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Abstract: A holomorphic action of a Lie group G on a complex manifold D is called

strongly visible if there exist a totally real submanifold S which meets every G-orbit in D and an

anti-holomorphic diffeomorphism � such that �jS ¼ idS and � preserves every G-orbit. In this

paper, we prove that Kac’s multiplicity-free space is strongly visible, that is, if ðGC; V Þ is an

irreducible multiplicity-free space of a complex reductive Lie group GC, then a compact real form

of GC acts on V in a strongly visible fashion. Furthermore, we give an explicit description of the

choice of a totally real submanifold S and an anti-holomorphic involution �. This gives an

evidence to Kobayashi’s conjecture [8, Conjecture 3.2], that is, dimR S coincides with the rank of

the polynomial representation of GC on C½V � in this setting.

Key words: Complex manifold; (strongly) visible action; totally real submanifold;
multiplicity-free space; multiplicity-free representation.

Suppose a Lie group G acts holomorphically on

a complex manifold D.

Definition 1. This action is strongly visible

if the following two conditions hold:

(a) There exists a real submanifold S (which we

call a slice) such that

D ¼ G � S;ðV.1Þ

that is, S meets every G-orbit in D.

(b) There exists an anti-holomorphic diffeomor-

phism � on D such that

�jS ¼ idS;ðS.1Þ

� preserves each G-orbit in D.ðS.2Þ

We note that the submanifold S is automati-

cally totally real, that is, TxS \ JxðTxSÞ ¼ f0g holds

for any x 2 S by the condition (b).

The notion of (strongly) visible actions has

been introduced by Kobayashi in [6] as a basic

assumption for the propagation theorem of multi-

plicity-free property from fibers to the space of

holomorphic sections, where the submanifold S

plays an important role (see [7,9]). To be more

precise, Definition 1 is slightly stronger than the

original definition of strongly visible actions in

[7,9] in the sense that the original definition of

strongly visible actions can be verified locally in a

G-invariant open subset.

The notion of (strongly) visible actions is also

interesting for its own from geometric viewpoints,

as one of the three relevant notions: polar actions in

Riemannian geometries (e.g. Podestà–Thorbergs-

son), coisotropic actions in symplectic geometries

(Guillemin–Sternberg, Huckleberry–Wurzbacher),

and visible actions in complex geometries (Kobaya-

shi) (see [7, §4] for recent progress in this direction).

Another interesting aspect of (strongly) visible

actions is that visible actions naturally bring us to

various decomposition theorems of Lie groups and

homogeneous spaces. For instance, consider the

linear fractional action of G ¼ SLð2;RÞ on a com-

plex upper half plane Hþ. Then the Iwasawa

decomposition G ¼ NAK explains that the action

of a maximal unipotent subgroup N on Hþ is

strongly visible, whereas the Cartan decomposition

G ¼ KAK explains that the action of a maximal

compact subgroup K on Hþ is also strongly visible

(see [7, Figures 5.4.1 (a), (c)]). Conversely, we may

expect that new examples of (strongly) visible

actions could reveal new decomposition theorems

of Lie groups and homogeneous spaces. In this

sense, finding an explicit description of a totally real

submanifold S in Definition 1 becomes a guiding

principle to find decomposition theorems.
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Originally, the notion of (strongly) visible

actions was introduced to give an unified explan-

ation of various multiplicity-free theorems [6,7].

Conversely if we are given multiplicity-free repre-

sentations, we could expect that (some real forms

of) the group acts on the underlying geometry in a

(strongly) visible fashion (e.g. [10,11]).

In this paper, we consider multiplicity-free

spaces in the sense of Kac [4]. Given an algebraic

representation � : GC ! GLCðV Þ of a connected

complex reductive Lie group GC on a finite dimen-

sional complex vector space V , we have a represen-

tation of GC on the polynomial ring C½V �. We say V

is a mutiplicity-free space of GC (or simply, ðGC; V Þ
is a multiplicity-free space) if C½V � decomposes into

the multiplicity-free sum of irreducible representa-

tions of GC.

We write the irreducible decomposition of

C½V � as follows:

C½V � ’
M
�2�

P�:

Here, P� is an irreducible representation of GC

with a highest weight �. Then the set of highest

weights � forms a semigroup, and there exist

linearly independent highest weights �1; . . . ; �k 2 �

such that � ¼ fr1�1 þ � � � þ rk�k : r1; . . . ; rk 2 Z�0g
([2,5]). We say the rank k of the semigroup � is the

rank of the polynomial representation C½V � (or the
number of fundamental generators), which was

computed in Howe and Umeda [3, Table 15.1].

The multiplcity-free space ðGC; V Þ is irreduci-

ble if � is irreducible. The classification of irredu-

cible multiplicity-free spaces was accomplished by

Kac [4, Theorem 3] under the assumption that GC is

reductive (see also [2] for a survey). According to

the classification, GC is of the form HC �C� or HC

where HC is a semisimple complex Lie group. We

recall his list in a way that fits into our framework

of visible actions.

Since GC is reductive, there exists a compact

real form of GC, denoted by GU . By Weyl’s unitary

trick, the category of holomorphic representations

ðGC; V Þ is equivalent to that of complex represen-

tations ðGU; V Þ. So we give Kac’s classification

of irreducible multiplicity-free spaces in terms of

ðGU; V Þ in Table I. Here are some conditions on

integers m and n in Table I. In (1a) n � 2; in (3)

n � 3; in (6a) m 6¼ n; in (7) n � 2; in (8) n � 2; in

(9a) m � 5. In (13) and (14), G2 and E6 denote the

corresponding simply connected Lie groups of

exceptional type. Since local isomorphisms of GU

are not the main issue here, we shall use the global

form of GU as in Table I.

Remark 2. In (1a), (2), (5a), (6a), (9a) and

(12), GU is semisimple. We note that ðGU �T; V Þ
also give irreducible multiplicity-free spaces in

these cases (see [4, Theorem 3]) but we have omit-

ted there trivial cases in Table I.

Our main theorem is stated as follows:

Theorem A. Let ðGC; V Þ be an irreducible

multiplicity-free space, and GU a compact real form

of GC.

(1) The action of GU on V is strongly visible.

(2) We can take a slice S (see Definition 1) such

that dimR S is equal to the rank of the

polynomial representation C½V �.
The dimension of our slice S is listed in the

right column of Table I.

Combining Theorem A with [7, Theorem 5]

(or [9, Corollary 2.4]), we obtain the following

corollary immediately.

Corollary B. Let � : GC ! GLCðV Þ be an

irreducible algebraic representation of a connected

complex reductive Lie group GC on a finite dimen-

sional complex vector space V . Then the following

Table I. Irreducible multiplicity-free spaces

Kac’s list Slice

GU V dimR S

1a SUðnÞ Cn 1

1b T C

2 SpðnÞ C2n 1

3 SOðnÞ �T Cn 2

4 SUðnÞ �T S2ðCnÞ n

5a SUð2nþ 1Þ
V2ðC2nþ1Þ n

5b SUð2nÞ �T
V2ðC2nÞ

6a SUðmÞ � SUðnÞ Cm �Cn minðm;nÞ
6b SUðnÞ � SUðnÞ �T Cn �Cn

7 SUð2Þ � SpðnÞ �T C2 �C2n 3

8 SUð3Þ � SpðnÞ �T C3 �C2n 5 (n ¼ 2)

6 (n � 3)

9a SUðmÞ � Spð2Þ Cm �C4 6

9b SUð4Þ � Spð2Þ �T C4 �C4

10 Spinð7Þ �T C8 2

11 Spinð9Þ �T C16 3

12 Spinð10Þ C16 2

13 G2 �T C7 2

14 E6 �T C27 3
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two conditions are equivalent:

(i) V is a multiplicity-free space of GC.

(ii) The action of a compact real form GU of GC on

V is strongly visible in the sense of Definition 1.

The rest of this paper is devoted to the proof of

Theorem A. For the cases discussed in Remark 2,

the orbit of GU �T on V coincides with that of GU

on V . Therefore Theorem A for GU �T implies

Theorem A for GU and vice versa. Thus, we may

and do assume that GU always contains one dimen-

sional center T. Now we divide irreducible multi-

plicity-free spaces into the following three cases.

Case 1. ðGU; V Þ is in cases (1), (3), (4), (5),

(6), (12) and (14).

Case 2. ðGU; V Þ is in cases (7), (8) and (9),

that is, of the form ðSUðmÞ � SpðnÞ �T;Cm �
C2nÞ.

Case 3. We divide the remaining cases (2),

(10), (11) and (13) into the following subcases.

(3-a) ðGU; V Þ ¼ ðSpðnÞ �T;C2nÞ.
(3-b) ðGU; V Þ ¼ ðSpinð7Þ �T;C8Þ and ðG2 �T;C7Þ.
(3-c) ðGU; V Þ ¼ ðSpinð9Þ �T;C16Þ.

First, we consider Case 1.

Proof of Theorem A in Case 1. We shall

see below that the proof of Theorem A in this case

reduces to a special case of [11, Theorem 1.5].

Suppose ðGU; V Þ is in Case 1. Then there exists

a non-compact, simply connected simple Lie group

G of Hermitian type such that a maximal compact

subgroup K of G is isomorphic to GU and the

induced action of the adjoint representation

ðK; g=kÞ is isomorphic to the given representation

ðGU; V Þ (up to the action of the center of GU). Here

g is the Lie algebra of G and k is that of K. On the

other hand, it is proved in [11, Theorem 1.5] that

the K-action on the Hermitian symmetric space

G=K is strongly visible. Let g ¼ kþ p be the

corresponding Cartan decomposition of Lie algebra

g. Since K acts on p as an adjoint representation

and G=K is realized as a bounded symmetric

domain in p, we can show similarly that the K-

action on p is strongly visible with a choice of slice

S such that S is a maximal abelian subspace a in p.

In particular dimR S ¼ dim a ¼ R-rank G=K. �

We will call ðGU; V Þ in Case 1 of ‘‘Hermitian

type’’.

Next, we consider Case 2. We identify

SUðmÞ � SpðnÞ �T ’ UðmÞ � SpðnÞ and Cm �
C2n ’ Mðm; 2n ;CÞ, the vector space consisting of

ðm� 2nÞ-complex matrices. Here we let UðmÞ �

SpðnÞ act on Mðm; 2n ;CÞ by

ðg; hÞ �X ¼ gXh�1 ðg 2 UðmÞ; h 2 SpðnÞÞ

where we realize SpðnÞ in Uð2nÞ in a standard way.

Proof of Theorem A in Case 2. Case 2

consists of three cases (7), (8) and (9), for which the

proof of Theorem A can be given similarly. Here, we

consider only the case (7), namely, ðGU; V Þ ¼
ðUð2Þ � SpðnÞ;Mð2; 2n ;CÞÞ, which is simplest

among the three cases. Let ~ee1; . . . ;~ee2n be the

standard basis of C2n. We write an element

X 2 V as

X ¼
x1 � � � x2n

y1 � � � y2n

� �
¼

t~xx
t~yy

 !
:

By using the first factor Uð2Þ of GU , we can

transform X such that ð~xx;~yyÞ ¼ 0 where ð � ; � Þ
denotes the standard Hermitian inner product on

C2n.

Second, we take h1 2 SpðnÞ such that t~xxh�1
1 ¼

r1
t~ee1 for r1 ¼ ðjx1j2 þ � � � þ jx2nj2Þ1=2. Let

t~x0x0

t~y0y0

 !
:¼

t~xxh�1
1

t~yyh�1
1

 !
¼

r1 0 � � � 0

y01 y02 � � � y02n

� �
:

Since ð~x0x0; ~y0y0Þ ¼ ð~xx;~yyÞ ¼ 0, we get y01 ¼ 0. Thus Xh�1
1

is of the form

Xh�1
1 ¼

r1 0 0 � � � 0

0 y02 y03 � � � y02n

� �
:

Third, we write

y02 ¼ r2e
ffiffiffiffiffi
�1

p
� ðr2 � 0; � 2 R=2�ZÞ

and take h2 2 Spðn� 1Þ such that

e�
ffiffiffiffiffi
�1

p
�ðy03; . . . ; y02nÞh�1

2 ¼ r3ð1; 0; . . . ; 0Þ

for r3 ¼ ðjy03j
2 þ � � � þ jy02nj

2Þ1=2. We regard Spðn� 1Þ
as a subgroup of SpðnÞ and set g1 :¼ diagð1;
e�

ffiffiffiffiffi
�1

p
�Þ 2 Uð2Þ. Then

g1ðXh�1
1 Þh�1

2 ¼
r1 0 0 0 � � � 0

0 r2 r3 0 � � � 0

� �
¼: Xðr1; r2; r3Þ:

This implies that

S ¼ fXðr1; r2; r3Þ : r1; r2; r3 2 Rg

meets every GU -orbit in V (Sþ :¼ fXðr1; r2; r3Þ :
r1; r2; r3 � 0g already holds this property). Now

we define an anti-holomorphic involution on

Mð2; 2n ;CÞ by �ðXÞ ¼ X ðX 2 Mð2; 2n ;CÞÞ. Then
it is clear that �jS ¼ idS and � preserves each
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ðUð2Þ � SpðnÞÞ-orbit in Mð2; 2n ;CÞ. Therefore this

action is strongly visible with the data ðS; �Þ. �

Finally, we consider Case 3. Let W be a real

vector space equipped with an inner product

ð � ; � ÞW . We write SðW Þ for the unit sphere in W .

Here is an elementary observation:

Lemma 3. If a group G acts linearly on W

and acts transitively on SðW Þ, then

W ¼ G �Rv0

for any v0 2 SðW Þ.
In addition to Lemma 3, we prepare some more

lemmas.

Lemma 4. Retain the setting of Lemma 3.

Let W1 ¼ ðRv0Þ? be the orthogonal complementary

subspace of Rv0 in W We denote by Gv0 the isotropy

subgroup of G at v0. If Gv0 acts transitively on

SðW1Þ, then we have

W �W ¼ G � ðRv0 � ðRv0 �Rv1ÞÞ

for any v1 2 SðW1Þ. Here the G-action on W �W

is given by the diagonal action; g � ðw1; w2Þ ¼
ðgw1; gw2Þ ðg 2 GÞ.

Proof. By the assumption that Gv0 acts tran-

sitively on SðW1Þ, we obtain W1 ¼ Gv0 �Rv1 for any

v1 2 SðW1Þ from Lemma 3. In view of the decom-

position W ¼ Rv0 �W1, we have

W ¼ Rv0 � ðGv0 �Rv1Þ
¼ Gv0 � ðRv0 �Rv1Þ

Hence, Lemma 4 is proved. �

Lemma 4 may be regarded as a special case of

the following lemma ðW3 ¼ f0gÞ.
Lemma 5. Retain the setting of Lemma 3

and we write W1 ¼ ðRv0Þ?. Assume further that W1

decomposes as a direct sum of two vector subspaces

W2 and W3 with the following properties:

(a) Gv0 acts transitively on SðW2Þ.
(b) For a fixed v1 2 SðW2Þ, Gv0;v1 :¼ Gv0 \Gv1 acts

transitively on SðW3Þ.
Then we have

W �W ¼ G � ðRv0 � ðRv0 �Rv1 �Rv2ÞÞ

for any v2 2 SðW3Þ.
Proof. The proof is similar to that of

Lemma 4. �

Spinð2nþ 1Þ acts on R2n as a spin representa-

tion. G2 is an automorphism group AutRðCÞ, where
C ’ R8 stands for the Cayley algebra. Let e0; . . . ; e7
be the standard basis of C, and we set a subspace

C0 :¼ fx1e1 þ � � � þ x7e7 : x1; . . .x7 2 Rg ’ R7. Then

C0 is G2-invariant, so we define a representation of

G2 on C0 (see [1], for example).

Now we recall,

Fact 6. The representation of G on a real

vector space W in Table II induces the transitive

action on the unit sphere SðW Þ.
The isomorphic class of isotropy subgroups Gv

is listed in the right column in Table II.

We are ready to prove Theorem A in Case 3.

Proof of Theorem A in Case 3-a. It follows

from Fact 6 (1) and Lemma 3 that we have

C2n ¼ SpðnÞ �Rv0

for any v0 2 S4n�1. This means that the totally real

submanifold S :¼ Rv0 meets every SpðnÞ-orbit in

C2n. As before, let ~ee1; . . . ;~ee2n be the standard basis

of C2n. Now we take v0 ¼~ee1. Let � be the standard

complex conjugate of C2n. Then, clearly, � pre-

serves every SpðnÞ-orbit in C2n. With the data

ðS; �Þ the natural action of SpðnÞ on C2n is strongly

visible. �

Remark 7. The strongly visibility of SUðnÞ
acting on Cn is already proved in Case 1. An

analogous idea to the previous proof of Case 3-a

gives an alternative proof of the strongly visibility

because SUðnÞ acts on S2n�1 transitively in n � 2.
Proof of Theorem A in Case 3-b. We first

consider the case ðGU; V Þ ¼ ðG2 �T;C7Þ. The idea

of the proof is similar to Case 3-a, but we need to

iterate the argument twice as follows:

Let G2ðCÞ be the complexification of G2, and

C7 ¼ R7 þ
ffiffiffiffiffiffiffi
�1

p
R7 ’ C0 �R C.

From Fact 6 (iv) and Lemma 3, we have

R7 ¼ G2 �Rv0

for any v0 2 S6. Since the isotropy subgroup

ðG2Þv0 ’ SUð3Þ acts transitively on the comple-

mentary subspace ðRv0Þ? ’ R6, it follows from

Lemma 4 that we have

Table II. Transitive GU -actions on SðW Þ

G W SðWÞ Gv

1 SpðnÞ C2n ’ R4n S4n�1 Spðn� 1Þ
2 Spinð9Þ R16 S15 Spinð7Þ
3 Spinð7Þ R8 S7 G2

4 G2 R7 S6 SUð3Þ
5 SUð3Þ C3 ’ R6 S5 SUð2Þ
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C7 ¼ G2 � ðRv0 þ
ffiffiffiffiffiffiffi
�1

p
ðRv0 þRv1ÞÞ

for any v1 2 S5. Finally, by using the action of the

second factor T of GU on R7, we get

C7 ¼ ðG2 �TÞ � ðRv0 þ
ffiffiffiffiffiffiffi
�1

p
Rv1Þ:

Thus

S :¼ Rv0 þ
ffiffiffiffiffiffiffi
�1

p
Rv1 ’ R2

meets every GU -orbit in C7.

We recall e1; . . . ; e7 is a basis of C0, and take

v0 ¼ e1, v1 ¼ e2. We define an anti-holomorphic

involution � in C7 ’ C0 �R C by

�ðc1e1 þ � � � þ c7e7Þ ¼ c1e1 � ðc2e2 þ � � � þ c7e7Þ

for c1; . . . ; c7 2 C. Then this � preserves each

ðG2 �TÞ-orbit in C7. Therefore, this action is

strongly visible with the data ðS; �Þ.
The remaining case of Case 3-b is ðGU; V Þ ¼

ðSpinð7Þ;C8Þ. As G2 and its subgroup SUð3Þ act

transitively on S6 and S5, respectively, in the

previous case, we use a fact that Spinð7Þ and its

subgroup G2 act transitively on S7 and S6, respec-

tively (see Fact 6), in this case. Since the proof

parallels to the previous case, we omit its proof. �

Proof of Theorem A in Case 3-c. This case

treats ðGU; V Þ ¼ ðSpinð9Þ;C16Þ.
The proof in this case is similar to Case 3-b.

We apply Lemma 5 in place of Lemma 4. The key

ingredient of the proof is that the triple of Lie

groups

Spinð9Þ 	 Spinð7Þ 	 G2

act transitively on the triple of unit spheres

S15 	 S7 	 S6;

respectively. Correspondingly, we can take S to be a

three dimensional real vector subspace R3 in C16

such that

C16 ¼ ðSpinð9Þ �TÞ �R3:

We omit details. �

Remark 8. We note that key subgroups in

the proof of Cases 3-b and 3-c give rise to non-

symmetric spherical varieties

G2=SUð3Þ; Spinð7Þ=G2; Spinð9Þ=Spinð7Þ:

Finally, the second statement of Theorem A

follows by comparing the list of dimR S for slices S

(see the right column in Table I) with the list of

the rank of polynomial representations C½V �
(the number of fundamental generators) given in

[3, Table 15.1].
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