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Abstract:

A Lagrangian submanifold in the complex Euclidean n-space C" is called

Hamiltonian-stationary if it is a critical point of the area functional restricted to (compactly sup-
ported) Hamiltonian variations. In this article, we classify the family of Hamiltonian-stationary
Lagrangian submanifolds of C™ which are Lagrangian H-umbilical.
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1. Introduction. Let C" be the complex
Euclidean n-space with complex structure J and
Kaehler metric ( , ). The Kaehler 2-form w is de-
fined by w(-,-) = (J-,-). An immersion ¢ : M — C"
of an n-manifold M into C™ is called Lagrangian
if v*w = 0 on M. A vector field X on C" is
called Hamiltonian if Lxw = fw for some function
f € C=(C™), where L is the Lie derivative. Thus,
there exists a smooth real-valued function ¢ on C"
such that X = JV ¢, where V is the gradient in C".
The diffeomorphisms of the the flux ¢, of X satisfy
w = eMw. Thus they transform Lagrangian sub-
manifolds into Lagrangian submanifolds.

Oh [15] studied the following variational prob-
lem: A normal vector field £ to a Lagrangian immer-
sion ¢ : M™ — C"™ is called Hamiltonian if £ = JV f,
where f is a smooth function on M"™ and Vf is the
gradient of f with respect to the induced metric.

If feC§°(M) and ¢, : M — C™ is a variation
of ¢ with 1y = 1 and variational vector field £, then
the first variation of the volume functional is

d "
7 VOI(Mv wtg) =

- divJHdM,
dt [t=0 /M f

where H is the mean curvature vector of the im-
mersion 1 and div is the divergence operator on
M. Critical points of this variational functional
are called Hamiltonian-stationary (or Hamiltonian-
minimal). Lagrangian submanifolds with parallel
mean curvature vector are Hamiltonian-stationary.

Hamiltonian-stationary Lagrangian submani-
folds in C™ (mostly in C?) have been studied in [1-7,
10, 12-15], among others.
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In this article, we classify the family of
Hamiltonian-stationary Lagrangian submanifolds of
C™ which are Lagrangian H-umbilical. A related re-
sult is also obtained.

2. Preliminaries. Let f: M — C™ be an
isometric immersion of a Riemannian n-manifold M
into C". We denote the Riemannian connections of
M and C" by V and V, respectively; and by D the
connection on the normal bundle of the submanifold.

The formulas of Gauss and Weingarten are

VxY = VxY +h(X,Y),

Vxé= —Ac X + Dx¢

for tangent vector fields X, Y and normal vector field
&. If we denote the Riemann curvature tensor of V

by R, then the equations of Gauss and Codazzi are
given respectively by

(2.1)
(2.2)

(23)  (R(X,Y)Z,W) = (h(X, W), h(Y, 2))
— (WX, 2), h(Y, W),
24)  (VA)(X,Y,Z) = (Vh)(Y, X, Z),

where (Vh)(X,Y,Z) = Dxh(Y,Z) —
hY,VxZ).

For a Lagrangian submanifold M of C", we also
have (cf. [11])

h(VXY, Z) -

(25)  DxJY = JVyY,
(2.6) (W(X,Y),JZ) = (MY, Z),TX)
= (h(Z,X),JY).

We recall some definitions and results from [9].

By definition, a Lagrangian submanifold with-
out totally geodesic points is called a Lagrangian
H-umbilical submanifold if the second fundamental
form takes the following simple form (cf. [9]):
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(2.7) h(ei,e1) =AJer, h(ej,ej)=p,Jer, j>1,
hei,e;) =pdej, hlejex) =0,2<j#k<n

for some functions A, u with respect to some suitable
orthonormal local frame field {ey, ..., e,}. Such sub-
manifolds are known to be the simplest Lagrangian
submanifolds next to the totally geodesic ones.

Let G : N»~! — E" be an isometric immersion
of a Riemannian (n — 1)-manifold into the Euclidean
n-space E"™ and let F' : I — C* be a unit speed curve
in C* = C — {0}. We may extend G : N*~! — E"
to an immersion of I x N™~! into C" as

(2.8) FoG:IxN" ! - CE"=C",
where (F ® G)(s,p) = F(s) @ G(p) for s € I, p €
N™1 This extension F @ G of G via tensor product
is called the complex extensor of G via F' (or of the
submanifold N"~1 via F).

Proposition 1. Let:: S"~ ' — E" be the in-
clusion of a hypersphere of E™ centered at the origin.
Then every complex extensor ¢ = F®u of 1 via a unit
speed curve F': I — C* is a Lagrangian H-umbilical
submanifold of C™ unless F' is contained in a line
through the origin (which gives a totally geodesic La-
grangian submanifold).

For F®t, we choose e1 a unit vector field tangent
to the first factor and es, ..., e, to the second factor
of I x S~ 1. Without loss of generality, we may
assume ¢ is the inclusion ¢ : S"71(1) C E" of the
unit hypersphere centered at the origin of E™.

If we put F/ =€) and F = r(s)e®®), then
the second fundamental form of the complex exten-
sor ' ® . satisfies (2.7) with
(F',iF)

p=~—==>=0(s).

(2.9) T

A=¢'(s) =k,
From (2.9) and Proposition 1 we see that a complex
extensor is totally geodesic if and only if p = 0.

There exist many unit speed curves F = re
whose curvature satisfies x = mf’ with m € R.

Example 1. If F = re' with » = b~ cosbs
and 6 = bs, b > 0, then the curvature of F' satisfies
k = 26’. The associated complex extensor is called a
Lagrangian pseudo-sphere.

Example 2 (Cardioid). Let F = re' be the
unit speed reparametrization of G = (1 + cost)e.
Then F satisfies £(s) = 36/(s).

Example 3 (Circle). Let F = b~te® b > 0.
Then F satisfies kK = 6’ = b.

0
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Example 4 (Logarithmic spiral). Let F =
(bs/v/1+b%)e® s with b > 0. Then F satisfies
k=0 =b"ls"1,

Example 5. Let F = /52 + b2eitan '(s/b)
b > 0. Then the curvature of F' satisfies K = 0.

Example 6. Consider s = zE(% arccosh f;2),
where E(-;k) is the elliptic integral of the second
kind with elliptic modulus k. Then s(f) is a real-
valued decreasing function for f > 1. If f(s) is its
inverse function, then F' = \/fe with § = [ f~2ds
is a unit speed curve satisfying kK = —6’.

3. Hamiltonian-stationary Lagrangian
submanifolds. Let ¢j denote the inclusion of
the unit hypersphere centered at the origin and
F =7(5)e"?®) a unit speed curve in C* with 6 # 0.

Theorem 1. Let L : M — C" be a Lagran-
gian H-umbilical submanifold with n > 3. Then L
is Hamiltonian-stationary if and only if, up to di-
lations, L is congruent to an open portion of a La-
grangian submanifold of the following six types:

(1) A Lagrangian cylinder over a circle:

ias

L(S,Z‘Q,...,xn) = ( ea

,xg,...,xn),a>0.

(2) A complex extensor F .8, where F is a unit
speed curve whose curvature k satisfies k = 0'(s).

(3) A complex extensor F @y, where F is a unit
speed curve with kK = (1 —n)@'(s).

(4) A complex extensor F@ufy, where F' is a unit
speed curve with kK = (3 —n)d'(s).

(5) A complex extensor F ® 1}, where F = re
is a unit speed curve with k = br=*, b # 0.

(6) A complex extensor F ® 1fj,n > 3, where
F = €% is a unit speed curve such that the curvature
k satisfies k # mb’ for any m € R and

K= ( 3;”)9'—1— ﬁa:—;)/

0

Proof. Assume L : M — C™ is Lagrangian H-
umbilical with n > 3. Then, L is a Lagrangian sub-
manifold without totally geodesic points such that
the second fundamental form satisfies (2.7) for some
functions A and p with respect to some suitable or-

thonormal local frame field ey, ..., e,.
Let w',... ,w" denote the dual 1-forms of
e1,...,en and (w?), 4,5 =1,...,n, be the connection

forms of the Lagrangian submanifold. By applying
Codazzi’s equation to (2.7), we find

(31)  ep=(A—2uwile;), j>1,



) A= (2n— A
) (A —2pwie
) e =3uwi(er),
) pwi(e) =0, j>1.

1(e1),
k) =0, 1<j#k<n,

J>1

It follows from (2.7) that the mean curvature
vector H is given by nH = (A + (n — 1)u)Jey. So,
the dual 1-form apy of JH satisfies
1

(3.6) —nag =AM+ (n—1)pw

Now, assume that L is Hamiltonian-stationary.
Let & denote the co-differential operator of M.
Since the Hamiltonian-stationary condition of the
Lagrangian submanifold in C" is characterized by
dapg =0 (cf. [15]), so after applying ¢ to (3.6) and
using Cartan’s structure equations, we obtain

EweJ

Case (A): M is of constant sectional curvature.
In this case, Theorem 3.1 of [9] implies that either
M is an open portion of a Lagrangian pseudo-sphere
or M is a flat manifold.

If M is an open portion of a Lagrangian pseudo-
sphere, then we have A = 2 which is constant on M.
Thus, (3.7) reduces to

3.7 etA+(n—1ep=A+(n—1)u

(3.8) walea) + -+ wl(e,) =0 onU.

On the other hand, the Lagrangian pseudo-
sphere satisfies wjl»(ej) = btanbs for j > 1. Combin-
ing this with (3.8) shows that this cannot happen.

If M is flat, it follows from (2.7) and equation of
Gauss that p = 0 identically. Since A # 0, it follows
from (3.1) and p = 0 that wj(e;) = 0,5 =2,...,n
Combining this with (3.3) and (3.7) gives

(3.9) etd=wj(er) =0, 2<jk<n.

Also, it follows from (3.2) that

(3.10) ej(In\) =wl(er), j=2,...,n

Let D and Dt denote the distributions on M
spanned by {e1} and {ea, ..., e, }, respectively. Then
D is integrable, since it is 1-dimensional. Also, it
follows from (3.9) that D+ is integrable with totally
geodesic leaves. Moreover, it follows from (2.7) with
i = 0 that the leaves of D+ are totally geodesic in C"
as well. Because D and D+ are both integrable, there
exist local coordinates {s, xa, ..., x,} such that 9/9s
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spans D and {9/0xa, ...,0/0x,} spans DL. Since D
is 1-dimensional, we may choose s in such way that
8/88 = )\7161.

From e; A = 0, we have A = A(za, .. .,
respect to {s,za,...,z,}, (2.7) becomes

Zn). With

(3.11)

0 0 0 o 0 o 0
Hoa) = o (5as) = (o) -
for j,k = 2,...,n. Let N*"~! be an integral sub-
manifold of D+. Then N™~! is totally geodesic in
C". Thus, N"~! is an open portion of a Euclidean
(n—1)-space E"~1. Hence, M is isometric to an open

portion of the warped product manifold 511 x E*~1
with warped product metric:

(3.12) g=\"2ds® + da3 +da3 + - +da?,
where [ is an open interval on Wthh A7 is defined.
_ OX
Put )‘1_%’ Ajk = 8x &B fOl"],k—2
From (3.12) we find
0 M\ 0 0 A0
Vs T N o VEm T A D
(3.13) k=2 ¥ 7
0
\Y% =0
%j al‘k ’

for 2 < j,k < n. By applying (3.13) we find

o 0 "N O
R == j=2,...,n.
(88 ) Z A dxy’ "
Since M is flat, this implies that A;p = 0 for j,k =
2,...,n. Therefore, we have
(3.14) A=a+ ez + -+ Ty,

for some a,qs,...,a, € R. From (3.11), (3.13),
(3.14) and the formula of Gauss, we obtain

n

(815) Lus =Y S Loy +iLu; Lo, =
k=2

Losw, =0, jk>1.

o
J
- st

A

Solving the last equation in (3.15) yields

n
(3.16) L= Pi(s)z; + D(s),
Jj=2

for some C™-valued functions Ps, ..., P,, D.
By applying (3.14), (3.15) and (3.16), we find

(3.17)  «jPi(s) =0,

J
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(3.18)
(3.19)

a;Pi(s) + oxPj(s) =0, 2<j#k <n,
aPl(s)+a;D'(s) =0, jk=2,...,n.

If as, ..., ay are not all zero, say as # 0. Then,
(3.17) gives P, = 0. Thus, by (3.18) and (3.19),
we have P; = --- = P} = D' = 0 as well. Hence,
P,,..., P, and D are constant vectors, which is im-
possible in views of (3.16). Therefore, we must have
ag =---=a, =0and A =a # 0. So, from (3.19)
we know that Ps,..., P, are orthonormal constant
vectors in C™. Consequently, (3.16) becomes

(3.20) L=D(x1)+coxa+ -+ cpn

for cg,...,c, € C™. Substituting this into the first
equation of (3.15) yields D(x1) = c1e?®1. Hence, L
is a Lagrangian cylinder over a circle. Thus, after
choosing suitable initial conditions, we get case (1).
Case (B): M contains no open subset of con-
stant curvature. By Theorem 4.1 of 9, M is congru-
ent to a complex extensor ¢ = F'®.f of tfj. Thus, M
is a Lagrangian H-umbilical submanifold satisfying
(2.7) with X\ # 2p and p # 0.
For the complex extensor F' ® v, we have
9¢

%ZF/(S)(@LQ’, ejp=F®ej j>1.

Thus, the metric g of ¢ is given by

(3.21)

(3.22) g =ds®>+ f(s)g1,

where f = (F,F) and ¢; is the standard metric of
the unit n-sphere. As before, we choose {e1,...,e,}
with e; = 0/0s so that we have (2.7) with

F' iF )
323) A=(o), p= L P = e,
Moreover, it follows from (3.22) that
f/
(3.24) wh(es) = = wl(en) = 37

Since F'(s) is unit speed, we have
(3.25) F" = inF', F=(FF)F —(FiF)iF

where & is the curvature of F. It follows from (3.23)
and the first equation of (3.25) that

(3.26) A =K.
From the second equation in (3.25) we find

(3.27) A(FiF =4f — f2>0.

[Vol. 82(A),

Thus, after replacing s by —s if necessary, we have
1
(F'iF) = 5V/AF = 17,

If 4f = f? holds on an open interval Iy, then
(F,iF") = 0 on Iy. Hence, F(s) is parallel to F’(s)
for s € Iy, which implies that F' : I — C* is an
open part of a line through the origin. So, according
to Lemma 2.1, the complex extensor ¢ has totally
geodesic points which is a contraction.

From the first equation in (3.25), we find f” =
2 — 2k (F',iF) . Combining this with (3.28) yields

2 _ 1
K(s) = 4(3)
VAIG) - T2(s)

Hence, (3.23), (3.26), (3.28) and (3.29) give

2 _ 1 /4 _ 12
(3.30)/-@:)\:7f,u:9’=#.
VAf — f2 2f
Due to f" = 2(F,F’) and (3.28), the second
equation in (3.25) can be written as

F/(S) _ f/(S) +1 Vv 4f(3) — f/Q(S)F(S)
2f(s)
Assume f is defined on a open interval I > 0.

After solving (3.31) and using |F’| = 1, we know
that, up to rotations about the origin, F' is given by

(332)  F=+\/Fexp <% /O 7\st).

Since p # 0 and A # 2y, (3.3) and (3.5) give

el
2 — N

(3.28)

(3.29)

(3.31)

(3.33) wi(e1) =0, wj(e;) =

j wjl-(ek) =0

for 2 < j # k < n. By substituting the second
equation of (3.33) into (3.7) we find
2u =N = -1\ + (n—3)u)'.

So, by combining (3.30) and (3.34) we obtain
(3.35) 2(4f = f)(f'+ (n = 2)f'¢) + f'v* =0,

where

(3.34)

(3.36) Y =2ff"+(n—-3)f*+42—-n)f.

Since f' =2 (F,F) and " =2+ 2k (F,iF"), the
function v can be written as

(3.37) ¥ =A4(kf — (n—3) (F,iF")) (F,iF") .

Case (B.i): f is a polynomial in s. A direct
computation shows that the only polynomials which
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satisfy (3.35) are of degree 0 or 2. If f is of degree
2, the leading coefficient must be one. For those
polynomials the function ¢ in (3.36) is constant.

If f is of degree zero, we may put f = b2 for
some b > 0. So, from (3.30) we find x = 6’ = b,
which gives case (2) of the theorem.

If f = s+ bs+c, then after applying a suitable
translation in s, we get f = s2 + a for some real
number a. Thus, by (3.29) we get k = 0. Moreover,
it is easy to verify that under f = s% + a, (3.32)
holds if and only if either n = 3 or a = 0. The
later case cannot occurs, since the Lagrangian H-
umbilical submanifold has no totally geodesic points.
Therefore, we obtain case (4) with n = 3.

Case (B.ii): f is not a polynomial in s. The
function ¢ given by (3.36) is non-constant. More-
over, (3.24) and (3.33) yields e;pu # 0.

Case (B.ii.a): A\ = mu # 0 for some m € R.
Since e1p # 0, after substituting A = mu into (3.34),
we find (n+m —3)(n+m—1) = 0, which gives cases
(3) and (4).

Case (B.ii.b): A\ # cu for any ¢ € R. By
applying (3.27), and (3.37), we obtain from (3.35)
that

(3.38) 2f% = (1 —n)f'(2fr+ (3 —n) (F,iF")).

From |F’| = 1 we have 726’2 +1'2 = 1. Without loss
of generality, we may assume that 6/ = r=1y/1 — /2,
Thus, from F = r(s)e®®(®) and (3.38), we obtain

re’ + (n—1)2s+ (n—3)0")r' =0,

which gives case (5) for n = 3 and case (6) for n > 3.

The converse can be verify by direct computa-
tion. ([l

4. Complex extensors with parallel mean
curvature vector.

Theorem 2. A complex extensor F & 1y of 1}
via a unit speed curve F in C* has parallel mean
curvature vector if and only if either (1) the complex
extensor is a minimal Lagrangian submanifold, or
(2) F is a circle centered at the origin.

Proof. We already know that the complex ex-
tensor F' ® (i is a non-totally geodesic Lagrangian
submanifold whose second fundamental form sat-
isfies (2.7) for some functions A and p with re-
spect to some suitable orthonormal local frame field
€ly...4,En.

Since the mean curvature vector H is given by

(4.1) H= %()\—k(n— D) Jes,

Hamiltonian-stationary Lagrangian H-umbilical submanifolds 177

the complex extensor ¢ has parallel mean curvature
vector if and only if L is minimal or A + (n — 1)y is
a nonzero constant and Ve, = 0.

Now, assume that F' ® ¢{ is non-minimal. Then
from Ve; = 0 we have w!(ex) = 0 for jk=1,...,n.
Combining this with (3.1) shows that p is constant.

On the other hand, since yu = % 4f — f'2, af-
ter differentiating p, we find

(4.2) (ff" = f?+2f)f =0.

If f/ =0, f is a positive constant. Thus, F is
a circle centered at the origin; hence the complex
extensor F' ® vf has parallel mean curvature vector.

When ff” — f'?2 +2f = 0 holds, then after ap-
plying a suitable translation in s and replacing s by
—s if necessary, we obtain

f=s f= b4—251nh2 (bQ—S> ,or f= b4—251n2 (bQ—S),
according to c =0,c =b%> > 0, or c = —b* < 0.

If f = s?, we have 4f = f’2. So, the complex
extensor is totally geodesic, which is a contradiction.

Iff= Z;% sinh? (%5) holds, we get 4f < f'2. This
is impossible due to (3.27).

If f = &sin® (%), then we have \/Af — f/2 =
%Sin2 (%). Thus (3.30) gives A = 2u. So, F ® i}
is a Lagrangian pseudo-sphere. This is impossible,
since Ve; # 0 for Lagrangian pseudo-spheres. O

5. Remarks.

Remark 1. If a unit speed curve F satisfies
Kk =m@'(s) for some m € R, then f = (F, F') satisfies

(5.1) 2ff" —mf? +4(m—1)f =0.
After solving this differential equation for f’ we get

(5.2) Af — f2 = af™
for some a > 0. Whenever 4f — f2 > 0, we may put
a =4b%, b > 0. Thus, if s(f) is an anti-derivative of
1
2/ — b2 fm’

the inverse function f of s satisfies (5.1). Thus,
by (3.32), we know that F = /fe’? with § =
fos bf'z ~1ds is a unit speed curve satisfying k = mé’.

Remark 2. Put y; = f,y2 = [’ and y3 = f”.
Then equation (3.35) is equivalent to the system:

Y= Y2, Yo = Y3,
Y2
4y?(dyr — y3)
—ys(4n — 8+ y3))yi — 4(n — 1)(2n — 4 — ys)y195 }-

yh = {4(4(n —2)n + (n® — dn + 3)y3
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Fig. 1. x=-5¢",6(0) =0,7(0) =1,9(0) = 5.

Fig. 2. xk=6r"%,0(0)=0,7(0) =1,9(0) = %.

It follows from Picard’s theorem that, for a given ini-
tial conditions: y1(so) = ¥, y2(s0) = 49, vy3(s0) = y3
at so with 49 > 0 and 4y{ > ¢9, the initial value
problem has a unique solution in some open interval
containing sg. So, (3.35) admits infinitely many pos-
itive solutions f with 4f > f'2. Each f gives rise to
a unit speed curve F' whose curvature satisfies

re’ +(n—1)(2k+ (n — 3)0)r = 0.

So, there are infinitely many Hamiltonian-stationary
Lagrangian submanifolds of type (6) of Theorem 1.
Acknowledgement. The curves F' = re? re-
lated with Theorem 1 given above were produced by
Prof. Yoshihiko Tazawa of Tokyo Denki University.
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