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On the distribution of points on multidimensional modular hyperbolas
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Abstract: We study the distribution of points on the (n+1)-dimensional modular hyperbola
a1 · · · an+1 ≡ c (mod q), where q and c are relatively prime integers. In particular, we show that an
elementary argument leads to a straight-forward proof of a recent result of T. Zhang and W. Zhang,
with a stronger error term. We also use character sums to obtain an asymptotic formula for the
number of points in a given box that lie on such hyperbolas.
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1. Introduction. As in [9], for arbitrary
positive integers m, n, q, and c with gcd(c, q) = 1
we consider the sum

Mm,n(q, c) =
q∑

a1,...,an+1=1
a1···an+1≡c (mod q)

(a1 · · · an − an+1)m.

For n = 1 these sums are studied in [10, 11]
using Kloosterman sums. Furthermore, for even m =
2k and an arbitrary n � 2, similar tools are applied
in [9] to derive the asymptotic formula

M2k,n(q, c) =
ϕn(q)q2kn

(2k + 1)n

+ O
(
4kq(2k+1)n−1/2τ2(q) log q

)
,

where as usual ϕ(q) is the Euler function and τ(q)
is the number of integer divisors of q. Here we show
that a direct and elementary argument leads us to a
short proof of a stronger bound which also applies to
odd m.

A more interesting problem than to estimate the
sum Mm,n(q, c) is to study the behaviour of the sums

Sr,n(q, c) =
q∑

a1,...,an+1=1
a1···an+1≡c (mod q)

ar1
1 · · · arn+1

n+1

with some real vector r = (r1, . . . , rn+1), which are
also considered in [9] (in some special cases). Here,
using the approach of [7], we obtain precise and gen-
eral results about the distribution of solutions to
a1 · · · an+1 ≡ c (mod q). When q = p is a prime,
and n � 4, our estimate is more precise than that
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presented by Fouvry and Katz [2] as an example
of their general bound for the number of points on
algebraic varieties in a given box, which in turn is
based on some deep methods from algebraic geome-
try. It should be noted that our improvement cannot
be extended to other multivariate congruences and
certainly does not affect the results of Fouvry and
Katz [2] in their full generality.

Our result implies an estimate on the discrep-
ancy Dn(q, c) of the point set{(a1

q
, . . . ,

an+1

q

)
| 1 � a1, . . . , an+1 � q,

a1 · · ·an+1 ≡ c (mod q)
}

,

(1)

which in turn immediately yields asymptotic formu-
las for average values of smooth functions on these
points, see [5, Section 2.5]. In particular, one can
easily derive asymptotic formulas for Sr,n(q, c).

Throughout the paper, the implied constants in
the symbols ‘O’ and ‘�’ may depend on n but are
uniform with respect to the other parameters such as
c, m, and q. We recall that the notations U = O(V )
and U � V are both equivalent to the assertion that
the inequality |U | � cV holds for some constant c >

0. We also use the symbol o(1) to denote a function
f(q) such that f(q) → 0 as q → ∞.

2. Preparation.
2.1. Sums over reduced residue classes.

We recall the well-known bounds

(2)
d

ϕ(d)
� log log d,

and

(3) 2ω(d) � τ(d) = exp (O(log d/ log log d))
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where ω(d) is the number of distinct prime divisors
of an integer d � 1, see [8, Sections I.5.2–I.5.4]

We need asymptotic formulas for the sums

σm(q) =
q∑

a=1
gcd(a,q)=1

am and Φq(U) =
∑

1�a�U
gcd(a,q)=1

1,

which can be derived using the inclusion-exclusion
principle.

Lemma 1. For arbitrary positive integers m

and q, we have

σm(q) =
ϕ(q)qm

m + 1
+ O (qmτ(q)) .

Lemma 2. For any positive integer U � q, we
have

Φq(U) =
ϕ(q)

q
U + O(2ω(q)).

2.2. Multiplicative character sums. Let
Xq be the set of all multiplicative characters modulo
q, thus #Xq = ϕ(q). We recall that for u ∈ Z,

(4)
1

ϕ(q)

∑
χ∈Xq

χ (u) =


 1 if u ≡ 1 (mod q),

0 otherwise,

see [6, Theorem 5.4]. We also use χ0 to denote the
principal character.

Using (4), one can immediately derive the fol-
lowing well known statement.

Lemma 3. For any positive integer U � q, we
have ∑

χ∈Xq

∣∣∣∣∣
U∑

a=1

χ(a)

∣∣∣∣∣
2

� ϕ(q)U.

We then recall an estimate of the 4th moment
of character sums which is given by Friedlander and
Iwaniec [3].

Lemma 4. For any positive integer U � q, we
have ∑

χ∈Xp

χ�=χ0

∣∣∣∣∣
U∑

a=1

χ(a)

∣∣∣∣∣
4

� q1+o(1)U2.

We also need the following bound which is a
combination of the Polya-Vinogradov (for r = 1) and
Burgess (for r � 2) bounds, see [4, Theorems 12.5
and 12.6].

Lemma 5. For any positive integer U � q we
have

max
χ∈Xq

χ�=χ0

∣∣∣∣∣
U∑

a=1

χ(a)

∣∣∣∣∣ � U1−1/rq(r+1)/4r2+o(1)

with r = 1, 2, 3 for any q and with an arbitrary posi-
tive integer r if q = p is a prime.

3. Main Results.
3.1. Bound for Mm,n(q, c).
Theorem 6. Let n � 2 be fixed. For arbitrary

positive integers m, q, and c with gcd(c, q) = 1, we
have

Mm,n(q, c) = σm(q)n + O
(
mq(m+1)n−n+1

)
.

Proof . We note that

Mm,n(q, c) =
q∑

a1,...,an+1=1
a1···an+1≡c (mod q)

(a1 · · ·an)m

+
q∑

a1,...,an+1=1
a1···an+1≡c (mod q)

m∑
ν=1

(−1)ν

(
m

ν

)
(a1 · · · an)m−νaν

n+1

= σm(q)n

+O




q∑
a1,...,an+1=1

a1···an+1≡c (mod q)

m∑
ν=1

(
m

ν

)
qn(m−ν)+ν




= σm(q)n + O

(
q(m+1)n

m∑
ν=1

(
m

ν

)
q−ν(n−1)

)

= σm(q)n + O
(
q(m+1)n

(
(1 + q−n+1)m − 1

))
.

Clearly the result is trivial if m > 2qn−1. Otherwise
we have

(1 + q−n+1)m − 1 = O(mq−n+1)

which implies the desired bound.
In particular we see that Theorem 6, combined

with Lemma 1 and the bounds (2) and (3), yields
the following statement:

Corollary 7. For arbitrary positive integers
m, q, and c such that

gcd(c, q) = 1 and m = O(1),

for every fixed integer n � 2, we have

Mm,n(q, c) =
ϕn(q)qmn

(m + 1)n

(
1 + O

(
q−1+o(1)

))
.

3.2. Bound for Dn(q, c). We recall that
the discrepancy D of a set T of T points

{(η1,t, . . . , ηs,t) ∈ [0, 1)s | t = 1, . . . , T}
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in the s-dimensional unit cube [0, 1)s is defined as

D = sup
Ξ⊆[0,1)s

∣∣∣∣A(Ξ)
T

− |Ξ|
∣∣∣∣ ,

where A(Ξ) is the number of points of T in the box

Ξ = [0, ξ1] × · · · × [0, ξs] ⊆ [0, 1)s

of volume |Ξ| = ξ1 · · · ξs, and the supremum is taken
over all such boxes. Thus to estimate the discrep-
ancy Dn(q, c) of points (1) it is enough to obtain an
asymptotic formula for

Nn(U; q, c) = #{1 � ai �Ui, i = 1, . . . , n + 1, |
a1 · · · an+1 ≡ c (mod q)}

where U = (U1, . . . , Un+1) ∈ Zn+1 is an integer vec-
tor with 1 � Ui � q, i = 1, . . . , n + 1.

We start with n = 2. The same argument works
for any n but for n � 3 we can slightly modify the
scheme and obtain a stronger bound.

Theorem 8. For arbitrary positive integers q

and c with gcd(c, q) = 1, and a vector

U = (U1, U2, U3) ∈ Z3

with 1 � U1, U2, U3 � q, the bound

N2(U; q, c) =
Φq(U1)Φq(U2)Φq(U3)

ϕ(q)

+ O
(
(U1U2U3)

αr qβr+o(1)
)

holds with r = 1, 2, 3 for any q and with an arbitrary
positive integer r if q = p is a prime, where

αr =
2r − 1

3r
and βr =

r + 1
4r2

.

Proof . We see from (4) that

N2(U; q, c)

=
U1∑

a1=1

U2∑
a2=1

U3∑
a3=1

1
ϕ(q)

∑
χ∈Xq

χ
(
a1a2a3c

−1
)

=
1

ϕ(q)

∑
χ∈Xq

χ
(
c−1
) U1∑

a1=1

U2∑
a2=1

U3∑
a3=1

χ (a1a2a3) .

Extracting the term Φq(U1)Φq(U2)Φq(U3)/ϕ(q) cor-
responding to the principal character χ0, we obtain

N2(U; q, c) =
Φq(U1)Φq(U2)Φq(U3)

ϕ(q)
+ O(∆),

where

∆ =
1

ϕ(q)

∑
χ∈Xq

χ�=χ0

3∏
i=1

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣ .
Thus, using the Hölder inequality, we deduce

(5) ∆3 � 1
ϕ(q)3

3∏
i=1

∑
χ∈Xq

χ�=χ0

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
3

.

Applying Lemma 5 and then extending the summa-
tion to all characters χ ∈ Xq, we obtain that, with
r = 1, 2, 3 for any q and with an arbitrary positive
integer r if q = p is a prime,

∑
χ∈Xq

χ�=χ0

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
3

� U
1−1/r
i q(r+1)/4r2+o(1)

∑
χ∈Xq

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
2

for each i = 1, 2, 3. We now infer from Lemma 3 that

∑
χ∈Xq

χ�=χ0

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
3

� U
2−1/r
i q1+(r+1)/4r2+o(1)

which, via (2), (3) and (5), yields the desired bound.

For n � 3 one use Lemma 4 instead of Lemma 3
to get a stronger bound.

Theorem 9. For arbitrary positive integers
n � 3, q, and c with gcd(c, q) = 1, and a vector

U = (U1, . . . , Un+1) ∈ Zn+1

with 1 � U1, . . . , Un+1 � q, the bound

Nn(U; q, c) =
Φq(U1) · · ·Φq(Un+1)

ϕ(q)

+ O
(
(U1 · · ·Un+1)

αn,r qβn,r+o(1)
)

holds with r = 1, 2, 3 for any q and with an arbitrary
positive integer r if q = p is a prime, where

αn,r = 1− n + 2r − 3
(n + 1)r

and βn,r =
(n − 3)(r + 1)

4r2
.

Proof . Arguing as in the proof of Theorem 8,
we derive from (4) that

Nn(U; q, c) =
Φq(U1) · · ·Φq(Un+1)

ϕ(q)
+ O(∆),
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where

∆ =
1

ϕ(q)

∑
χ∈Xq

χ�=χ0

n+1∏
i=1

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣

� 1
ϕ(q)




n+1∏
i=1

∑
χ∈Xq

χ�=χ0

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
n+1




1/(n+1)

.

Applying Lemma 5 to the (n − 3)th power of the
character sums and then extending the summation to
all characters χ ∈ Xq, we obtain that, for r = 1, 2, 3
for any q and with an arbitrary positive integer r if
q = p is a prime,

∑
χ∈Xq

χ�=χ0

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
n+1

�
(
U

1−1/r
i q(r+1)/4r2+o(1)

)n−3 ∑
χ∈Xq

∣∣∣∣∣
Ui∑

ai=1

χ (ai)

∣∣∣∣∣
4

for i = 1, . . . , n+1. Now after a simple computation
we obtain the desired bound.

Taking r = 1, we derive from Lemma 2 and
Theorems 8 and 9 the following estimate:

Corollary 10. For arbitrary positive integers
n � 2, q, and c with gcd(c, q) = 1, the bound

max
U

∣∣∣∣Nn(U; q, c) − U1 · · ·Un+1

qn+1
ϕ(q)n

∣∣∣∣
�


 q3/2+o(1) if n = 2,

qn−1+o(1) if n � 3,

holds, where the maximum is taken over all vectors

U = (U1, . . . , Un+1) ∈ Zn+1

with 1 � U1, . . . , Un+1 � q.
It is obvious that, for n � 3, the error in estimat-

ing the product Φq(U1) · · ·Φq(Un+1), which comes
from Lemma 2, dominates the total error in Corol-
lary 10. However, if q = p is a prime then Φp(U) = U

and this error does not appear at all. Hence, taking
r = 1, we obtain:

Corollary 11. For an integer n � 2, a prime
q = p, and an arbitrary integer c with gcd(c, p) = 1,
the bound

max
U

∣∣∣∣Nn(U; p, c) − U1 · · ·Un+1

p − 1

∣∣∣∣ � p(n+1)/2+o(1)

holds, where the maximum is taken over all vectors

U = (U1, . . . , Un+1) ∈ Zn+1

with 1 � U1, . . . , Un+1 < p.
We are now ready to prove the bound for the

discrepancy Dn(q, c).
Theorem 12. For arbitrary positive integers

n � 2, q, and c with gcd(c, q) = 1, the bound

Dn(q, c) �


 q−1/2+o(1) if n = 2,

q−1+o(1) if n � 3,

holds.
Proof . We have

Dn(q, c) = max
Ξ

∣∣∣∣Nn ((�ξ1q� , . . . , �ξn+1q�) ; q, c)
ϕ(q)n

− ξ1 · · · ξn+1

∣∣∣∣
where the maximum is taken over all boxes

Ξ = [0, ξ1] × · · · × [0, ξs] ⊆ [0, 1)s.

Now Corollary 10 and the trivial the estimate

max
0�ξ1,...,ξn+1<1

∣∣∣∣�ξ1q� · · · �ξn+1q�
qn+1

− ξ1 · · · ξn+1

∣∣∣∣� q−1

yield the result.
4. Remarks. Certainly one can obtain a

more precise version of Lemma 1 and derive an
asymptotic expansion for σm(q).

We note that if q = p is a prime, a generalisa-
tion of Lemma 4 is given by Ayyad, Cochrane and
Zheng [1, Theorem 2] which applies to sums over ar-
bitrary intervals V +1 � a � V +U , while the result
of Friedlander and Iwaniec [3] applies only to initial
intervals 1 � a � U .

For a prime q = p, we have Φ(Ui) = Ui + O(1)
for any Ui ∈ [1, p], i = 1, . . . , n + 1. In this case the
bound of Theorem 9 can be written as

Nn(U; p, c) =
U1 · · ·Un+1

p − 1

(
1

+ O
(
(U1 · · ·Un+1)αn,r−1pβn,r+1+o(1)

))

=
U1 · · ·Un+1

p − 1
(
1 + O

(
p−δ
))

=
U1 · · ·Un+1

p

(
1 + O

(
p−δ
))

for any fixed positive ε and δ with
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δ < min{1, ε(n + 1)(1 − αn,r)}
= min{1, ε(n + 2r − 3)/r}

provided that

U1 · · ·Un+1 � p(γn,r+ε)(n+1),

where

γn,r =
βn,r + 1

(1 − αn,r)(n + 1)
=

4r2 + (n − 3)(r + 1)
4r(n + 2r − 3)

.

Setting r =
⌈
n1/2

⌉
, say, we obtain

lim
n→∞ γn,	n1/2
 =

1
4
.

Hence for any ε and sufficiently large n we have a
nontrivial asymptotic formula for Nn(U; p, c) pro-
vided that

U1 · · ·Un+1 � p(1/4+ε)(n+1).

We recall that it has been noticed by Fouvry and
Katz [2] that very deep results about the distribution
of points on algebraic varieties even in the special
case of modular hyperbolas, give a nontrivial bound
on Nn(U; p, c) only for

U1 · · ·Un+1 � p(1/2+ε)(n+1)

(in fact only the case U1 = · · · = Un+1 is discussed
in [2] but it can be extended to the case of arbitrary
U1, . . . , Un+1 without any difficulty). One easily ver-
ifies that

min
r�1

γn,r � γn,2 =
3n + 7
8n + 8

� 19
40

<
1
2

for n � 4. Thus, as we have mentioned, for n � 4,
our result is stronger than the one following from [2]
specialized to our situation.
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