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On the distribution of points on multidimensional modular hyperbolas
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Abstract:

We study the distribution of points on the (n+1)-dimensional modular hyperbola

ay - ant1 = ¢ (mod q), where ¢ and c are relatively prime integers. In particular, we show that an
elementary argument leads to a straight-forward proof of a recent result of T. Zhang and W. Zhang,
with a stronger error term. We also use character sums to obtain an asymptotic formula for the
number of points in a given box that lie on such hyperbolas.
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1. Introduction. As in [9], for arbitrary
positive integers m, n, ¢, and ¢ with ged(e,q) = 1
we consider the sum

q

Mm,n(Qv C) = Z (al e

at,..,any1=1
a1-any1=c (mod q)

ap — Qpg1)™.

For n = 1 these sums are studied in [10, 11]
using Kloosterman sums. Furthermore, for even m =
2k and an arbitrary n > 2, similar tools are applied
in [9] to derive the asymptotic formula
QD” (q)qan
2k + 1)»

L0 (4kq(2k+1)n71/27_2(q) log q) 7

Mkan (q7 C) =

where as usual ¢(¢) is the Euler function and 7(q)
is the number of integer divisors of ¢q. Here we show
that a direct and elementary argument leads us to a
short proof of a stronger bound which also applies to
odd m.

A more interesting problem than to estimate the
sum M,, (g, ¢) is to study the behaviour of the sums

q

_ r1 Tnil
Sr,n(q7 C) = E S |

ai,...,anp1=1
ay-ant1=c (mod q)
with some real vector r = (r1,...,7p41), which are
also considered in [9] (in some special cases). Here,
using the approach of [7], we obtain precise and gen-
eral results about the distribution of solutions to
ay -+ apy1 = ¢ (mod ¢). When ¢ = p is a prime,
and n > 4, our estimate is more precise than that
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Multidimensional modular hyperbola; uniform distribution.

presented by Fouvry and Katz [2] as an example
of their general bound for the number of points on
algebraic varieties in a given box, which in turn is
based on some deep methods from algebraic geome-
try. It should be noted that our improvement cannot
be extended to other multivariate congruences and
certainly does not affect the results of Fouvry and
Katz [2] in their full generality.

Our result implies an estimate on the discrep-
ancy D, (q,c) of the point set

{(ﬂ,...,w) 1< a1, .., ant1 < g,
(1) q q

a1 can = ¢ (mod q)},

which in turn immediately yields asymptotic formu-
las for average values of smooth functions on these
points, see [5, Section 2.5]. In particular, one can
easily derive asymptotic formulas for S ., (g, c).

Throughout the paper, the implied constants in
the symbols ‘O’ and ‘<’ may depend on n but are
uniform with respect to the other parameters such as
¢, m, and g. We recall that the notations U = O(V)
and U < V are both equivalent to the assertion that
the inequality |U] < ¢V holds for some constant ¢ >
0. We also use the symbol o(1) to denote a function
f(q) such that f(g) — 0 as ¢ — oo.

2. Preparation.

2.1. Sums over reduced residue classes.
We recall the well-known bounds
d
(2) —— < loglogd,
¢(d)
and

(3) 2@ < 7(d) = exp (O(log d/ loglog d))
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where w(d) is the number of distinct prime divisors
of an integer d > 1, see [8, Sections 1.5.2-1.5.4]
We need asymptotic formulas for the sums

and  D,(U)= > L,
1<agU
ged(a,q)=1
which can be derived using the inclusion-exclusion
principle.
Lemma 1.
and q, we have

For arbitrary positive integers m

Unz(q) = % +0 (qu(Q)) :

For any positive integer U < q, we

®,(U) = @U + 0(2¢@),

2.2. Multiplicative character sums. Let
X, be the set of all multiplicative characters modulo
g, thus #X,;, = ¢(¢). We recall that for u € Z,

1 ifu=1 (mod q),

0 otherwise,

see [6, Theorem 5.4]. We also use xo to denote the
principal character.

Using (4), one can immediately derive the fol-
lowing well known statement.

Lemma 3. For any positive integer U < q, we

have
2

XEXq

2

U
> x(a)

a=1

< p(U.

We then recall an estimate of the 4th moment
of character sums which is given by Friedlander and
Iwaniec [3].

Lemma 4. For any positive integer U < q, we

have
>

XEXp
XFXo

We also need the following bound which is a
combination of the Polya-Vinogradov (for r = 1) and
Burgess (for » > 2) bounds, see [4, Theorems 12.5
and 12.6].

4
< gty

U
> x(a)

a=1

Lemma 5. For any positive integer U < q we
have
v 2
max a)| < Ulfl/r (r+1)/4r°+o(1)
max az::lx( ) q

XFXo
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with r = 1,2,3 for any q and with an arbitrary posi-
tive integer v if ¢ = p is a prime.

3. Main Results.

3.1. Bound for M,, (g, c).

Theorem 6. Letn > 2 be fized. For arbitrary
positive integers m, q, and ¢ with ged(c,q) = 1, we
have

Min,n(g,¢) = om(q)" + O (mq(’”ﬂ)n—nﬂ) .

Proof. We note that

q

Mm,n(q, C) = Z (al R

a1y..,@ny1=1
(mod q)

an )m

al-n41=C
q

DY

a1,..app1=1
ai-ant1=c (mod q)

Clearly the result is trivial if m > 2¢" . Otherwise
we have

(1 + q—n—i-l)m 1= O(mq—n—i-l)
which implies the desired bound. O

In particular we see that Theorem 6, combined
with Lemma 1 and the bounds (2) and (3), yields
the following statement:

Corollary 7. For arbitrary positive integers
m, q, and ¢ such that

ged(c,q) =1 and m = 0(1),

for every fized integer n > 2, we have

(o))

3.2. Bound for D,(g,c). We recall that
the discrepancy D of a set 7 of T' points

Mst) €0,1)° [t=1,...,T}

M n(q,€)

{(n.¢:- -
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in the s-dimensional unit cube [0,1)® is defined as

where A(Z) is the number of points of 7 in the box
== [0751] X X [0759] - [Oa 1)8

of volume | 5| = &; - - - &, and the supremum is taken
over all such boxes. Thus to estimate the discrep-
ancy Dy, (g, c) of points (1) it is enough to obtain an
asymptotic formula for

N( #{1 a; <Upi=1,...,n+1, |

(mod ¢)}

where U = (Uy,...,U,41) € Z"! is an integer vec-
torwith 1<U; <¢q,2=1,...,n+ 1.

We start with n = 2. The same argument works
for any n but for n > 3 we can slightly modify the
scheme and obtain a stronger bound.

Theorem 8. For arbitrary positive integers q
and ¢ with ged(e,q) = 1, and a vector

iq,c) =
ay - Gpy1 =

U= (U,,U,,Us) € Z*

with 1 < Uy, Us,Us < q, the bound
NQ(U; q,c) :éq(Ul)@q(Uﬂ@q(U?»)
¢(q)

+0 (U1 UaU3)™ ¢ o)
holds with r = 1,2, 3 for any q and with an arbitrary
positive integer r if ¢ = p is a prime, where
2r—1 r+1
3r fr = 4r2
Proof. We see from (4) that

and

Qp =

|
g
g
N
-
g
=
B
S
S
o
=

o(a)

ED I

a1=1las=1az=1

Extracting the term &@,(U;)®@,(Uz2)P,(Us)/p(q) cor-

responding to the principal character xo, we obtain

¢q(U1)@q(U2)@q(U3)
o(q)

a1=1las=1az=1

1
o 2 X

XEXy

(araza3)

N2(U;Q7C) =

+0(4),

where
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ZH

XEX i=1
XFXo

>«

a;=1

Thus, using the Holder inequality, we deduce

3HZZ

i=1xeX, =1
XF#Xo

3
(5) <

Applying Lemma 5 and then extending the summa-
tion to all characters x € X,, we obtain that, with
r = 1,2,3 for any ¢ and with an arbitrary positive
integer r if ¢ = p is a prime,

U;
Z Z X (a;)

XEX, la;i=1
X#X0

3

U 2

> x(ai)

a;=1

< Uil—l/v“q(r+1)/4r2+o(1) Z
XEXq

for each i = 1,2,3. We now infer from Lemma 3 that

Ui
Z Z x (a;)

3
< U1?—1/rq1+(r+1)/4r2+0(1)

XEXg la;=1
X#Xo
which, via (2), (3) and (5), yields the desired bound.
O
For n > 3 one use Lemma 4 instead of Lemma 3

to get a stronger bound.
Theorem 9. For arbitrary positive integers
n = 3, q, and ¢ with ged(c,q) = 1, and a vector

U: (Ul,...,Un+1) c Zn-‘rl
with 1 < Uy, ...,Unt1 < q, the bound
Nn(Usq,¢) _P4(01) -+ Pq(Uns1)
v(q)
+0 ((Ul o Upgr)™™" qﬁn,y.+o(1)>

holds with r = 1,2, 3 for any q and with an arbitrary
positive integer r if ¢ = p is a prime, where

n+2r—3 ~ (n=3)(r+1)
472 '

and fBpr =

Qn,r =

Proof. Arguing as in the proof of Theorem 8,
we derive from (4) that

@, (Uy) - b

Nn(Usq,c) =
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where holds, where the maximum is taken over all vectors
1 Ay R U= (U,...,Upy1) € Z"
A:@ZH > x(a:) !
¥ x€Xq =1 |a;=1 with 1 < Uq,..., Un+1 <p.
X7X0 L/(nt) We are now ready to prove the bound for the
n
1 . ntl discrepancy D,,(q, c).
1 - Theorem 12. For arbitrary positive integers
< —= X (a:) -
= o(g) 11;[1 X;q tlz::l ' n > 2, q, and ¢ with ged(c,q) = 1, the bound
XF#X0

Applying Lemma 5 to the (n — 3)th power of the
character sums and then extending the summation to
all characters x € A}, we obtain that, for r =1,2,3
for any ¢ and with an arbitrary positive integer r if
q = p is a prime,

U; n+1
> | 2. x(e)
XEX, la;i=1
XFX0
3 Us !
_ 2 n— -
< (Uil 1/7"q(7'+1)/47- +o(1)) Z Z x (a;)
XEXq a;=1

fori=1,...,n+1. Now after a simple computation
we obtain the desired bound. O

Taking r = 1, we derive from Lemma 2 and

Theorems 8 and 9 the following estimate:
Corollary 10. For arbitrary positive integers
n > 2, q, and ¢ with ged(c,q) = 1, the bound

. U1 e Un+1 n
max N,(U;q,¢c) — T@(Q)
q3/2+o(1) ifn=2,
qn—l—i-o(l) an > 3’

holds, where the maximum is taken over all vectors

U= (Ul,. . ~>Un+1) (S Zn+1

with 1 < Uy,...,Up+1 < q.

It is obvious that, for n > 3, the error in estimat-
ing the product @4(U;)---Py(Un+1), which comes
from Lemma 2, dominates the total error in Corol-
lary 10. However, if ¢ = p is a prime then @,(U) = U
and this error does not appear at all. Hence, taking
r = 1, we obtain:

Corollary 11. For an integer n > 2, a prime
q = p, and an arbitrary integer ¢ with ged(c,p) = 1,
the bound

U Uni (n+1)/2+0(1)
. < n o
max | N, (U;p, ¢) o1 <p

q—1/2+o(1) an — 2,

Dy(q,c) <

g oW ifn >3,

holds.
Proof. We have

Nn ((L§1(JJ PRI |_§n+1qJ) 749, C)
plg)™

Di(g; ¢) = max

_fl"'£n+1

where the maximum is taken over all boxes

E=100,&]x---x[0,&] €
Now Corollary 10 and the trivial the estimate
[&1q] - [&nt14q) -

qn+1

[0,1)°.

§1 o '§n+1 < qil

0<é1,--,6n+1<1

yield the result. O

4. Remarks. Certainly one can obtain a
more precise version of Lemma 1 and derive an
asymptotic expansion for o,,(q).

We note that if ¢ = p is a prime, a generalisa-
tion of Lemma 4 is given by Ayyad, Cochrane and
Zheng [1, Theorem 2] which applies to sums over ar-
bitrary intervals V +1 < a < V 4+ U, while the result
of Friedlander and Iwaniec [3] applies only to initial
intervals 1 <a < U.

For a prime ¢ = p, we have ®(U;) = U; + O(1)
for any U; € [1,p], i = 1,...,n+ 1. In this case the
bound of Theorem 9 can be written as

Ui Upta (1

N (U;p,c) =
(U;p, ) o1

+o(Wr- Un+1>“"~"1pﬁw+1+o<1>))

o Ul"'U71,+1 -0
)
_ Uy Unpia (l—i-O(pﬂS))

for any fixed positive € and ¢ with
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0 <min{l,e(n+1)(1 — ans)}
= min{l,e(n+2r — 3)/r}

provided that
Ui Upyr > p(vn,,,.+s)(n+1)’

where

Bnr+1

_ _4r2+(n—3)(r—|—1)
T T 0 ap)(n+ 1)

 dr(n+2r-3)

Setting r = [nl/ﬂ, say, we obtain

. 1
lim 'Vn,[nl/ﬂ = T

n—oo

Hence for any e and sufficiently large n we have a
nontrivial asymptotic formula for N, (U;p,c) pro-
vided that

Ui -Upg1 > p(t/4te)(n+1)

We recall that it has been noticed by Fouvry and
Katz [2] that very deep results about the distribution
of points on algebraic varieties even in the special
case of modular hyperbolas, give a nontrivial bound
on N, (U;p,c) only for

Uy Upyq = pt/2He)nth)

(in fact only the case Uy = -+ = U,41 is discussed
in [2] but it can be extended to the case of arbitrary
Ui,...,U,41 without any difficulty). One easily ver-
ifies that

3n+7 19

. 1
rrn>1r11’yn,r < Yny2 = 8n 4+ 8 < 40 < 2

for n > 4. Thus, as we have mentioned, for n > 4,
our result is stronger than the one following from [2]
specialized to our situation.
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