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Geometric function theory and Smale’s mean value conjecture

By Ege Fujikawa∗) and Toshiyuki Sugawa∗∗)

(Communicated by Heisuke Hironaka, m.j.a., Sept. 12, 2006)

Abstract: We improve an estimate of the constant in Smale’s mean value conjecture, by us-
ing the Bieberbach theorem for coefficients of univalent functions and an estimate of the hyperbolic
density of a certain simply connected domain.
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1. Introduction and result. Let P (z) be
a complex polynomial of degree d ≥ 2, and let z1, z2,
. . ., zd−1 be the critical points of P (z). Smale [11]
stated that, if z is not a critical point of P , then the
following inequality holds:

min
i

∣∣∣∣P (z) − P (zi)
z − zi

∣∣∣∣ ≤ 4|P ′(z)|.(1)

Furthermore, he also formulated the following con-
jecture, which is known as Smale’s mean value con-
jecture. See also [10] and [12].

Conjecture 1. Let P (z) be a polynomial of
degree d ≥ 2 and let z1, z2, . . ., zd−1 be the critical
points of P (z). If z is not a critical point of P , then

min
i

∣∣∣∣P (z) − P (zi)
(z − zi)P ′(z)

∣∣∣∣ ≤ d − 1
d

.(2)

A weaker version of Smale’s conjecture is the
inequality with constant 1 instead of (d−1)/d in (2).
Let S(P, z) be the left-hand side of inequality (2),
and denote by K(d), d ≥ 2, the smallest constant
such that S(P, z) ≤ K(d) holds for all polynomials
P of degree d and for all z �= zi. Inequality (1) shows
that K(d) ≤ 4 and in view of the example P (z) =
zd − z, one has K(d) ≥ (d − 1)/d. Smale’s mean
value conjecture thus says that K(d) ≤ (d − 1)/d.
This conjecture has been proved only for degrees d =
2, 3, 4 (see [9]) and d = 5 (see [4]). For d ≥ 6, it has
been proved only under some additional conditions.
See [7, 13, 14]. In a general case, Beardon, Minda
and Ng [1] proved that
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K(d) ≤ 4
d−2
d−1 =: K1(d)

and Conte, Fujikawa and Lakic [2] verified that

K(d) ≤ 4
d − 1
d + 1

=: K2(d).

Furthermore, Schmeisser [8] showed that

K(d) ≤ 2d − (d + 1)
d(d − 1)

=: K3(d).

In this paper, we improve these estimates.

Theorem 1. Let P be a polynomial of degree
d ≥ 2 with critical points z1, z2, . . . , zd−1. If z is not
a critical point of P , then

min
i

∣∣∣∣P (z) − P (zi)
(z − zi)P ′(z)

∣∣∣∣ ≤ 4 · 1 + (d − 2)4
1

1−d

d + 1
= : K0(d).

Remark. For d ≥ 7, our constant K0(d) is bet-
ter than the other ones. More precisely,
(i) K0(d) < K2(d) < K1(d) < K3(d) for d ≥ 8;
(ii) K0(7) = 2.48425 . . . < K3(7) < K2(7) < K1(7);
(iii) K3(d) < K0(d) < K2(d) for d ≤ 6.
In particular, K3(6) = 1.9. Note also that these re-
sults are superfluous when d ≤ 5 since Smale’s con-
jecture was already proved.

For all linear transformations α and β, we have
S(β ◦P ◦α, α−1(z)) = S(P, z). Thus we have only to
consider for z = 0 and for polynomials P satisfying
P (0) = 0, P ′(0) = 1 (see [1]). Namely, Smale’s mean
value conjecture is equivalent to the following

Conjecture 2. Let P (z) be a polynomial of
degree d ≥ 2 with P (0) = 0 and P ′(0) = 1, and let
z1, z2, . . ., zd−1 be the critical points of P (z). Then

min
i

∣∣∣∣P (zi)
zi

∣∣∣∣ ≤ d − 1
d

.
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Conjecture 2 is called the normalized conjecture,
and this has been proved for polynomials satisfying
certain conditions. For example, either if all the crit-
ical points of P are real or if all the zeros of P but the
origin have the same modulus, then the normalized
conjecture is true. Furthermore, Ng [6] showed that
S(P, 0) ≤ 2 for odd polynomials P . For a general
case, we have the following, which is equivalent to
Theorem 1.

Theorem 2. Let P (z) be a polynomial of de-
gree d ≥ 2 with P (0) = 0 and P ′(0) = 1, and z1, z2,
. . ., zd−1 the critical points of P (z). Then

min
i

∣∣∣∣P (zi)
zi

∣∣∣∣ ≤ K0(d).

2. Proof of Theorem. We have only to
prove Theorem 2. We denote by ρΩ(z)|dz| the hy-
perbolic metric of a hyperbolic domain Ω with curva-
ture −4. The quantity ρΩ(z) is called the hyperbolic
density of Ω at z ∈ Ω. For instance, the unit disk
D = {z ∈ C : |z| < 1} has the hyperbolic density

ρD(z) =
1

1 − |z|2 .

Lemma 1 ([1]). For every domain Ω of the
form C − (R1 ∪ · · · ∪ Rn) where Ri are rays of the
form {reiθi | r ≥ 1}, the hyperbolic density ρΩ(z) of
Ω satisfies the inequality

ρΩ(0) ≤ 4−
1
n .

We will prove our theorem by using this lemma
and the Bieberbach theorem for univalent functions
on D (see [5]). The proof is based on the argument
in [2].

Proof of Theorem 2. We may assume that
mini |zi| = |z1| = z1 > 0 and mini |P (zi)| = 1 by
compositions of linear transformations, see [2]. Then

min
i

∣∣∣∣P (zi)
zi

∣∣∣∣ ≤
∣∣∣∣P (zj)

zj

∣∣∣∣ = 1
|zj | ≤

1
z1

,

where j is an integer satisfying

|P (zj)| = min
i

|P (zi)| = 1.

Thus we will prove that

1
z1

≤ K0(d).

Since z1, . . . , zd−1 are the critical points of P

and P ′(0) = 1, we have

P ′(z) =
(

1 − z

z1

)(
1 − z

z2

)
· · ·
(

1 − z

zd−1

)
.

Then, since P (0) = 0, this gives

P (z) = z −
(

1
2

d−1∑
i=1

1
zi

)
z2 +


1

3

d−1∑
i�=j

1
zizj


 z3

− · · · + (−1)d−1

d · z1z2 · · · zd−1
zd.

Let Ri be the ray of the form {reiθi | r ≥ 1} that
passes through P (zi). By Lemma 1, the hyperbolic
density ρΩ(z) of Ω = C− (R1 ∪ · · · ∪ Rd−1) satisfies

ρΩ(0) ≤ 4−
1

d−1 .

Since Ω does not contain any critical value of P , one
can take a (single-valued) branch f of the inverse
function P−1 on Ω so that f(0) = 0. In this way, we
obtain a univalent function

f : Ω → C− {z1, . . . , zd−1}

such that f(0) = 0 and P (f(w)) = w for all w ∈ Ω.
Then f has the form

f(w) = w + a2w
2 + a3w

3 + · · · .

Since f omits the value z1 in Ω, the function

f1(w) =
f(w)

1 − f(w)/z1

= w +
(

a2 +
1
z1

)
w2 + · · ·

is analytic in Ω. By applying the Bieberbach theorem
[5, Theorem 2.2] to the univalent function f1 on D
(⊂ Ω), we have ∣∣∣∣a2 +

1
z1

∣∣∣∣ ≤ 2.(3)

Since P (f(w)) = w, we obtain

−P ′′(0) = f ′′(0) = 2a2.

Thus

a2 = −P ′′(0)
2

=
1
2

d−1∑
i=1

1
zi

.

Therefore inequality (3) yields that∣∣∣∣∣ 3
z1

+
d−1∑
i=2

1
zi

∣∣∣∣∣ ≤ 4.
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Since we assumed that z1 is real, we have

3
z1

+
d−1∑
i=2

Re
1
zi

≤ 4.(4)

Let φ : D → Ω be a conformal homeomorphism
satisfying φ(0) = 0, which has the form

φ(ζ) = c1ζ + c2ζ
2 + · · · .

Since the hyperbolic density ρΩ of Ω satisfies

ρΩ(φ(ζ))|φ′(ζ)| = ρD(ζ),

we have ρΩ(0)|c1| = ρD(0) = 1. Thus

|c1| =
1

ρΩ(0)
≥ 4

1
d−1 .

Consider the function

g(ζ) = (f ◦ φ)(ζ)

= c1ζ + (c2 + c2
1a2)ζ2 + · · · ,

which maps D conformally into C − {z1, . . . , zd−1}.
Furthermore, for i = 1, · · · , d − 1, set

gi(ζ) =
g(ζ)

1 − g(ζ)/zi

= c1ζ +
(

c2 + c2
1

(
a2 +

1
zi

))
ζ2 + · · · ,

and hi(ζ) := gi(ζ)/c1. Then hi : D → C is a univa-
lent function satisfying hi(0) = 0 and h′

i(0) = 1. By
applying the Bieberbach theorem to hi(ζ), we have∣∣∣∣c2

c1
+ c1

(
a2 +

1
zi

)∣∣∣∣ ≤ 2,

namely, ∣∣∣∣c2

c2
1

+ a2 +
1
zi

∣∣∣∣ ≤ 2
|c1| .

In particular, ∣∣∣∣c2

c2
1

+ a2 +
1
z1

∣∣∣∣ ≤ 2
|c1| .

By the triangle inequality, we see that∣∣∣∣ 1zi
− 1

z1

∣∣∣∣ ≤ 4
|c1| ≤ 4 · 4− 1

d−1 = 4
d−2
d−1 .

Since we assumed that z1 is real, we have

1
z1

− 4
d−2
d−1 ≤ Re

1
zi

.(5)

Therefore, inequalities (4) and (5) yield that

3
z1

+ (d − 2)
(

1
z1

− 4
d−2
d−1

)
≤ 4.

This implies that

1
z1

≤ 4 · 1 + (d − 2)4
1

1−d

d + 1

and we have proved our theorem.
3. Concluding remark. The present

framework can be used to show the existence of an
extremal polynomial for the constant K(d). Note
that the existence of such a polynomial is not trivial.
We end the article by showing the following propo-
sition. Note that Crane [3, §5] gives essentially the
same conclusion and our proof is similar to his argu-
ment.

Proposition 1. Let d be an integer with d ≥ 2.

There exists a complex polynomial P (z) of degree at
most d such that S(P, 0) = K(d).

Proof . Denote by �0(d) the set of complex
polynomials P (z) of degree d satisfying P (0) = 0,
P ′(0) = 1 and mini |P (zi)| = 1, where z1, z2, . . .,
zd−1 are the critical points of P (z). Recall then that
S(P, 0) = mini |P (zi)/zi|. Set

�(d) =�0(2) ∪ · · · ∪�0(d)

for d ≥ 2. Our goal is to find a P ∈�(d) such that
S(P, 0) = K(d).

First note that K(d − 1) ≤ K(d) for d ≥ 3.

Indeed, for each P ∈ �0(d − 1) define Pn ∈ �0(d)
so that P ′

n(z) = P ′(z)(1−z/n) for n = 1, 2, . . . . Then
S(Pn, 0) → S(P, 0) as n → ∞. Therefore, K(d−1) ≤
K(d).

For each P ∈ �0(d), we take a univalent func-
tion f on Ω = C − (R1 ∪ · · · ∪ Rd−1) with f(0) = 0
and P ◦ f = id as in the proof of Theorem 2.

As we have seen in the last section, we have

K(d) = sup
P∈�0(d)

S(P, 0).

Therefore, there is a sequence Pn in�0(d) such that
S(Pn, 0) → K(d) as n → ∞. Let fn be the univalent
function on Ωn constructed above for f = fn. The
restriction of fn to D is a member of the well-known
family S of normalized univalent functions on the
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unit disk (cf. [5]). Since S is normal, we may assume
that fn converges to a function f∞ ∈ S uniformly on
every compact subset of D.

By the Koebe one-quarter theorem, f(D) con-
tains the disk ∆ = {|z| < 1/4} for each f ∈ S. Thus
we can define the inverse function f−1 of f on ∆.

It is easy to see that f−1
n = Pn converges to f−1

∞
uniformly on every compact subset of ∆. If we write

Pn(z) = an,0 + an,1z + · · · + an,dz
d

and

f−1
∞ (z) = a0 + a1z + · · ·

around z = 0, the Cauchy integral formula gives

ak =
1

2πi

∫
|z|=1/8

f−1∞ (z)dz

zk+1

= lim
n→∞

1
2πi

∫
|z|=1/8

Pn(z)dz

zk+1

=

{
limn→∞ an,k (0 ≤ k ≤ d)
0 (d < k).

Therefore, f−1
∞ is the restriction of a polynomial Q

of degree ≤ d to ∆ and Pn converges to Q uniformly
on every compact subset of C.

The degree of the limit polynomial Q is at least
2. Indeed, we take a critical point ζn of Pn ∈ �(d)
so that |Pn(ζn)| = 1. Since K(d) ≥ 1−1/d ≥ 1/2, we
may assume that S(Pn, 0) ≥ 1/3 for sufficiently large
n. Since S(Pn, 0) ≤ |Pn(ζn)/ζn| = 1/|ζn|, we have
|ζn| ≤ 3. Then we can take a subsequence so that ζn

converges to a point ζ, which satisfies Q′(ζ) = 0. In
particular, deg Q ≥ 2.

Next we will prove that S(Q, 0) = K(d). Let
η �= 0 be a critical point of Q such that S(Q, 0) =
|Q(η)/η|. By the Hurwitz theorem, we can take a
critical point ηn of Pn so that ηn → η, and hence,

|Pn(ηn)/ηn| → |Q(η)/η| = S(Q, 0).

Since

S(Pn, 0) ≤ |Pn(ηn)/ηn|
and

S(Pn, 0) → K(d),

we have S(Q, 0) ≥ K(d). On the other hand,

S(Q, 0) ≤ K(deg Q) ≤ K(d),

and thus, S(Q, 0) = K(d).
In the above proof, it seems difficult to exclude

the possibility that Q ∈ �(d − 1). However, if we
knew that K(d− 1) < K(d), then we could conclude
that Q ∈�(d). Note that Crane [3] pointed out that
the assertion K(d− 1) < K(d) would lead to several
conclusions concerning extremal polynomials.
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