On holomorphic curves extremal for the truncated defect relation and some applications

By Nobushige TodA*)
Professor Emeritus, Nagoya Institute of Technology
(Communicated by Shigefumi Mori, M. J. A., June 14, 2005)

Abstract

We consider extremal holomorphic curves for the truncated defect relation when the number of vectors whose truncated defects are equal to 1 is large. Some applications to another defect are given.

Key words: Holomorphic curve; truncated defect relation; extremal.

1. Introduction. Let $f=\left[f_{1}, \ldots, f_{n+1}\right]$ be a holomorphic curve from \boldsymbol{C} into the n-dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation

$$
\left(f_{1}, \ldots, f_{n+1}\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}-\{\mathbf{0}\}
$$

where n is a positive integer. We use the notations:

$$
\begin{aligned}
& \|f(z)\|=\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n+1}(z)\right|^{2}\right)^{1 / 2} \\
& T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\|
\end{aligned}
$$

We suppose throughout the paper that f is transcendental: $\lim _{r \rightarrow \infty} T(r, f) / \log r=\infty$ and that f is linearly non-degenerate over \boldsymbol{C}; namely, f_{1}, \ldots, f_{n+1} are linearly independent over \boldsymbol{C}.

It is well-known that f is linearly nondegenerate over \boldsymbol{C} if and only if the Wronskian $W=W\left(f_{1}, \ldots, f_{n+1}\right)$ of f_{1}, \ldots, f_{n+1} is not identically equal to zero.

For a vector $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n+1}\right) \in \boldsymbol{C}^{n+1}-\{\mathbf{0}\}$, we put

$$
\begin{aligned}
\|\boldsymbol{a}\| & =\left(\left|a_{1}\right|^{2}+\cdots+\left|a_{n+1}\right|^{2}\right)^{1 / 2} \\
(\boldsymbol{a}, f) & =a_{1} f_{1}+\cdots+a_{n+1} f_{n+1} \\
(\boldsymbol{a}, f(z)) & =a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z) \\
N(r, \boldsymbol{a}, f) & =N(r, 1 /(\boldsymbol{a}, f))
\end{aligned}
$$

as in [6, Introduction]. We call the quantity

$$
\delta(\boldsymbol{a}, f)=1-\limsup _{r \rightarrow \infty} N(r, \boldsymbol{a}, f) / T(r, f)
$$

the deficiency (or defect) of \boldsymbol{a} with respect to f. We

[^0]have that $0 \leq \delta(\boldsymbol{a}, f) \leq 1$.
Further, let $\nu(c)$ be the order of zero of $(\boldsymbol{a}, f(z))$ at $z=c$ and for a positive integer k, let
$$
n_{k}(r, \boldsymbol{a}, f)=\sum_{|c| \leq r} \min \{\nu(c), k\} ;
$$
\[

$$
\begin{aligned}
N_{k}(r, \boldsymbol{a}, f)= & \int_{0}^{r} \frac{n_{k}(t, \boldsymbol{a}, f)-n_{k}(0, \boldsymbol{a}, f)}{t} d t \\
& +n_{k}(0, \boldsymbol{a}, f) \log r \quad(r>0)
\end{aligned}
$$
\]

We put

$$
\delta_{k}(\boldsymbol{a}, f)=1-\limsup _{r \rightarrow \infty} N_{k}(r, \boldsymbol{a}, f) / T(r, f) .
$$

It is easy to see that

$$
\begin{equation*}
0 \leq \delta(\boldsymbol{a}, f) \leq \delta_{k}(\boldsymbol{a}, f) \leq 1 \tag{1}
\end{equation*}
$$

We denote by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow+\infty$, possibly outside a set of r of finite linear measure and by $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}$ the standard basis of \boldsymbol{C}^{n+1}.

Let X be a subset of $\boldsymbol{C}^{n+1}-\{\mathbf{0}\}$ in N-subgeneral position; that is to say, $\# X \geq N+1$ and any $N+1$ elements of X generate C^{n+1}, where N is an integer satisfying $N \geq n$. We say that X is in general position when X is in n - subgeneral position.

Cartan $([1], N=n)$ and Nochka $([4], N>n)$ gave the following theorem:

Theorem A (truncated defect relation). For any q elements $\boldsymbol{a}_{j}(j=1, \ldots, q)$ of X,

$$
\sum_{j=1}^{q} \delta_{n}\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1
$$

where $2 N-n+1 \leq q \leq \infty$ (see [3]).
We are interested in the holomorphic curve f extremal for the truncated defect relation:

$$
\begin{equation*}
\sum_{j=1}^{q} \delta_{n}\left(\boldsymbol{a}_{j}, f\right)=2 N-n+1 \tag{2}
\end{equation*}
$$

We gave several results in [5]. The purpose of this paper is to give some results on $\delta_{n}(\boldsymbol{a}, f)$ when (2) holds and $\#\left\{\boldsymbol{a} \in X \mid \delta_{n}(\boldsymbol{a}, f)=1\right\}$ is large. Some applications to another defect are also given.
2. Preliminaries and lemmas. Let $f=$ $\left[f_{1}, \ldots, f_{n+1}\right]$ and X etc. be as in Section 1 and q be an integer satisfying $N+1<q<\infty$. For a nonempty subset P of X, we denote by $V(P)$ the vector space spanned by the elements of P and by $d(P)$ the dimension of $V(P)$.

Lemma 2.1 (see [3, (2.4.3), p. 68]). If $\# P \leq$ $N+1$, then $\# P-d(P) \leq N-n$.

We put for $\nu=1, \ldots, n+1$

$$
X_{\nu}(0)=\left\{\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in X \mid a_{\nu}=0\right\}
$$

Then, $0 \leq \# X_{\nu}(0) \leq N$ as X is in N-subgeneral position. By Lemma 2.1, we have the inequality

$$
\begin{equation*}
\# X_{\nu}(0)-d\left(X_{\nu}(0)\right) \leq N-n \tag{3}
\end{equation*}
$$

Let $X_{\nu}^{1}(0)$ be a subset of $X_{\nu}(0)$ satisfying
(i) $\# X_{\nu}^{1}(0)=d\left(X_{\nu}(0)\right)$;
(ii) All elements of $X_{\nu}^{1}(0)$ are linearly independent, and we put $X_{\nu}^{0}(0)=X_{\nu}(0)-X_{\nu}^{1}(0)$. Then, from (3) we have the inequality $\# X_{\nu}^{0}(0) \leq N-n$.

Lemma 2.2. For any q vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}$ in $X-X_{\nu}^{0}(0)$, we have the following inequality for any $\nu(1 \leq \nu \leq n+1)$:

$$
\begin{aligned}
& (q-N-1) T(r, f) \leq \sum_{j=1}^{q} N_{n}\left(r, \boldsymbol{a}_{j}, f\right) \\
& \quad+(N-n) \sum_{j=1 ; j \neq \nu}^{n+1} N_{n}\left(r, \boldsymbol{e}_{j}, f\right)+S(r, f)
\end{aligned}
$$

Proof. As the proof proceeds in the same way for any ν, we prove this lemma for $\nu=n+1$. For simplicity we put

$$
W_{1}\left(f_{1}, \ldots, f_{n+1}\right)=W\left(f_{1}, \ldots, f_{n+1}\right) /\left(f_{1} \cdots f_{n+1}\right)
$$

We put $\left(\boldsymbol{a}_{j}, f\right)=F_{j}(1 \leq j \leq q)$ and for any $z(\neq 0)$ arbitrarily fixed, let

$$
\left|F_{j_{1}}(z)\right| \leq\left|F_{j_{2}}(z)\right| \leq \cdots \leq\left|F_{j_{q}}(z)\right|
$$

where $1 \leq j_{1}, \ldots, j_{q} \leq q$ and j_{1}, \ldots, j_{q} are distinct. Then, there is a positive constant K such that

$$
\begin{aligned}
\|f(z)\| & \leq K\left|F_{j_{\nu}}(z)\right| \quad(\nu=N+1, \ldots, q) \\
\left|F_{j_{\nu}}(z)\right| & \leq K\|f(z)\| \quad(\nu=1, \ldots, q)
\end{aligned}
$$

(From now on we denote by K a constant, which may be different from each other when it appears.)

As X is in N-subgeneral position, there are $n+1$ linearly independent functions in $\left\{F_{j_{1}}, \ldots, F_{j_{N+1}}\right\}$. Let $\left\{G_{1}, \ldots, G_{n+1}\right\}$ be linearly independent functions in $\left\{F_{j_{1}}, \ldots, F_{j_{N+1}}\right\}$ such that $\left\{G_{1}, \ldots, G_{n+1}\right\} \supset\left\{F_{j_{1}}, \ldots, F_{j_{N+1}}\right\} \cap\left\{F_{j} \mid \boldsymbol{a}_{j} \in\right.$ $\left.X_{n+1}^{1}(0)\right\}$ and put

$$
\begin{aligned}
\left\{G_{n+2}, \ldots, G_{N+1}\right\}= & \left\{F_{j_{1}}, \ldots, F_{j_{N+1}}\right\} \\
& -\left\{G_{1}, \ldots, G_{n+1}\right\}
\end{aligned}
$$

Then, $\left\{G_{n+2}, \ldots, G_{N+1}\right\} \cap\left\{F_{j} \mid \boldsymbol{a}_{j} \in X_{n+1}(0)\right\}=$ ϕ and we have the equality

$$
\begin{aligned}
& \frac{F_{j_{N+2}}(z) \cdots F_{j_{q}}(z)}{W_{1}\left(G_{1}, \ldots, G_{n+1}\right) \Pi_{k=1}^{N-n} W_{1}\left(f_{1}, \ldots, f_{n}, G_{n+1+k}\right)} \\
& =\frac{\Pi_{j=1}^{q} F_{j}(z)\left(\Pi_{j=1}^{n} f_{j}(z)\right)^{N-n}}{W\left(G_{1}, \ldots, G_{n+1}\right) \Pi_{k=1}^{N-n} W\left(f_{1}, \ldots, f_{n}, G_{n+1+k}\right)} \\
& =K \frac{\Pi_{j=1}^{q} F_{j}(z)\left(\Pi_{j=1}^{n} f_{j}(z)\right)^{N-n}}{W\left(f_{1}, \ldots, f_{n+1}\right)^{N+1-n}} \equiv H(z)
\end{aligned}
$$

since $W\left(G_{1}, \ldots, G_{n+1}\right)=c_{0} W\left(f_{1}, \ldots, f_{n+1}\right)$ and $W\left(f_{1}, \ldots, f_{n}, G_{n+1+k}\right)=c_{k} W\left(f_{1}, \ldots, f_{n+1}\right)$ for $k=$ $1, \ldots, N-n .\left(c_{k} \neq 0(0 \leq k \leq N-n)\right)$.

From this equality we obtain the inequality which holds for any $z \neq 0$:

$$
\begin{aligned}
& (q-N-1) \log ||f(z)|| \leq \log |H(z)| \\
& \quad+\sum_{\left(\nu_{1}, \ldots, \nu_{n+1}\right)} \log ^{+}\left|W_{1}\left(F_{\nu_{1}}, \ldots, F_{\nu_{n+1}}\right)(z)\right| \\
& \quad+\sum_{\left\{F_{j} \mid \boldsymbol{a}_{j} \notin X_{n+1}(0)\right\}} \log ^{+}\left|W_{1}\left(f_{1}, \ldots, f_{n}, F_{j}\right)(z)\right| \\
& \quad+\log ^{+}|K|
\end{aligned}
$$

where the summation $\sum_{\left(\nu_{1}, \ldots, \nu_{n+1}\right)}$ is taken over all systems $\left\{F_{\nu_{1}}, \ldots, F_{\nu_{n+1}}\right\}$ of $n+1$ functions which are linearly independent and taken from $\left\{F_{1}, \ldots, F_{q}\right\}$. By integrating both sides of this inequality with respect to $\theta\left(z=r e^{i \theta}\right)$, we obtain this lemma as in [1]. Here, we used the facts that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|H\left(r e^{i \theta}\right)\right| d \theta \leq \sum_{j=1}^{q} N_{n}\left(r, \boldsymbol{a}_{j}, f\right) \\
& \quad+(N-n) \sum_{j=1}^{n} N_{n}\left(r, \boldsymbol{e}_{j}, f\right)+O(1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|W_{1}\left(F_{\nu_{1}}, \ldots, F_{\nu_{n+1}}\right)\left(r e^{i \theta}\right)\right| d \theta \\
& \quad=S(r, f)
\end{aligned}
$$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|W_{1}\left(f_{1}, \ldots, f_{n}, F_{j}\right)\left(r e^{i \theta}\right)\right| d \theta
$$

Corollary 2.1. For $1 \leq \nu \leq n+1$

$$
\begin{gathered}
\sum_{\boldsymbol{a} \in X-X_{\nu}^{0}(0)} \delta_{n}(\boldsymbol{a}, f)+(N-n) \sum_{j=1 ; j \neq \nu}^{n+1} \delta_{n}\left(\boldsymbol{e}_{j}, f\right) \\
\leq N+1+(N-n) n
\end{gathered}
$$

Proof. From Lemma 2.2 we easily obtain this corollary by a usual manner to obtain the defect relation.

Lemma 2.3. Suppose that $\delta_{n}\left(\boldsymbol{e}_{j}, f\right)=1(1 \leq$ $j \leq n+1, j \neq \nu)$ for some $\nu(1 \leq \nu \leq n+1)$. Let

$$
X_{\nu}^{0}(0)=\left\{\boldsymbol{c}_{1}^{\nu}, \ldots, \boldsymbol{c}_{p(\nu)}^{\nu}\right\}(0 \leq p(\nu) \leq N-n)
$$

Then, $\sum_{\boldsymbol{a} \in X} \delta_{n}(\boldsymbol{a}, f) \leq N+1+\sum_{j=1}^{p(\nu)} \delta_{n}\left(\boldsymbol{c}_{j}^{\nu}, f\right)$.
Proof. By our assumption $\delta_{n}\left(\boldsymbol{e}_{j}, f\right)=1(1 \leq$ $j \leq n+1, j \neq \nu)$ and Corollary 2.1 we have the inequality

$$
\sum_{\boldsymbol{a} \in X-X_{\nu}^{0}(0)} \delta_{n}(\boldsymbol{a}, f) \leq N+1
$$

from which we obtain our inequality.
Lemma 2.4. Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ be $n+1$ linearly independent vectors in X and let A be the $(n+1) \times$ $(n+1)$ matrix whose j-th row is $\boldsymbol{a}_{j}(1 \leq j \leq n+1)$, $\left(\boldsymbol{a}_{j}, f\right)=F_{j}(1 \leq j \leq n+1)$ and $Y=\left\{\boldsymbol{a} A^{-1} \mid \boldsymbol{a} \in\right.$ $X\}$. Then, we have the followings:
(a) A is regular and $\boldsymbol{a}_{j} A^{-1}=\boldsymbol{e}_{j}(j=1, \ldots, n+$ 1).
(b) Y is in N-subgeneral position.
(c) F_{1}, \ldots, F_{n+1} are entire functions without common zeros and linearly independent over \boldsymbol{C}.
(d) $T(r, F)=T(r, f)+O(1)$ and so F is transcendental, where $F=\left[F_{1}, \ldots, F_{n+1}\right]$.
(e) $\delta_{n}(\boldsymbol{a}, f)=\delta_{n}(\boldsymbol{b}, F)$, where $\boldsymbol{b}=\boldsymbol{a} A^{-1}(\boldsymbol{a} \in$ $X)$.

Proof. (a) and (b) are trivial. (c) As f_{1}, \ldots, f_{n+1} are entire functions without common zeros and linearly independent over \boldsymbol{C}, so are F_{1}, \ldots, F_{n+1}.
(d) As $c\|f(z)\| \leq\|F(z)\| \leq C\|f(z)\|$ for positive constants c and C, we have our relation by the definition of the characteristic function.
(e) As $(\boldsymbol{a}, f)=(\boldsymbol{b}, F)$, we obtain our relation by (d).
3. Theorem. Let $f, X, X_{\nu}(0)$ etc. be as in Section 1 or 2 . We put $D_{n}^{+}(X, f)=\{\boldsymbol{a} \in X \mid$
$\left.\delta_{n}(\boldsymbol{a}, f)>0\right\}$ and $D_{n}^{1}(X, f)=\left\{\boldsymbol{a} \in X \mid \delta_{n}(\boldsymbol{a}, f)=\right.$ $1\}$.

Theorem 3.1. Suppose that there exist $n+$ 1 linearly independent vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ in $D_{n}^{1}(X, f)$. Then, $\# D_{n}^{+}(X, f) \leq(n+1)(N+1-n)$.

Proof. Let \boldsymbol{a} be any vector in $D_{n}^{+}(X, f)$. The vector \boldsymbol{a} can be represented as a linear combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}: \boldsymbol{a}=c_{1} \boldsymbol{a}_{1}+\cdots+c_{n+1} \boldsymbol{a}_{n+1}$.

Then, at least one of c_{1}, \ldots, c_{n+1} is equal to 0 . In fact, suppose to the contrary that none of c_{1}, \ldots, c_{n+1} is equal to zero. As $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}, \boldsymbol{a}$ are in general position, from Theorem A for $N=n$ and $q=n+2$, we obtain the inequality

$$
\sum_{j=1}^{n+1} \delta_{n}\left(\boldsymbol{a}_{j}, f\right)+\delta_{n}(\boldsymbol{a}, f) \leq n+1
$$

which implies that $\delta_{n}(\boldsymbol{a}, f)=0$. This is a contradiction. We have that at least one of c_{1}, \ldots, c_{n+1} is equal to 0 . Let
$X_{\nu}^{\prime}(0)=\left\{\boldsymbol{a}=c_{1} \boldsymbol{a}_{1}+\cdots+c_{n+1} \boldsymbol{a}_{n+1} \in X \mid c_{\nu}=0\right\}$.
Then, $\# X_{\nu}^{\prime}(0) \leq N(\nu=1, \ldots, n+1)$ since X is in N-subgeneral position. From the fact that $D_{n}^{+}(X, f)$ is a subset of $\cup_{\nu=1}^{n+1} X_{\nu}^{\prime}(0)$, we obtain the inequality

$$
\begin{aligned}
\# D_{n}^{+}(X, f) & \leq \#\left\{\bigcup_{\nu=1}^{n+1} X_{\nu}^{\prime}(0)\right\} \\
& \leq n+1+(N-n)(n+1) \\
& =(N+1-n)(n+1)
\end{aligned}
$$

since the vector \boldsymbol{a}_{j} belongs to the set $\bigcup_{\nu=1 ; \nu \neq j}^{n+1} X_{\nu}^{\prime}(0)$ $(1 \leq j \leq n+1)$.

Theorem 3.2. Suppose that
(i) there exist $n+1$ linearly independent vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ in $D_{n}^{1}(X, f)$;
(ii) $\sum_{\boldsymbol{a} \in D_{n}^{+}(X, f)} \delta_{n}(\boldsymbol{a}, f)=2 N-n+1$.

Then, we have that
$D_{n}^{+}(X, f)=D_{n}^{1}(X, f)$ and $\# D_{n}^{1}(X, f)=2 N-n+1$.
Proof. Let

$$
D_{n}^{+}(X, f)=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}, \boldsymbol{a}_{n+2}, \ldots, \boldsymbol{a}_{q}\right\}
$$

Then, we have that $q \leq(N+1-n)(n+1)$ by Theorem 3.1. Let A, F and Y be as in Lemma 2.4 and put $\boldsymbol{b}_{j}=\boldsymbol{a}_{j} A^{-1}(j=1, \ldots, q)$. Then, by Lemma 2.4, we have that
(α) $\boldsymbol{b}_{j}=\boldsymbol{e}_{j}(j=1, \ldots, n+1)$;
(β) $\delta_{n}\left(\boldsymbol{b}_{j}, F\right)=\delta_{n}\left(\boldsymbol{a}_{j}, f\right)(j=1, \ldots, q)$
and by the assumption (i) and (β) we have that
$(\gamma) \delta_{n}\left(\boldsymbol{e}_{j}, F\right)=\delta_{n}\left(\boldsymbol{a}_{j}, f\right)=1(j=1, \ldots, n+1)$.
We put for $\nu=1, \ldots, n+1$

$$
Y_{\nu}(0)=\left\{\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n+1}\right) \in Y \mid b_{\nu}=0\right\} .
$$

Then, $0 \leq \# Y_{\nu}(0) \leq N$ as Y is in N-subgeneral position.

By Lemma 2.1, we have the inequality

$$
\begin{equation*}
\# Y_{\nu}(0)-d\left(Y_{\nu}(0)\right) \leq N-n \tag{4}
\end{equation*}
$$

Let $Y_{\nu}^{1}(0)=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}\right\}-\left\{\boldsymbol{e}_{\nu}\right\}(1 \leq \nu \leq n+$ 1). We have that $\# Y_{\nu}^{1}(0)=d\left(Y_{\nu}(0)\right)=n$.

Next, we put $Y_{\nu}^{0}(0)=Y_{\nu}(0)-Y_{\nu}^{1}(0)(1 \leq \nu \leq$ $n+1$). From (4) we have that $\# Y_{\nu}^{0}(0) \leq N-n$. Let \boldsymbol{a} be any vector in $\left\{\boldsymbol{a}_{j} \mid n+2 \leq j \leq q\right\}$ and put $\boldsymbol{b}=\boldsymbol{a} A^{-1}$. Then, $\boldsymbol{b} \in\left\{\boldsymbol{b}_{j} \mid n+2 \leq j \leq q\right\}$. The vector \boldsymbol{b} can be represented as a linear combination of $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}: \boldsymbol{b}=b_{1} \boldsymbol{e}_{1}+\cdots+b_{n+1} \boldsymbol{e}_{n+1}$.

Then, at least one of b_{1}, \ldots, b_{n+1} is equal to 0 from Theorem A for $N=n$ and $q=n+2$ as in the proof of Theorem 3.1. For simplicity we suppose that $b_{n+1}=0$. Let $Y_{n+1}^{0}(0)=\left\{\boldsymbol{b}_{j_{1}}, \ldots, \boldsymbol{b}_{j_{p}}\right\} . \quad \boldsymbol{b}$ is in $Y_{n+1}^{0}(0)$. As $\# Y_{n+1}^{0}(0) \leq N-n$, we have that $p \leq N-n$. By applying Lemma 2.3 to this case and by the assumption (ii) with (β), we obtain the inequality

$$
\begin{aligned}
2 N-n+1 & =\sum_{j=1}^{q} \delta_{n}\left(\boldsymbol{b}_{j}, F\right) \\
& \leq N+1+\sum_{k=1}^{p} \delta_{n}\left(\boldsymbol{b}_{j_{k}}, F\right) \\
& \leq 2 N-n+1
\end{aligned}
$$

This implies that $p=N-n$ and $\delta_{n}\left(\boldsymbol{b}_{j_{k}}, F\right)=$ $1(1 \leq k \leq N-n)$. We have that $\delta_{n}(\boldsymbol{b}, F)=1$. By $(\beta), \delta_{n}(\boldsymbol{a}, f)=1$. This means that $D_{n}^{+}(X, f)=$ $D_{n}^{1}(X, f)$ and we have that $\# D_{n}^{1}(X, f)=2 N-n+1$ from the assumption (ii).

Corollary 3.1. Suppose that
(i) $\# D_{n}^{1}(X, f) \geq N+1$;
(ii) $\sum_{\boldsymbol{a} \in D_{n}^{+}(X, f)} \delta_{n}(\boldsymbol{a}, f)=2 N-n+1$.

Then, we have that
$D_{n}^{+}(X, f)=D_{n}^{1}(X, f)$ and $\# D_{n}^{1}(X, f)=2 N-n+1$.
Proof. As X is in N-subgeneral position, there are $n+1$ linearly independent vectors in $D_{n}^{1}(X, f)$ by the assumption (i). We have this corollary from Theorem 3.2 immediately.

Theorem 3.3. Suppose that
(i) there exist n linearly independent vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ in $D_{n}^{1}(X, f)$;
(ii) $\sum_{\boldsymbol{a} \in D_{n}^{+}(X, f)} \delta_{n}(\boldsymbol{a}, f)=2 N-n+1$.
(iii) $\# D_{n}^{1}(X, f)<2 N-n+1$.

Then, we have that $\# D_{n}^{1}(X, f)=N$.
Proof. Let

$$
D_{n}^{+}(X, f)=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}, \boldsymbol{a}_{n+1}, \ldots, \boldsymbol{a}_{q}\right\}
$$

Then, by the assumptions (ii) and (iii) we have that $q \geq 2 N-n+2>N+1$. As X is in N-subgeneral position, we can choose $n+1$ linearly independent vectors containing $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ from $D_{n}^{+}(X, f)$. We may suppose without loss of generality that $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ are linearly independent. Let A, F and Y be as in Lemma 2.4 and put $\boldsymbol{b}_{j}=\boldsymbol{a}_{j} A^{-1}(j=1, \ldots, q)$. Then, by Lemma 2.4, we have that
(α) $\boldsymbol{b}_{j}=\boldsymbol{e}_{j}(j=1, \ldots, n+1)$;
$(\beta) \quad \delta_{n}\left(\boldsymbol{b}_{j}, F\right)=\delta_{n}\left(\boldsymbol{a}_{j}, f\right)(j=1, \ldots, q)$
and by the assumption (i) and (β) we have that
$(\gamma) \quad \delta_{n}\left(\boldsymbol{e}_{j}, F\right)=\delta_{n}\left(\boldsymbol{a}_{j}, f\right)=1(j=1, \ldots, n)$.
We put

$$
Y(0)=\left\{\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n+1}\right) \in Y \mid b_{n+1}=0\right\} .
$$

Then, $0 \leq \# Y(0) \leq N$ as Y is in N-subgeneral position. By Lemma 2.1, we have the inequality

$$
\begin{equation*}
\# Y(0)-d(Y(0)) \leq N-n \tag{5}
\end{equation*}
$$

Let $Y^{1}(0)=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$. We have that $\# Y^{1}(0)=d(Y(0))=n$.

Next, we put $Y^{0}(0)=Y(0)-Y^{1}(0)$. From (5) we have the inequality $\# Y^{0}(0) \leq N-n$. Let

$$
Y^{0}(0)=\left\{\boldsymbol{b}_{j_{1}}, \ldots, \boldsymbol{b}_{j_{p}}\right\}\left(j_{k} \geq n+2 ; k=1, \ldots, p\right)
$$

As $\# Y^{0}(0) \leq N-n$, we have that $p \leq N-$ n. By applying Lemma 2.3 to this case $(\nu=n+1)$ and by the assumption (ii) with (β), we obtain the inequality

$$
\begin{aligned}
2 N- & n+1=\sum_{j=1}^{q} \delta_{n}\left(\boldsymbol{b}_{j}, F\right) \\
& \leq N+1+\sum_{k=1}^{p} \delta_{n}\left(\boldsymbol{b}_{j_{k}}, F\right) \leq 2 N-n+1
\end{aligned}
$$

This implies that $p=N-n$ and $\delta_{n}\left(\boldsymbol{b}_{j_{k}}, F\right)=$ $1(k=1, \ldots, N-n)$. This means that

$$
D_{n}^{1}(Y, F)=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\} \cup\left\{\boldsymbol{b}_{j_{1}}, \ldots, \boldsymbol{b}_{j_{N-n}}\right\}
$$

We have that $\# D_{n}^{1}(X, f)=\# D_{n}^{1}(Y, F)=N$.
Remark 3.1. By using the inequality (1) and Theorem A we are able to obtain results for $\delta(\boldsymbol{a}, f)$
corresponding to the results obtained for $\delta_{n}(\boldsymbol{a}, f)$ in this section.
4. Application to another defect. Let f, X etc. be as in Section 1 or 2 and \boldsymbol{a} be a vector in $\boldsymbol{C}^{n+1}-\{\mathbf{0}\}$. We say that
" \boldsymbol{a} has multiplicity m if $(\boldsymbol{a}, f(z))$ has at least one zero and all the zeros of $(\boldsymbol{a}, f(z))$ have multiplicity at least m, while at least one zero has multiplicity m."

If $(\boldsymbol{a}, f(z))$ has no zero, we set $m=\infty$.
Then, as a corollary of Theorem A, Cartan ([1], $N=n$) and Nochka ([4], $N>n$) gave the following theorem (see [3, Theorem 3.3.15]):

Theorem B. For any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q} \in X(q<$ $\infty)$, let \boldsymbol{a}_{j} have multiplicity m_{j}. Then,

$$
\sum_{j=1}^{q}\left(1-n / m_{j}\right) \leq 2 N-n+1
$$

As the numbers " $1-n / m_{j}$ " are not always nonnegative in this theorem, we define a new defect as follows:

Definition 4.1. For $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-\{0\}$ with multiplicity m we put

$$
\mu_{n}(\boldsymbol{a}, f)=\left(1-\frac{n}{m}\right)^{+}=1-\frac{n}{\max (m, n)}
$$

where $a^{+}=\max (a, 0)$.
We call the quantity $\mu_{n}(\boldsymbol{a}, f)$ the μ_{n}-defect of \boldsymbol{a} with respect to f. Note that $\mu_{n}(\boldsymbol{a}, f)<1$ if (a, f) has zeros and $\mu_{n}(\boldsymbol{a}, f)=1$ if (a, f) has no zero.

We put $M_{n}^{+}(X, f)=\left\{\boldsymbol{a} \in X \mid \mu_{n}(\boldsymbol{a}, f)>0\right\}$ and $M_{n}^{1}(X, f)=\left\{\boldsymbol{a} \in X \mid \mu_{n}(\boldsymbol{a}, f)=1\right\}$.
$\mu_{n}(\boldsymbol{a}, f)$ has the following properties.
Proposition 4.1. (a) $\mu_{n}(\boldsymbol{a}, f)=1$ if and only if (\boldsymbol{a}, f) has no zero.
(b) $0 \leq \mu_{n}(\boldsymbol{a}, f) \leq \delta_{n}(\boldsymbol{a}, f) \leq 1$.
(c) (μ_{n}-defect relation) For any $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q} \in$ X, we have the following inequality:

$$
\sum_{j=1}^{q} \mu_{n}\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1
$$

Proof. (a) This is trivial from the definition of $\mu_{n}(\boldsymbol{a}, f)$.
(b) When (\boldsymbol{a}, f) has no zero, $\mu_{n}(\boldsymbol{a}, f)=$ $\delta_{n}(\boldsymbol{a}, f)=1$. When (\boldsymbol{a}, f) has zeros, let m be the multiplicity of \boldsymbol{a}. Then, we obtain the inequality for $r \geq 1$

$$
N_{n}(r, \boldsymbol{a}, f) \leq \frac{n}{\max (m, n)} N(r, \boldsymbol{a}, f)
$$

$$
\leq \frac{n}{\max (m, n)} T(r, f)+O(1)
$$

from which we obtain the inequality

$$
0 \leq \mu_{n}(\boldsymbol{a}, f) \leq \delta_{n}(\boldsymbol{a}, f) \leq 1
$$

(c) From (b) and Theorem A we obtain this relation.

Theorem 4.1. $\# M_{n}^{+}(X, f) \leq(n+1)(2 N-$ $n+1$).

Proof. For any q vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q} \in M_{n}^{+}(X, f)$, from Proposition 4.1 (c) we have the inequality

$$
\begin{equation*}
\sum_{j=1}^{q} \mu_{n}\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1 \tag{6}
\end{equation*}
$$

As $\mu_{n}\left(\boldsymbol{a}_{j}, f\right) \geq 1-n /(n+1)=1 /(n+1)$, we have the inequality $q /(n+1) \leq(2 N-n+1)$ from (6), so that we have that $q \leq(n+1)(2 N-n+1)$. This means that this theorem holds.

Lemma 4.1 ([1, p.10]). For $1 \leq i \neq j \leq n+$ 1,

$$
T\left(r, f_{i} / f_{j}\right)<T(r, f)+O(1)
$$

Theorem 4.2. Suppose that there exist $n+$ 1 linearly independent vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ in $M_{n}^{1}(X, f)$. Then, we have the followings:
(a) If there exists

$$
\boldsymbol{a} \in M_{n}^{+}(X, f)-\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}\right\}
$$

then $\boldsymbol{a}=c_{j} \boldsymbol{a}_{j}$ for some $j\left(1 \leq j \leq n+1 ; c_{j} \neq 0\right)$.
(b) $M_{n}^{+}(X, f)=M_{n}^{1}(X, f)$.

Proof. (a) Let m be the multiplicity of $\boldsymbol{a} \in$ $M_{n}^{+}(X, f)-\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}\right\}$. Note that $n<m \leq$ ∞. The vector \boldsymbol{a} can be represented as a linear combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}: \boldsymbol{a}=c_{1} \boldsymbol{a}_{1}+\cdots+c_{n+1} \boldsymbol{a}_{n+1}$.

We put $\left(\boldsymbol{a}_{j}, f\right)=F_{j}(1 \leq j \leq n+1)$ and $(\boldsymbol{a}, f)=$ F_{0}. Then, $F_{0}=c_{1} F_{1}+\cdots+c_{n+1} F_{n+1}$. We prove that all coefficients c_{1}, \ldots, c_{n+1} except one are equal to zero.

First we prove that at least one of c_{1}, \ldots, c_{n+1} is equal to zero. In fact, suppose to the contrary that none of c_{1}, \ldots, c_{n+1} is equal to zero. Then, $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}, \boldsymbol{a}$ are in general position, and so from Proposition 4.1 (c) for $N=n, q=n+2$ we have that $\mu_{n}(\boldsymbol{a}, f)=0$, which is a contradiction.

Next, let

$$
\left\{j_{1}, \ldots, j_{k}\right\}=\left\{j \mid c_{j} \neq 0,1 \leq j \leq n+1\right\}
$$

Then, k must be equal to 1 . Suppose to the contrary that $k \geq 2$. Let $\varphi=\left[F_{j_{1}}, \ldots, F_{j_{k}}\right]$.

As $F_{j_{1}}, \ldots, F_{j_{k}}$ are entire functions without zeros and the function $F_{j_{1}} / F_{j_{k}}$ is not constant, it is transcendental. By Lemma 4.1 we obtain that φ is transcendental. Note that for $\boldsymbol{a}^{\prime}=\left(c_{j_{1}}, \ldots, c_{j_{k}}\right)$, $(\boldsymbol{a}, f)=\left(\boldsymbol{a}^{\prime}, \varphi\right)=F_{0}$ and

$$
0<\mu_{n}(\boldsymbol{a}, f)=1-\frac{n}{m} \leq 1-\frac{k-1}{m}=\mu_{k-1}\left(\boldsymbol{a}^{\prime}, \varphi\right)
$$

We apply Proposition 4.1 (c) to $f=\varphi, N=n=$ $k-1, q=k+1$ and $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{k}, \boldsymbol{a}^{\prime}\left(\in \boldsymbol{C}^{k}-\{\mathbf{0}\}\right)$, which are in general position, to obtain that $\mu_{k-1}\left(\boldsymbol{a}^{\prime}, \varphi\right)=$ 0 , which is a contradiction. This means that k must be equal to 1 . That is to say, $\boldsymbol{a}=c_{j_{1}} \boldsymbol{a}_{j_{1}}\left(c_{j_{1}} \neq 0\right)$.
(b) By definition, we have the relation $M_{n}^{1}(X, f) \subset M_{n}^{+}(X, f)$. On the other hand we obtain the relation $M_{n}^{+}(X, f) \subset M_{n}^{1}(X, f)$ from (a), so that we have $M_{n}^{+}(X, f)=M_{n}^{1}(X, f)$.

Remark 4.1. Theorem 4.2 (a) is a generalization of Borel's theorem (see [1, p. 19, $\left.1^{\circ}\right]$).

Corollary 4.1. If $M_{n}^{1}(X, f) \geq N+1$, then $M_{n}^{+}(X, f)=M_{n}^{1}(X, f)$.

Proposition 4.2. $\# M_{n}^{1}(X, f) \leq N+N / n$.
Proof. Let $q=\# M_{n}^{1}(X, f)$. Then, by Theorem 4.1, $q \leq(2 N+1-n)(n+1)$. We have only to prove this lemma when $q \geq N+1$. Let

$$
M_{n}^{1}(X, f)=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}, \boldsymbol{a}_{n+2}, \ldots, \boldsymbol{a}_{q}\right\}
$$

where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ are linearly independent. Note that we can find $n+1$ linearly independent vectors in $\# M_{n}^{1}(X, f)$ since X is in N-subgeneral position and $q \geq N+1$.

By using Theorem 4.2 (a) or by Borel's theorem (see $\left[1, \mathrm{p} .19,1^{\circ}\right]$), we obtain
(7) $\quad \boldsymbol{a}_{k}=a_{k} \boldsymbol{a}_{j_{k}}\left(k=1, \ldots, q ; 1 \leq j_{k} \leq n+1\right)$,
$\left(a_{k} \neq 0\right)$. Here, $a_{k}=1, j_{k}=k$ for $1 \leq k \leq n+1$.
When we represent \boldsymbol{a}_{k} by $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}: \boldsymbol{a}_{k}=$ $a_{k 1} \boldsymbol{a}_{1}+\cdots+a_{k n+1} \boldsymbol{a}_{n+1}(k=1, \ldots, q)$, we have by (7) that

$$
\#\left\{a_{k j}=0 \mid k=1, \ldots, q ; j=1, \ldots, n+1\right\}=q n
$$

As X is in N-subgeneral position, it must hold that $q n \leq N(n+1)$, from which we obtain that $q \leq N+$ N / n.

Remark 4.2. This proposition is given in [2, Theorem 16, p. 41] in a different situation.

Theorem 4.3. Suppose that there exist $n+$ 1 linearly independent vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ in $M_{n}^{1}(X, f)$. Then, $\sum_{\boldsymbol{a} \in M_{n}^{+}(X, f)} \mu_{n}(\boldsymbol{a}, f) \leq N+N / n$.

Proof. As $M_{n}^{+}(X, f)=M_{n}^{1}(X, f)$ from Theorem $4.2(\mathrm{~b})$, we have the equality

$$
\sum_{\boldsymbol{a} \in M_{n}^{+}(X, f)} \mu_{n}(\boldsymbol{a}, f)=\# M_{n}^{1}(X, f)
$$

and by Proposition 4.2 we have our theorem.
Corollary 4.2. If $\# M_{n}^{1}(X, f) \geq N+1$, then $\sum_{\boldsymbol{a} \in M_{n}^{+}(X, f)} \mu_{n}(\boldsymbol{a}, f) \leq N+N / n$.

Remark 4.3. $N+N / n \leq 2 N-n+1$ and the equality holds if and only if $N=n$ or $n=1$. This implies that the μ_{n}-defect relation of f is not extremal when $N>n \geq 2$ in Theorem 4.3 or Corollary 4.2.

Theorem 4.4. Suppose that
(i) there exist n linearly independent vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ in $M_{n}^{1}(X, f)$;
(ii) $\sum_{\boldsymbol{a} \in M_{n}^{+}(X, f)} \mu_{n}(\boldsymbol{a}, f)=2 N-n+1$.
(iii) $\# M_{n}^{1}(X, f)<2 N-n+1$.

Then, we have that $\# M_{n}^{1}(X, f)=N$.
Proof. As $0 \leq \mu_{n}(\boldsymbol{a}, f) \leq \delta_{n}(\boldsymbol{a}, f) \leq 1$ for any $\boldsymbol{a} \in X$ (Proposition 4.1 (b)), from the assumption (ii) and Theorem A we obtain that $\mu_{n}(\boldsymbol{a}, f)=\delta_{n}(\boldsymbol{a}, f)$ for any \boldsymbol{a} in X, so that we obtain this theorem from Theorem 3.3.

Acknowledgements. The author was supported in part by Grant-in-Aid for Scientific Research (C) (1) 16540202, Japan Society for the Promotion of Science during the preparation of this paper and he thanks the referee for his/her valuable comments to improve the paper.

References

[1] H. Cartan, Sur les combinaisons linéaires de p fonctions holomorphes données, Mathematica 7 (1933), 5-31.
[2] J. Dufresnoy, Théorie nouvelle des familles complexes normales. Applications à l'étude des fonctions algébroïdes, Ann. Sci. École Norm. Sup. (3) 61 (1944), 1-44.
[3] H. Fujimoto, Value distribution theory of the Gauss map of minimal surfaces in \boldsymbol{R}^{m}, Vieweg, Braunschweig, 1993.
[4] E. I. Nochka, On the theory of meromorphic curves, Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 547-552.
[5] N. Toda, A survey of extremal holomorphic curves for the truncated defect relation, Bull. Nagoya Inst. Tech. 55 (2003), 1-18 (2004).
[6] N. Toda, On a holomorphic curve extremal for the defect relation, Proc. Japan Acad., 80A (2004), no. 9, 169-174.

[^0]: 2000 Mathematics Subject Classification. Primary 32H30; Secondary 30D35.
 ${ }^{*)}$ Present address: Chiyoda 3-16-15-302, Naka-ku, Nagoya, Aichi 460-0012.

