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Classification of the mapping class groups up to measure equivalence
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Abstract: We study the mapping class groups of compact orientable surfaces from the
viewpoint of measure equivalence. In this paper, we announce some classification result of the
mapping class groups in terms of measure equivalence and the result that there exist various kinds
of discrete groups which are not measure equivalent to the mapping class groups. As a byproduct
of the proof, it turns out that the mapping class group is exact.
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1. Introduction. Quasi-isometry among
finitely generated groups is one of the most
fundamental notions in geometric group theory.
Gromov gave the following condition equivalent
to quasi-isometry between two finitely generated
groups (see [12, 0.2.C′2], [23, Theorem 2.14]). Let
Γ and Λ be two finitely generated groups. Then
they are quasi-isometric if and only if they are
topologically equivalent in the following sense: there
exist commuting, continuous actions of Γ and Λ on
some locally compact space such that the action of
each of the groups is properly discontinuous and
cocompact.

Inspired by this fact, Gromov introduced the fol-
lowing measure-theoretical counterpart, called mea-
sure equivalence:

Definition 1 ([12, 0.5.E]). Two discrete
groups Γ and Λ are said to be measure equivalent
if there exist commuting, measure-preserving, es-
sentially free actions of Γ and Λ on some standard
Borel space (Ω,m) with a σ-finite non-zero positive
measure such that the action of each of the groups
Γ and Λ admits a fundamental domain with finite
measure.

In fact, this defines an equivalence relation
among discrete groups [6, §2]. Note that two iso-
morphic groups modulo finite kernels or cokernels
are measure equivalent. In this case, we say that
the two groups are almost isomorphic. It is easy to
see that all finite groups form one complete class of
measure equivalent groups.

Any two lattices (i.e., discrete subgroups with
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cofinite volume) in the same locally compact second
countable group are measure equivalent [6, Exam-
ple 1.2]. This example is one of the geometric moti-
vations for introducing the notion of measure equiv-
alence.

It is a fundamental problem to decide whether
given two discrete groups are measure equivalent or
not. Given a connected compact orientable surface
M which may have non-empty boundary, we de-
fine the mapping class group as the group consisting
of all isotopy classes of orientation-preserving self-
diffeomorphisms of M . In this paper, we study the
mapping class groups from the viewpoint of measure
equivalence. More specifically, we give a nearly com-
plete classification result of the mapping class groups
in terms of measure equivalence and give many ex-
amples of discrete groups not measure equivalent to
the mapping class groups. We discuss the exactness
of the mapping class groups too.

The purpose of this paper is to announce results,
whose proofs and detailed accounts will be published
elsewhere [17].

2. Background. We recall some deep re-
sults on measure equivalence. Measure equivalence
has another equivalent formulation in terms of or-
bit equivalence. The notion of orbit equivalence has
been studied in the framework of ergodic theory and
operator algebras for a long time (see [6, 7, 8] for this
equivalent formulation and orbit equivalence).

It is infinite amenable groups that were treated
first from the viewpoint of orbit equivalence. Thanks
to Ornstein-Weiss’ result [22], we know that a dis-
crete group is measure equivalent to the infinite
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cyclic group Z if and only if it is infinite amenable.
In the case of non-amenable groups, Zimmer [25] ini-
tiated the study of lattices Γ in connected semisimple
Lie groups G with finite center and no compact fac-
tors and of higher R-rank from the viewpoint of orbit
equivalence, and Furman [6] concluded that any dis-
crete group measure equivalent to such Γ is almost
isomorphic to a lattice in G.

Gaboriau [9] showed that the `2-Betti numbers
for discrete groups, which are introduced by Cheeger-
Gromov [5], are invariant under measure equivalence
in the following sense: if two discrete groups Γ1 and
Γ2 are measure equivalent, then there exists a posi-
tive constant c such that βn(Γ1) = cβn(Γ2) for all n,
where βn(Λ) denotes the n-th `2-Betti number of a
discrete group Λ. Thanks to this fact, we can obtain
various results about measure equivalence (see [9]).

The reference [10] is a quite detailed survey
about recent progress of the study of measure equiv-
alence.

3. Classification. Let M = Mg,p be a con-
nected compact orientable surface of type (g, p), that
is, of genus g and with p boundary components.
(Throughout the paper, we assume a surface to be
connected, compact and orientable.) Let Γ(M) be
the mapping class group of M . We set κ(M) = 3g+
p− 4, which is called the complexity of M , and set

g0(M) =

{
2 if g ≤ 2,
g if g > 2.

Theorem 1 ([17, Theorem 1.1]). Suppose that
M1 and M2 are two surfaces with κ(M1), κ(M2) ≥
0 and that the mapping class groups Γ(M1) and
Γ(M2) are measure equivalent. Then κ(M1) =
κ(M2) and g0(M1) = g0(M2).

If a surface M satisfies κ(M) < 0 and is not
the torus, then Γ(M) is finite. It is known that all
Γ(M0,4), Γ(M1,0), Γ(M1,1) and SL(2,Z) are almost
isomorphic (see the comment right after [17, Theo-
rem 3.3]), and that Γ(M0,6) and Γ(M2,0) are almost
isomorphic (see the end of §6.8 in [16]).

The above mentioned fact that the complexity
is a measure equivalence invariant can be proved by
using the `2-Betti number as well, though our proof
is completely different. The `2-Betti numbers of the
mapping class groups can be calculated by the results
due to Gromov [11] and McMullen [20] (see [17, Ap-
pendix C]).

4. Discrete groups not measure equiva-
lent to the mapping class groups.

Theorem 2 ([17, Theorem 1.3]). Let M be a
surface with κ(M) ≥ 0 and Γ(M) the mapping class
group of M .
(i) If Γ1 and Γ2 are two infinite discrete groups

and either Γ1 or Γ2 has an infinite amenable
subgroup, then the direct product Γ1 × Γ2 and
a sufficiently large subgroup of Γ(M) are not
measure equivalent.

(ii) If a discrete group Γ has an infinite amenable
normal subgroup, then Γ and a sufficiently large
subgroup of Γ(M) are not measure equivalent.
A subgroup of Γ(M) is said to be sufficiently

large if it contains an independent pair of pseudo-
Anosov elements. A pair of pseudo-Anosov elements
is said to be independent if their fixed point sets on
the Thurston boundary are disjoint. We refer the
reader to [17, Theorem 3.1] for the details of suffi-
ciently large subgroups of Γ(M).

Adams’ method [2] shows Theorem 2 for non-
elementary hyperbolic groups instead of Γ(M). In
fact, the mapping class group has many similar prop-
erties to those of non-elementary hyperbolic groups.
We shall recall the definition of the curve com-
plex, which is shown to be connected, (Gromov-)
hyperbolic and have infinite diameter by Masur-
Minsky [18].

Definition 2. Let M be a surface with
κ(M) > 0. The curve complex C = C(M) of M
is the simplicial complex whose vertex set V (C) is
the set of non-trivial isotopy classes of non-peripheral
simple closed curves on M , and a (finite) subset of
V (C) forms a simplex of C if the set of curves rep-
resenting it can be realized disjointly on M .

Remark that the curve complex can be defined
also for surfaces M with κ(M) = 0 in a slightly dif-
ferent way (see [17, Definition 2.6]). This complex
was introduced by Harvey [14]. By definition, Γ(M)
acts on C simplicially and thus, isometrically when
C is equipped with the natural combinatorial met-
ric. In the proof of theorems in this paper, we use
not only hyperbolicity of C, but also special geomet-
ric properties of certain geodesics, called tight ones,
on C, which are discovered by Masur-Minsky [19]
and Bowditch [4]. Thanks to the special properties,
we can treat (the 1-skeleton of) C like a locally fi-
nite hyperbolic graph. For instance, given any two
vertices in C, we see that the set of tight geodesics
connecting the two vertices is finite.
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Although the mapping class group and non-
elementary hyperbolic groups have several common
properties, we can show the following

Theorem 3 ([17, Theorem 1.6]). The map-
ping class group of a surface M with κ(M) > 0 is
not measure equivalent to any hyperbolic group.

Let us denote

n(M) = g +
[
g + p− 2

2

]
for a surface M of type (g, p), where [a] denotes the
maximal integer less than or equal to a for a ∈ R.

Theorem 4 ([17, Theorem 1.2]). Let M be a
surface with κ(M) ≥ 0. Suppose that an infinite sub-
group Γ of the mapping class group Γ(M) is measure
equivalent to a discrete group containing a subgroup
isomorphic to the direct product of n free groups of
rank 2. Then n ≤ n(M).

In fact, Γ(M) itself contains the direct prod-
uct of n(M) free groups of rank 2 as a subgroup.
Therefore, the inequality in Theorem 4 is sharp. We
note that there are a few related results counting the
number of factors of direct product of certain groups
from the viewpoint of measure equivalence as in The-
orem 4 (see [9, 21]).

5. Boundary amenability and exactness.
One of Adams’ important observations is the
amenability in a topological sense of the action of
a hyperbolic group on its boundary at infinity [1].
We refer the reader to [17, Appendix A] for the def-
inition of the amenability of an action of a discrete
group. Since we follow Adams’ method, the following
similar result need to be shown:

Theorem 5 ([17, Theorem 1.4]). Let M be a
surface with κ(M) ≥ 0 and Γ(M) the mapping class
group of M . Let ∂C and PMF denote the boundary
at infinity of the curve complex and the Thurston
boundary of M , respectively. Then
(i) the Borel space ∂C is standard.
(ii) the action of Γ(M) on (∂C, µ) is amenable in a

measurable sense for any quasi-invariant proba-
bility measure µ on ∂C.

(iii) the action of Γ(M) on (PMF , µ) is amenable
in a measurable sense for any quasi-invariant
probability measure µ on PMF with
µ(MIN ) = 1, where MIN denotes the subset
of PMF consisting of all minimal measured
foliations.
It is significant to investigate the amenability

of the action of a given discrete group on a (com-

pact) space not only in the study of measure equiv-
alence as above. Let us explain another significance
of it. In general, given a continuous action of a dis-
crete group G on a compact Hausdorff space X, we
know the following fact [3]: the action is amenable
in a topological sense if and only if the action of G
on (X,µ) is amenable in a measurable sense for any
quasi-invariant measure µ on X. If a discrete group
G admits such an amenable action on some compact
Hausdorff space X, then we say that G is exact. If G
is finitely generated, then this property is described
as some geometric condition on the Cayley graph of
G, which is called the property A [15]. The property
A for metric spaces was introduced by Yu [24] in his
work on the Baum-Connes conjecture. Thanks to his
result, the Novikov conjecture is true for all finitely
generated groups with the property A.

Although we can see immediately that ∂C is not
compact (see [17, Proposition 3.8]) and that the ac-
tion of Γ(M) on PMF is not amenable in a topolog-
ical sense since there exist non-amenable stabilizers
of the action, we obtain the following

Theorem 6 ([17, Theorem 1.5]). Let M be a
surface with κ(M) ≥ 0. Then
(i) the curve complex of M has the property A as

a metric space.
(ii) the mapping class group of M is exact.

We note that recently, Hamenstädt [13] also
shows independently that the mapping class groups
are exact by constructing a certain compact
Hausdorff space on which it acts amenably in a
topological sense.
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