresponding element of
G = F×

p . Let SG be the classical Stickelberger ideal
of the group ring Z[G]. Let

θ =
p−1∑
i=1

i

p
σ−1
i ∈ Q[G]

be the Stickelberger element of conductor p. It is
known that the ideal SG is generated over Z by Stick-
elberger elements

(1) θr = (r − σr)θ =
p−1∑
i=1

[
ri

p

]
σ−1
i ∈ Z[G]

for all r ∈ Z with p � r (cf. Washington [13, Lemma
6.9]). Here, for a real number x, [x] is the largest
integer ≤ x.

Let F be a number field, and put K = F (ζp)
where ζp is a primitive p-th root of unity. When
F/Q is unramified at p, the Galois group Gal(K/F )
is identified with G through the Galois action on ζp.
Hence, the group ring Z[G] acts on the ideal class
group ClK of K. The following is a consequence of
a theorem of McCulloh [10].

Lemma 1 ([6, Theorems 5, 6], [8, Propositions
3, 4]). Assume that F/Q is unramified at p. Then,
F satisfies the condition (Hp) only when SG an-
nihilates the class group ClK and the natural map
ClF → ClK is trivial.

In all what follows, let F be an imaginary
quadratic field, and put K = F (ζp). The follow-
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ing lemma is an immediate consequence of [3, Theo-
rem 1]. See also Replogle [11, Theorem 4.3(c)] for a
“quantitative” version.

Lemma 2 ([8, Lemma 1]). When F/Q is ram-
ified at p, F satisfies (Hp) if and only if p = 3 and
F = Q(

√−3).
In view of this lemma, we may and shall assume

that F/Q is unramified at p in the following. Hence,
Gal(K/F ) is identified with G = F×

p . We fix a gen-
erator ρ of the Galois group G.

Lemma 3 ([8, Lemma 3]). If F satisfies (Hp),
then the exponent of ClF divides 2.

Lemma 4 ([8, Lemma 5]). Let p be a prime
number with p ≡ 3 mod 4, and let E = F (

√−p). If
F satisfies the condition (Hp), then the natural map
ClF → ClE is trivial.

Proof. We give a proof for a comparison with
the case p ≡ 1 mod 4 (Lemma 7). Let A be an
ideal of F . By Lemma 1, AOK = αOK for some
α ∈ K×. Hence, it follows that A[K:E]OE = βOE

with β = NK/Eα. This implies that AOE is principal
since [K : E] = (p − 1)/2 is odd and A2 is principal
by Lemma 3. �

Lemma 5. Under the setting of Lemma 4, as-
sume that p ≥ 7 and that there exists a prime number
q satisfying

q
∣∣ hE , q � hk, q � (p− 1)/2

where k = Q(
√−p). Then, F does not satisfy (Hp).

Proof. Let E = F (
√−p) = F · k, and let H =

Gal(K/E) ⊆ G. Assuming the existence of a prime
number q satisfying the conditions, let c be a class in
ClE of order q. As q � (p− 1)/2, the lift c̄ of c to K
is of order q. Assume that F satisfies (Hp). Then,
by Lemma 4, the class c1+ρ = 1 in ClE , and hence

(2) c̄ ρ = c̄−1

where ρ is a generator of G. For an integer r ∈ Z,
write θr = x + yρ for some x, y ∈ Z[H ]. Letting
ιH : Z[H ] → Z be the augmentation, put a = ιH(x)
and b = ιH(y). As F satisfies (Hp), it follows from
Lemma 1 that c̄ θr = 1. Hence, we see from (2) that

(3) c̄ a−b = 1.

Let ψ be the quadratic character of conductor p.
Then, we see from (1) that

a− b = ψ(θr) = (r − ψ(r)) ·B1,ψ

where B1,ψ is the first Bernoulli number. As p ≡
3 mod 4, ψ is an odd character and hk = −B1,ψ

by the analytic class number formula ([13, Theorem
4.17]). Hence, it follows that

a− b = (ψ(r) − r) · hk.
Noting that p ≥ 7, we see that the ideal of Z gen-
erated by ψ(r) − r for all r with p � r equals Z.
Therefore, the relation (3) implies c̄hk = 1. This is
impossible as c̄ is of order q and q � hk. �

Proof of Theorem for the case p ≡
3 mod 4. We use the same notation as in Lemma
5. Let F be an imaginary quadratic field satisfying
(Hp). We may as well assume that p ≥ 7 since the
assertion holds when p = 3. Assume that hF �= 1.
Then, 2

∣∣ hF by Lemma 3. As E/F is totally rami-
fied at p, it follows that 2

∣∣ hE . It is well known that
hk is odd by genus theory. Hence, the prime q = 2
satisfies the conditions in Lemma 5. Therefore, F
does not satisfy (Hp), a contradiction. �

In all what follows, let p be a prime number with
p ≡ 1 mod 4, and let 2e+1 be the highest power of
2 dividing p − 1. Let k be the intermediate field of
Q(ζp)/Q with [k : Q] = 2e. Clearly, k is totally
real. Let F = Q(

√−d) be an imaginary quadratic
field unramified at p, where d is a square free positive
integer with p � d. Put

E = F · k ⊆ K and H = Gal(K/E) ⊆ G.

To show Theorem, we may as well assume that d �=
1, 3.

Lemma 6. Under the above setting, we have
O×
E = O×

k .
Proof. Let W be the group of roots of unity

in E. As d �= 1, 3, we have W = {±1}. Hence, it
suffices to show that the unit index QE of E equals
1. Let J be the complex conjugation of E. As is
well known, ε/εJ ∈ W for any unit ε ∈ O×

E (cf. [13,
Lemma 1.6]). Consider the homomorphism

ϕ : O×
E →W = W/W 2, ε→ ε/εJ .

It is known that QE = 1 if and only if the map ϕ is
trivial (cf. [13, page 40]). Assume to the contrary
that ϕ is nontrivial. Then, εJ = −ε for some ε ∈ O×

E .
It follows from Kummer theory that ε = x

√−d for
some x ∈ k× since E = k(

√−d) and k is the maximal
real subfield of E. However, this is impossible since
p � d and a prime q dividing d is unramified at k. �

Lemma 7. Under the above setting, F satis-
fies (Hp) only when the natural map ClF → ClE is
trivial.
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Proof. Assume that F satisfies (Hp). By
Lemma 1, any ideal class c ∈ ClK satisfies cθ2 = 1.
As the norm map ClK → ClE is surjective, any ideal
class c ∈ ClE satisfies the same relation. We write

(4) θ2 =
2e−1∑
i=0

xiρ
i

for some xi ∈ Z[H ] where ρ is a generator of G. Let
ai = ιH(xi) where ιH is the augmentation of Z[H ].
Then, it follows that

(5) cA = 1 with A =
2e−1∑
i=0

aiρ
i

for any c ∈ ClE . By (1), we easily see that

(6)
2e−1∑
i=0

ai =
p−1∑
j=0

[
2j
p

]
=
p− 1

2
.

Let ψ be a character of G of order 2e. Then, ψ is
even, and any nontrivial character of G of order di-
viding 2e is of the form ψj with 1 ≤ j ≤ 2e − 1.
These characters are regarded as those of the Ga-
lois group Gal(E/F ) = G/H . Let ζ = ψ(ρ) be a
primitive 2e-th root of unity. We see from (1) that

ψj(θ2) = (2 − ψj(2)) ·B1,ψ−j

where B1,ψ−j is the first Bernoulli number. However,
as ψj is nontrivial and even, we have B1,ψ−j = 0.
Hence, it follows from (4) that

(7) ψj(θ2) =
2e−1∑
i=0

aiζ
ij = 0 for 1 ≤ j ≤ 2e − 1.

From (6) and (7), we obtain

ai =
p− 1
2e+1

(0 ≤ i ≤ 2e − 1).

Therefore, by (5), any ideal class c ∈ ClE satisfies
the relation

(c1+ρ+···+ρ2e−1
)a0 = 1.

By Lemma 3, the order of the class NE/F (c) ∈ ClF
divides 2. Therefore, as a0 is odd, it follows that

c1+ρ+···+ρ2e−1
= 1

for all c ∈ ClE . As the norm map ClE → ClF is
surjectve, this implies that the map ClF → ClE is
trivial. �

Proof of Theorem for the case p ≡
1 mod 4. Assume that F satisfies the condition
(Hp). Let −D be the discriminant of F . Let us
show the following

Claim. For a prime number q dividing D, we
have D/q = a2 for some integer a ∈ Z.

Actually: Let q be a prime number dividing D,
and let Q be the prime ideal of F over q; qOF =
Q2. By Lemma 7, QOE = xOE for some x ∈ E×.
Because of Lemma 6, this implies that q = εx2 for
some unit ε ∈ O×

k . Noting that E = k(
√−D), we see

from Kummer theory that q = εy2 or q = ε(−D)y2

for some y ∈ k×. However, the first equality can not
hold since k/Q is unramified outside p and p � D. It
follows from the second equality that D/q is a square
in Q× by the same reason.

By the Claim, there are only two possibilities
for −D according to whether D is even or odd:

(i) −D = −8, (ii) −D = −λ.
Here, λ is a prime number with λ ≡ 3 mod 4. When
−D = −8, we have hF = 1. When −D = −λ, it is
known that hF is odd by genus theory. This implies
hF = 1 since hF is a 2-power by Lemma 3. �

Remark 1. It is known that if a prime number
p ≥ 7 remains prime in an imaginary quadratic field
F , then F does not satisfy (Hp) ([8, Lemma 2], [11,
Theorem 4.3(a)]). Therefore, we see from Theorem
that there exist infinitely many primes p for which
no imaginary quadratic field satisfies (Hp).

Remark 2. An assertion similar to Lemma 1
holds also when F/Q is ramified at p ([6, Theorem
5]).

Remark 3. Let us say that a number field F

satisfies the condition (Hp,∞) when any tame abelian
extensionN/F of exponent p has a NIB. When p = 2,
it is known that F satisfies (H2,∞) if and only if
the ray class group ClF (4) of F defined modulo 4 is
trivial ([4, Proposition 3]). As ClF (4) is trivial only
when F is totally real ([7, Lemma 4]), there exists
no imaginary quadratic field satisfying (H2,∞).

For an odd prime number p and an imaginary
quadratic field F with (p, F ) �= (3, Q(

√−3)), we
can show that F satisfies (Hp,∞) if and only if it
satisfies (Hp), as follows. Let F be an imaginary
quadratic field satisfying (Hp), and let N/F be a
tame abelian extension of exponent p. By Theo-
rem and (p, F ) �= (3, Q(

√−3)), p does not divide
hF × |O×

F |. Then, we see from class field theory
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that N is contained in the composite M =
∏
iNi of

some tame cyclic extensions Ni/F of degree p whose
conductors are prime ideals of F different from each
other. As hF = 1, the extensions Ni/F are linearly
disjoint. Therefore, since each Ni/F has a NIB, the
composite M has a NIB by a classical theorem on
rings of integers (cf. [2, (2.13)]). Hence, N/F has a
NIB asN ⊆M . The author thanks to an anonymous
mathematician for pointing out this argument. For-
merly, the author showed this assertion for the case
p = 3 using complicated Kummer theory argument.

Let p = 3 and F = Q(
√−3). We can show

that F does not satisfy (H3,∞). Actually, let G be a
copy of two cyclic groups of order p. Let Cl(OF [G])
be the locally free class group of the group ring
OF [G], and R(OF [G]) the subset of the locally free
classes [ON ] for all tame G-Galois extensions N/F .
Using the main theorem in [10], we can show that
R(OF [G]) �= {0} by some hard hand-calculation.
This implies that there exists a tame G-Galois ex-
tension N/F without NIB.
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