On holomorphic curves extremal for the truncated defect relation and some applications

By Nobushige $\operatorname{TODA}^{*)}$

Professor Emeritus, Nagoya Institute of Technology (Communicated by Shigefumi MORI, M. J. A., June 14, 2005)

Abstract: We consider extremal holomorphic curves for the truncated defect relation when the number of vectors whose truncated defects are equal to 1 is large. Some applications to another defect are given.

Key words: Holomorphic curve; truncated defect relation; extremal.

1. Introduction. Let $f = [f_1, \ldots, f_{n+1}]$ be a holomorphic curve from C into the *n*-dimensional complex projective space $P^n(C)$ with a reduced representation

$$(f_1,\ldots,f_{n+1}): \boldsymbol{C} \to \boldsymbol{C}^{n+1} - \{\boldsymbol{0}\},$$

where n is a positive integer. We use the notations:

$$||f(z)|| = (|f_1(z)|^2 + \dots + |f_{n+1}(z)|^2)^{1/2};$$

$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log ||f(re^{i\theta})|| d\theta - \log ||f(0)||.$$

We suppose throughout the paper that f is transcendental: $\lim_{r\to\infty} T(r, f) / \log r = \infty$ and that f is linearly non-degenerate over C; namely, f_1, \ldots, f_{n+1} are linearly independent over C.

It is well-known that f is linearly nondegenerate over C if and only if the Wronskian $W = W(f_1, \ldots, f_{n+1})$ of f_1, \ldots, f_{n+1} is not identically equal to zero.

For a vector $\mathbf{a} = (a_1, \dots, a_{n+1}) \in \mathbf{C}^{n+1} - \{\mathbf{0}\},$ we put

$$||\mathbf{a}|| = (|a_1|^2 + \dots + |a_{n+1}|^2)^{1/2};$$

$$(\mathbf{a}, f) = a_1 f_1 + \dots + a_{n+1} f_{n+1};$$

$$(\mathbf{a}, f(z)) = a_1 f_1(z) + \dots + a_{n+1} f_{n+1}(z);$$

$$N(r, \mathbf{a}, f) = N(r, 1/(\mathbf{a}, f))$$

as in [6, Introduction]. We call the quantity

$$\delta(\boldsymbol{a}, f) = 1 - \limsup_{r \to \infty} N(r, \boldsymbol{a}, f) / T(r, f)$$

the deficiency (or defect) of \boldsymbol{a} with respect to f. We

have that $0 \leq \delta(\boldsymbol{a}, f) \leq 1$.

Further, let $\nu(c)$ be the order of zero of (a, f(z))at z = c and for a positive integer k, let

$$n_k(r, \boldsymbol{a}, f) = \sum_{|c| \le r} \min\{\nu(c), k\};$$
$$N_k(r, \boldsymbol{a}, f) = \int_0^r \frac{n_k(t, \boldsymbol{a}, f) - n_k(0, \boldsymbol{a}, f)}{t} dt$$
$$+ n_k(0, \boldsymbol{a}, f) \log r \quad (r > 0).$$

We put

$$\delta_k(\boldsymbol{a}, f) = 1 - \limsup_{r \to \infty} N_k(r, \boldsymbol{a}, f) / T(r, f)$$

It is easy to see that

(1)
$$0 \le \delta(\boldsymbol{a}, f) \le \delta_k(\boldsymbol{a}, f) \le 1$$

We denote by S(r, f) any quantity satisfying $S(r, f) = o\{T(r, f)\}$ as $r \to +\infty$, possibly outside a set of r of finite linear measure and by e_1, \ldots, e_{n+1} the standard basis of C^{n+1} .

Let X be a subset of $\mathbb{C}^{n+1} - \{\mathbf{0}\}$ in N-subgeneral position; that is to say, $\#X \ge N+1$ and any N+1elements of X generate \mathbb{C}^{n+1} , where N is an integer satisfying $N \ge n$. We say that X is in general position when X is in n- subgeneral position.

Cartan ([1], N = n) and Nochka ([4], N > n) gave the following theorem:

Theorem A (truncated defect relation). For any q elements a_j (j = 1, ..., q) of X,

$$\sum_{j=1}^{q} \delta_n(\boldsymbol{a}_j, f) \le 2N - n + 1,$$

where $2N - n + 1 \le q \le \infty$ (see [3]).

We are interested in the holomorphic curve f extremal for the truncated defect relation:

²⁰⁰⁰ Mathematics Subject Classification. Primary 32H30; Secondary 30D35.

^{*)} Present address: Chiyoda 3-16-15-302, Naka-ku, Nagoya, Aichi 460-0012.

N. Toda

(2)
$$\sum_{j=1}^{q} \delta_n(a_j, f) = 2N - n + 1.$$

We gave several results in [5]. The purpose of this paper is to give some results on $\delta_n(\boldsymbol{a}, f)$ when (2) holds and $\#\{\boldsymbol{a} \in X \mid \delta_n(\boldsymbol{a}, f) = 1\}$ is large. Some applications to another defect are also given.

2. Preliminaries and lemmas. Let $f = [f_1, \ldots, f_{n+1}]$ and X etc. be as in Section 1 and q be an integer satisfying $N + 1 < q < \infty$. For a nonempty subset P of X, we denote by V(P) the vector space spanned by the elements of P and by d(P) the dimension of V(P).

Lemma 2.1 (see [3, (2.4.3), p. 68]). If $\#P \le N+1$, then $\#P - d(P) \le N - n$.

We put for $\nu = 1, \ldots, n+1$

$$X_{\nu}(0) = \{ \boldsymbol{a} = (a_1, a_2, \dots, a_{n+1}) \in X \mid a_{\nu} = 0 \}.$$

Then, $0 \leq \#X_{\nu}(0) \leq N$ as X is in N-subgeneral position. By Lemma 2.1, we have the inequality

(3)
$$\#X_{\nu}(0) - d(X_{\nu}(0)) \le N - n.$$

Let $X^1_{\nu}(0)$ be a subset of $X_{\nu}(0)$ satisfying

(i) $\#X^1_{\nu}(0) = d(X_{\nu}(0));$

(ii) All elements of $X^1_{\nu}(0)$ are linearly independent, and we put $X^0_{\nu}(0) = X_{\nu}(0) - X^1_{\nu}(0)$. Then, from (3) we have the inequality $\# X^0_{\nu}(0) \le N - n$.

Lemma 2.2. For any q vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$ in $X - X^0_{\nu}(0)$, we have the following inequality for any ν $(1 \le \nu \le n+1)$:

$$(q - N - 1)T(r, f) \le \sum_{j=1}^{q} N_n(r, a_j, f)$$

+ $(N - n) \sum_{j=1; j \ne \nu}^{n+1} N_n(r, e_j, f) + S(r, f).$

Proof. As the proof proceeds in the same way for any ν , we prove this lemma for $\nu = n + 1$. For simplicity we put

$$W_1(f_1,\ldots,f_{n+1}) = W(f_1,\ldots,f_{n+1})/(f_1\cdots f_{n+1}).$$

We put $(a_j, f) = F_j$ $(1 \le j \le q)$ and for any $z \ne 0$ arbitrarily fixed, let

$$|F_{j_1}(z)| \le |F_{j_2}(z)| \le \dots \le |F_{j_q}(z)|,$$

where $1 \leq j_1, \ldots, j_q \leq q$ and j_1, \ldots, j_q are distinct. Then, there is a positive constant K such that

$$||f(z)|| \le K|F_{j_{\nu}}(z)| \quad (\nu = N + 1, \dots, q)$$
$$|F_{j_{\nu}}(z)| \le K||f(z)|| \quad (\nu = 1, \dots, q).$$

(From now on we denote by K a constant, which may be different from each other when it appears.)

As X is in N-subgeneral position, there are n + 1 linearly independent functions in $\{F_{j_1}, \ldots, F_{j_{N+1}}\}$. Let $\{G_1, \ldots, G_{n+1}\}$ be linearly independent functions in $\{F_{j_1}, \ldots, F_{j_{N+1}}\}$ such that $\{G_1, \ldots, G_{n+1}\} \supset \{F_{j_1}, \ldots, F_{j_{N+1}}\} \cap \{F_j \mid a_j \in X_{n+1}^1(0)\}$ and put

$$\{G_{n+2},\ldots,G_{N+1}\} = \{F_{j_1},\ldots,F_{j_{N+1}}\} - \{G_1,\ldots,G_{n+1}\}.$$

Then, $\{G_{n+2}, \ldots, G_{N+1}\} \cap \{F_j \mid a_j \in X_{n+1}(0)\} = \phi$ and we have the equality

$$\frac{F_{j_{N+2}}(z)\cdots F_{j_q}(z)}{W_1(G_1,\ldots,G_{n+1})\Pi_{k=1}^{N-n}W_1(f_1,\ldots,f_n,G_{n+1+k})} = \frac{\Pi_{j=1}^q F_j(z)(\Pi_{j=1}^n f_j(z))^{N-n}}{W(G_1,\ldots,G_{n+1})\Pi_{k=1}^{N-n}W(f_1,\ldots,f_n,G_{n+1+k})} = K\frac{\Pi_{j=1}^q F_j(z)(\Pi_{j=1}^n f_j(z))^{N-n}}{W(f_1,\ldots,f_{n+1})^{N+1-n}} \equiv H(z)$$

since $W(G_1, \ldots, G_{n+1}) = c_0 W(f_1, \ldots, f_{n+1})$ and $W(f_1, \ldots, f_n, G_{n+1+k}) = c_k W(f_1, \ldots, f_{n+1})$ for $k = 1, \ldots, N - n$. $(c_k \neq 0 \ (0 \leq k \leq N - n)).$

From this equality we obtain the inequality which holds for any $z \neq 0$:

$$\begin{aligned} (q - N - 1) \log ||f(z)|| &\leq \log |H(z)| \\ &+ \sum_{(\nu_1, \dots, \nu_{n+1})} \log^+ |W_1(F_{\nu_1}, \dots, F_{\nu_{n+1}})(z)| \\ &+ \sum_{\{F_j \mid \boldsymbol{a}_j \notin X_{n+1}(0)\}} \log^+ |W_1(f_1, \dots, f_n, F_j)(z)| \\ &+ \log^+ |K|, \end{aligned}$$

where the summation $\sum_{(\nu_1,\ldots,\nu_{n+1})}$ is taken over all systems $\{F_{\nu_1},\ldots,F_{\nu_{n+1}}\}$ of n+1 functions which are linearly independent and taken from $\{F_1,\ldots,F_q\}$. By integrating both sides of this inequality with respect to θ ($z = re^{i\theta}$), we obtain this lemma as in [1]. Here, we used the facts that

$$\frac{1}{2\pi} \int_0^{2\pi} \log |H(re^{i\theta})| d\theta \le \sum_{j=1}^q N_n(r, \boldsymbol{a}_j, f) + (N-n) \sum_{j=1}^n N_n(r, \boldsymbol{e}_j, f) + O(1)$$

and

$$\frac{1}{2\pi} \int_0^{2\pi} \log^+ |W_1(F_{\nu_1}, \dots, F_{\nu_{n+1}})(re^{i\theta})| d\theta$$

= $S(r, f)$

100

$$= \frac{1}{2\pi} \int_0^{2\pi} \log^+ |W_1(f_1, \dots, f_n, F_j)(re^{i\theta})| d\theta.$$

Corollary 2.1. For $1 \le \nu \le n+1$

$$\sum_{\boldsymbol{a}\in X-X_{\nu}^{0}(0)} \delta_{n}(\boldsymbol{a},f) + (N-n) \sum_{j=1; j\neq \nu}^{n+1} \delta_{n}(\boldsymbol{e}_{j},f)$$
$$\leq N+1+(N-n)n.$$

Proof. From Lemma 2.2 we easily obtain this corollary by a usual manner to obtain the defect relation. \Box

Lemma 2.3. Suppose that $\delta_n(\boldsymbol{e}_j, f) = 1 \ (1 \leq j \leq n+1, \ j \neq \nu)$ for some $\nu \ (1 \leq \nu \leq n+1)$. Let

$$X_{\nu}^{0}(0) = \{ \boldsymbol{c}_{1}^{\nu}, \dots, \boldsymbol{c}_{p(\nu)}^{\nu} \} \ (0 \le p(\nu) \le N - n).$$

Then, $\sum_{\boldsymbol{a}\in X} \delta_n(\boldsymbol{a},f) \leq N+1+\sum_{j=1}^{p(\nu)} \delta_n(\boldsymbol{c}_j^{\nu},f).$

Proof. By our assumption $\delta_n(e_j, f) = 1$ $(1 \le j \le n+1, j \ne \nu)$ and Corollary 2.1 we have the inequality

$$\sum_{\boldsymbol{a}\in X-X^0_\nu(0)}\delta_n(\boldsymbol{a},f)\leq N+1$$

from which we obtain our inequality.

Lemma 2.4. Let a_1, \ldots, a_{n+1} be n+1 linearly independent vectors in X and let A be the $(n + 1) \times$ (n + 1) matrix whose j-th row is a_j $(1 \le j \le n + 1)$, $(a_j, f) = F_j$ $(1 \le j \le n + 1)$ and $Y = \{aA^{-1} \mid a \in X\}$. Then, we have the followings:

(a) A is regular and $a_j A^{-1} = e_j \ (j = 1, ..., n+1).$

(b) Y is in N-subgeneral position.

(c) F_1, \ldots, F_{n+1} are entire functions without common zeros and linearly independent over C.

(d) T(r, F) = T(r, f) + O(1) and so F is transcendental, where $F = [F_1, \ldots, F_{n+1}]$.

(e) $\delta_n(\boldsymbol{a}, f) = \delta_n(\boldsymbol{b}, F)$, where $\boldsymbol{b} = \boldsymbol{a} A^{-1}$ ($\boldsymbol{a} \in X$).

Proof. (a) and (b) are trivial. (c) As f_1, \ldots, f_{n+1} are entire functions without common zeros and linearly independent over C, so are F_1, \ldots, F_{n+1} .

(d) As $c||f(z)|| \le ||F(z)|| \le C||f(z)||$ for positive constants c and C, we have our relation by the definition of the characteristic function.

(e) As $(\boldsymbol{a}, f) = (\boldsymbol{b}, F)$, we obtain our relation by (d).

3. Theorem. Let $f, X, X_{\nu}(0)$ etc. be as in Section 1 or 2. We put $D_n^+(X, f) = \{a \in X \mid$

 $\delta_n(\boldsymbol{a}, f) > 0$ and $D_n^1(X, f) = \{ \boldsymbol{a} \in X \mid \delta_n(\boldsymbol{a}, f) = 1 \}.$

Theorem 3.1. Suppose that there exist n + 1 linearly independent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_{n+1}$ in $D_n^1(X, f)$. Then, $\#D_n^+(X, f) \leq (n+1)(N+1-n)$.

Proof. Let **a** be any vector in $D_n^+(X, f)$. The vector **a** can be represented as a linear combination of $a_1, \ldots, a_{n+1} : a = c_1a_1 + \cdots + c_{n+1}a_{n+1}$.

Then, at least one of c_1, \ldots, c_{n+1} is equal to 0. In fact, suppose to the contrary that none of c_1, \ldots, c_{n+1} is equal to zero. As a_1, \ldots, a_{n+1}, a are in general position, from Theorem A for N = n and q = n + 2, we obtain the inequality

$$\sum_{j=1}^{n+1} \delta_n(\boldsymbol{a}_j, f) + \delta_n(\boldsymbol{a}, f) \le n+1,$$

which implies that $\delta_n(\boldsymbol{a}, f) = 0$. This is a contradiction. We have that at least one of c_1, \ldots, c_{n+1} is equal to 0. Let

$$X'_{\nu}(0) = \{ \boldsymbol{a} = c_1 \boldsymbol{a}_1 + \dots + c_{n+1} \boldsymbol{a}_{n+1} \in X \mid c_{\nu} = 0 \}.$$

Then, $\#X'_{\nu}(0) \leq N$ ($\nu = 1, ..., n+1$) since X is in N-subgeneral position. From the fact that $D_n^+(X, f)$ is a subset of $\bigcup_{\nu=1}^{n+1} X'_{\nu}(0)$, we obtain the inequality

$$#D_n^+(X, f) \le # \left\{ \bigcup_{\nu=1}^{n+1} X'_\nu(0) \right\}$$
$$\le n+1+(N-n)(n+1)$$
$$= (N+1-n)(n+1)$$

since the vector \mathbf{a}_j belongs to the set $\bigcup_{\nu=1;\nu\neq j}^{n+1} X'_{\nu}(0)$ $(1 \leq j \leq n+1)$.

Theorem 3.2. Suppose that

(i) there exist n+1 linearly independent vectors a_1, \ldots, a_{n+1} in $D_n^1(X, f)$;

(ii) $\sum_{\boldsymbol{a}\in D_n^+(X,f)} \delta_n(\boldsymbol{a},f) = 2N - n + 1.$ Then, we have that

$$D_n^+(X, f) = D_n^1(X, f)$$
 and $\#D_n^1(X, f) = 2N - n + 1$

Proof. Let

$$D_n^+(X, f) = \{a_1, \dots, a_{n+1}, a_{n+2}, \dots, a_q\}$$

Then, we have that $q \leq (N+1-n)(n+1)$ by Theorem 3.1. Let A, F and Y be as in Lemma 2.4 and put $\mathbf{b}_j = \mathbf{a}_j A^{-1}$ $(j = 1, \ldots, q)$. Then, by Lemma 2.4, we have that

(a)
$$\boldsymbol{b}_j = \boldsymbol{e}_j \ (j = 1, \dots, n+1);$$

(β) $\delta_n(\boldsymbol{b}_j, F) = \delta_n(\boldsymbol{a}_j, f) \ (j = 1, \dots, q)$

and by the assumption (i) and (β) we have that

No. 6]

101

(
$$\gamma$$
) $\delta_n(e_j, F) = \delta_n(a_j, f) = 1 \ (j = 1, ..., n+1).$
We put for $\nu = 1, ..., n+1$

$$Y_{\nu}(0) = \{ \boldsymbol{b} = (b_1, b_2, \dots, b_{n+1}) \in Y \mid b_{\nu} = 0 \}.$$

Then, $0 \le \# Y_{\nu}(0) \le N$ as Y is in N-subgeneral position.

By Lemma 2.1, we have the inequality

(4)
$$\#Y_{\nu}(0) - d(Y_{\nu}(0)) \le N - n$$

Let $Y_{\nu}^{1}(0) = \{e_{1}, \dots, e_{n+1}\} - \{e_{\nu}\} (1 \le \nu \le n+1)$. We have that $\#Y_{\nu}^{1}(0) = d(Y_{\nu}(0)) = n$.

Next, we put $Y^0_{\nu}(0) = Y_{\nu}(0) - Y^1_{\nu}(0)$ $(1 \le \nu \le n+1)$. From (4) we have that $\#Y^0_{\nu}(0) \le N-n$. Let \boldsymbol{a} be any vector in $\{\boldsymbol{a}_j \mid n+2 \le j \le q\}$ and put $\boldsymbol{b} = \boldsymbol{a}A^{-1}$. Then, $\boldsymbol{b} \in \{\boldsymbol{b}_j \mid n+2 \le j \le q\}$. The vector \boldsymbol{b} can be represented as a linear combination of $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_{n+1}: \boldsymbol{b} = b_1\boldsymbol{e}_1 + \cdots + b_{n+1}\boldsymbol{e}_{n+1}$.

Then, at least one of b_1, \ldots, b_{n+1} is equal to 0 from Theorem A for N = n and q = n + 2 as in the proof of Theorem 3.1. For simplicity we suppose that $b_{n+1} = 0$. Let $Y_{n+1}^0(0) = \{\boldsymbol{b}_{j_1}, \ldots, \boldsymbol{b}_{j_p}\}$. **b** is in $Y_{n+1}^0(0)$. As $\#Y_{n+1}^0(0) \leq N - n$, we have that $p \leq N - n$. By applying Lemma 2.3 to this case and by the assumption (ii) with (β) , we obtain the inequality

$$2N - n + 1 = \sum_{j=1}^{q} \delta_n(\boldsymbol{b}_j, F)$$

$$\leq N + 1 + \sum_{k=1}^{p} \delta_n(\boldsymbol{b}_{j_k}, F)$$

$$\leq 2N - n + 1.$$

This implies that p = N - n and $\delta_n(\mathbf{b}_{j_k}, F) = 1$ $(1 \le k \le N - n)$. We have that $\delta_n(\mathbf{b}, F) = 1$. By $(\beta), \delta_n(\mathbf{a}, f) = 1$. This means that $D_n^+(X, f) = D_n^1(X, f)$ and we have that $\#D_n^1(X, f) = 2N - n + 1$ from the assumption (ii).

Corollary 3.1. Suppose that (i) $\#D_n^1(X, f) \ge N+1$; (ii) $\sum_{\boldsymbol{a}\in D_n^+(X,f)} \delta_n(\boldsymbol{a}, f) = 2N-n+1$. Then, we have that

$$D_n^+(X, f) = D_n^1(X, f)$$
 and $\#D_n^1(X, f) = 2N - n + 1.$

Proof. As X is in N-subgeneral position, there are n + 1 linearly independent vectors in $D_n^1(X, f)$ by the assumption (i). We have this corollary from Theorem 3.2 immediately.

Theorem 3.3. Suppose that

(i) there exist n linearly independent vectors a_1, \ldots, a_n in $D_n^1(X, f)$;

(ii)
$$\sum_{a \in D_n^+(X,f)} \delta_n(a, f) = 2N - n + 1.$$

(iii) $\#D_n^1(X, f) < 2N - n + 1.$
Then, we have that $\#D_n^1(X, f) = N.$
Proof. Let

$$D_n^+(X,f) = \{\boldsymbol{a}_1, \dots, \boldsymbol{a}_n, \boldsymbol{a}_{n+1}, \dots, \boldsymbol{a}_q\}.$$

Then, by the assumptions (ii) and (iii) we have that $q \ge 2N - n + 2 > N + 1$. As X is in N-subgeneral position, we can choose n + 1 linearly independent vectors containing $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ from $D_n^+(X, f)$. We may suppose without loss of generality that $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_{n+1}$ are linearly independent. Let A, F and Y be as in Lemma 2.4 and put $\boldsymbol{b}_j = \boldsymbol{a}_j A^{-1}$ $(j = 1, \ldots, q)$. Then, by Lemma 2.4, we have that

(
$$\alpha$$
) $\boldsymbol{b}_j = \boldsymbol{e}_j \ (j = 1, \dots, n+1);$

$$(\beta) \ \delta_n(\boldsymbol{b}_j, F) = \delta_n(\boldsymbol{a}_j, f) \ (j = 1, \dots, q)$$

and by the assumption (i) and (β) we have that (γ) $\delta_n(\boldsymbol{e}_j, F) = \delta_n(\boldsymbol{a}_j, f) = 1$ (j = 1, ..., n). We put

$$Y(0) = \{ \boldsymbol{b} = (b_1, b_2, \dots, b_{n+1}) \in Y \mid b_{n+1} = 0 \}.$$

Then, $0 \le \#Y(0) \le N$ as Y is in N-subgeneral position. By Lemma 2.1, we have the inequality

(5)
$$\#Y(0) - d(Y(0)) \le N - n.$$

Let $Y^1(0) = \{e_1, \dots, e_n\}$. We have that $\#Y^1(0) = d(Y(0)) = n$.

Next, we put $Y^0(0) = Y(0) - Y^1(0)$. From (5) we have the inequality $\#Y^0(0) \le N - n$. Let

$$Y^{0}(0) = \{ \boldsymbol{b}_{j_{1}}, \dots, \boldsymbol{b}_{j_{p}} \} \ (j_{k} \ge n+2; k = 1, \dots, p).$$

As $\#Y^0(0) \leq N - n$, we have that $p \leq N - n$. By applying Lemma 2.3 to this case $(\nu = n + 1)$ and by the assumption (ii) with (β) , we obtain the inequality

$$2N - n + 1 = \sum_{j=1}^{q} \delta_n(\boldsymbol{b}_j, F)$$
$$\leq N + 1 + \sum_{k=1}^{p} \delta_n(\boldsymbol{b}_{j_k}, F) \leq 2N - n + 1.$$

This implies that p = N - n and $\delta_n(\mathbf{b}_{j_k}, F) = 1$ $(k = 1, \dots, N - n)$. This means that

$$D_n^1(Y,F) = \{ e_1, \dots, e_n \} \cup \{ b_{j_1}, \dots, b_{j_{N-n}} \}.$$

We have that $\# D_n^1(X,f) = \# D_n^1(Y,F) = N.$

Remark 3.1. By using the inequality (1) and Theorem A we are able to obtain results for $\delta(\boldsymbol{a}, f)$

102

corresponding to the results obtained for $\delta_n(\boldsymbol{a}, f)$ in this section.

4. Application to another defect. Let f, X etc. be as in Section 1 or 2 and a be a vector in $C^{n+1} - \{0\}$. We say that

"*a* has multiplicity m if (a, f(z)) has at least one zero and all the zeros of (a, f(z)) have multiplicity at least m, while at least one zero has multiplicity m."

If $(\boldsymbol{a}, f(z))$ has no zero, we set $m = \infty$.

Then, as a corollary of Theorem A, Cartan ([1], N = n) and Nochka ([4], N > n) gave the following theorem (see [3, Theorem 3.3.15]):

Theorem B. For any $a_1, \ldots, a_q \in X$ $(q < \infty)$, let a_j have multiplicity m_j . Then,

$$\sum_{j=1}^{q} (1 - n/m_j) \le 2N - n + 1.$$

As the numbers " $1 - n/m_j$ " are not always nonnegative in this theorem, we define a new defect as follows:

Definition 4.1. For $a \in C^{n+1} - \{0\}$ with multiplicity m we put

$$\mu_n(\boldsymbol{a}, f) = \left(1 - \frac{n}{m}\right)^+ = 1 - \frac{n}{\max(m, n)},$$

where $a^+ = \max(a, 0)$.

We call the quantity $\mu_n(\boldsymbol{a}, f)$ the μ_n -defect of \boldsymbol{a} with respect to f. Note that $\mu_n(\boldsymbol{a}, f) < 1$ if (a, f) has zeros and $\mu_n(\boldsymbol{a}, f) = 1$ if (a, f) has no zero.

We put $M_n^+(X, f) = \{ \boldsymbol{a} \in X \mid \mu_n(\boldsymbol{a}, f) > 0 \}$ and $M_n^1(X, f) = \{ \boldsymbol{a} \in X \mid \mu_n(\boldsymbol{a}, f) = 1 \}.$

 $\mu_n(\boldsymbol{a}, f)$ has the following properties.

Proposition 4.1. (a) $\mu_n(\boldsymbol{a}, f) = 1$ if and only if (\boldsymbol{a}, f) has no zero.

(b) $0 \le \mu_n(a, f) \le \delta_n(a, f) \le 1$.

(c) $(\mu_n$ -defect relation) For any $\mathbf{a}_1, \ldots, \mathbf{a}_q \in X$, we have the following inequality:

$$\sum_{j=1}^{q} \mu_n(\boldsymbol{a}_j, f) \le 2N - n + 1$$

Proof. (a) This is trivial from the definition of $\mu_n(\boldsymbol{a}, f)$.

(b) When (\boldsymbol{a}, f) has no zero, $\mu_n(\boldsymbol{a}, f) = \delta_n(\boldsymbol{a}, f) = 1$. When (\boldsymbol{a}, f) has zeros, let m be the multiplicity of \boldsymbol{a} . Then, we obtain the inequality for $r \geq 1$

$$N_n(r, \boldsymbol{a}, f) \le \frac{n}{\max(m, n)} N(r, \boldsymbol{a}, f)$$

$$\leq \frac{n}{\max(m,n)}T(r,f) + O(1),$$

from which we obtain the inequality

$$0 \le \mu_n(\boldsymbol{a}, f) \le \delta_n(\boldsymbol{a}, f) \le 1.$$

(c) From (b) and Theorem A we obtain this relation. $\hfill \Box$

Theorem 4.1. $\#M_n^+(X, f) \le (n+1)(2N - n+1).$

Proof. For any q vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_q \in M_n^+(X, f)$, from Proposition 4.1 (c) we have the inequality

(6)
$$\sum_{j=1}^{q} \mu_n(a_j, f) \le 2N - n + 1.$$

As $\mu_n(\boldsymbol{a}_j, f) \geq 1 - n/(n+1) = 1/(n+1)$, we have the inequality $q/(n+1) \leq (2N - n + 1)$ from (6), so that we have that $q \leq (n+1)(2N - n + 1)$. This means that this theorem holds.

Lemma 4.1 ([1, p. 10]). For $1 \le i \ne j \le n + 1$,

$$T(r, f_i/f_j) < T(r, f) + O(1).$$

Theorem 4.2. Suppose that there exist n + 1 linearly independent vectors a_1, \ldots, a_{n+1} in $M_n^1(X, f)$. Then, we have the followings:

(a) If there exists

$$\boldsymbol{a} \in M_n^+(X, f) - \{\boldsymbol{a}_1, \dots, \boldsymbol{a}_{n+1}\},\$$

then $\mathbf{a} = c_j \mathbf{a}_j$ for some $j \ (1 \le j \le n+1; c_j \ne 0)$. (b) $M_n^+(X, f) = M_n^1(X, f)$.

Proof. (a) Let m be the multiplicity of $a \in M_n^+(X, f) - \{a_1, \ldots, a_{n+1}\}$. Note that $n < m \leq \infty$. The vector a can be represented as a linear combination of $a_1, \ldots, a_{n+1} : a = c_1 a_1 + \cdots + c_{n+1} a_{n+1}$.

We put $(a_j, f) = F_j$ $(1 \le j \le n+1)$ and $(a, f) = F_0$. Then, $F_0 = c_1F_1 + \cdots + c_{n+1}F_{n+1}$. We prove that all coefficients c_1, \ldots, c_{n+1} except one are equal to zero.

First we prove that at least one of c_1, \ldots, c_{n+1} is equal to zero. In fact, suppose to the contrary that none of c_1, \ldots, c_{n+1} is equal to zero. Then, a_1, \ldots, a_{n+1}, a are in general position, and so from Proposition 4.1 (c) for N = n, q = n + 2 we have that $\mu_n(a, f) = 0$, which is a contradiction.

Next, let

$${j_1, \ldots, j_k} = {j \mid c_j \neq 0, \ 1 \le j \le n+1}.$$

Then, k must be equal to 1. Suppose to the contrary that $k \ge 2$. Let $\varphi = [F_{j_1}, \ldots, F_{j_k}]$.

103

No. 6]

As F_{j_1}, \ldots, F_{j_k} are entire functions without zeros and the function F_{j_1}/F_{j_k} is not constant, it is transcendental. By Lemma 4.1 we obtain that φ is transcendental. Note that for $\mathbf{a'} = (c_{j_1}, \ldots, c_{j_k}),$ $(\boldsymbol{a}, f) = (\boldsymbol{a'}, \varphi) = F_0$ and

$$0 < \mu_n(\boldsymbol{a}, f) = 1 - \frac{n}{m} \le 1 - \frac{k-1}{m} = \mu_{k-1}(\boldsymbol{a'}, \varphi).$$

We apply Proposition 4.1 (c) to $f = \varphi$, N = n =k-1, q = k+1 and $e_1, \ldots, e_k, a' (\in \mathbb{C}^k - \{0\})$, which are in general position, to obtain that $\mu_{k-1}(a', \varphi) =$ 0, which is a contradiction. This means that k must be equal to 1. That is to say, $\boldsymbol{a} = c_{j_1} \boldsymbol{a}_{j_1} \ (c_{j_1} \neq 0)$.

(b) By definition, we have the relation $M_n^1(X,f) \subset M_n^+(X,f)$. On the other hand we obtain the relation $M_n^+(X, f) \subset M_n^1(X, f)$ from (a), so that we have $M_n^+(X, f) = M_n^1(X, f)$.

Remark 4.1. Theorem 4.2(a) is a generalization of Borel's theorem (see $[1, p. 19, 1^o]$).

Corollary 4.1. If $M_n^1(X, f) \geq N+1$, then $M_n^+(X,f) = M_n^1(X,f).$

Proposition 4.2. $\#M_n^1(X, f) \leq N + N/n$.

Proof. Let $q = \# M_n^1(X, f)$. Then, by Theorem 4.1, $q \leq (2N+1-n)(n+1)$. We have only to prove this lemma when $q \ge N + 1$. Let

$$M_n^1(X, f) = \{a_1, \dots, a_{n+1}, a_{n+2}, \dots, a_q\},\$$

where a_1, \ldots, a_{n+1} are linearly independent. Note that we can find n + 1 linearly independent vectors in $\#M_n^1(X, f)$ since X is in N-subgeneral position and $q \geq N+1$.

By using Theorem 4.2(a) or by Borel's theorem (see $[1, p. 19, 1^{o}]$), we obtain

(7)
$$a_k = a_k a_{j_k} \quad (k = 1, \dots, q; 1 \le j_k \le n+1),$$

 $(a_k \neq 0)$. Here, $a_k = 1$, $j_k = k$ for $1 \le k \le n+1$.

When we represent a_k by $a_1, \ldots, a_{n+1} : a_k =$ $a_{k1}a_1 + \cdots + a_{kn+1}a_{n+1}$ $(k = 1, \ldots, q)$, we have by (7) that

$$#\{a_{kj} = 0 \mid k = 1, \dots, q; \ j = 1, \dots, n+1\} = qn.$$

As X is in N-subgeneral position, it must hold that $qn \leq N(n+1)$, from which we obtain that $q \leq N +$ N/n.

Remark 4.2. This proposition is given in [2, Theorem 16, p. 41] in a different situation.

Theorem 4.3. Suppose that there exist n +1 linearly independent vectors a_1, \ldots, a_{n+1} in $M_n^1(X, f)$. Then, $\sum_{a \in M_n^+(X, f)} \mu_n(a, f) \le N + N/n$.

[Vol. 81(A),

Proof. As $M_n^+(X, f) = M_n^1(X, f)$ from Theorem 4.2 (b), we have the equality

$$\sum_{M_n^+(X,f)} \mu_n(\boldsymbol{a},f) = \# M_n^1(X,f)$$

and by Proposition 4.2 we have our theorem. **Corollary 4.2.** If $\#M_n^1(X, f) \ge N + 1$, then

 $\sum_{\boldsymbol{a}\in M_n^+(X,f)} \mu_n(\boldsymbol{a},f) \leq N + N/n.$

Remark 4.3. $N + N/n \le 2N - n + 1$ and the equality holds if and only if N = n or n = 1. This implies that the μ_n -defect relation of f is not extremal when $N > n \ge 2$ in Theorem 4.3 or Corollary 4.2.

Theorem 4.4. Suppose that

 $a \in$

(i) there exist n linearly independent vectors $a_1, \ldots, a_n \text{ in } M_n^1(X, f);$

(ii)
$$\sum_{\boldsymbol{a}\in M_n^+(X,f)} \mu_n(\boldsymbol{a},f) = 2N-n+1$$

(iii) $\#M_n^1(X,f) < 2N-n+1$.
Then, we have that $\#M_n^1(X,f) = N$.

Proof. As $0 \leq \mu_n(\boldsymbol{a}, f) \leq \delta_n(\boldsymbol{a}, f) \leq 1$ for any $\boldsymbol{a} \in X$ (Proposition 4.1 (b)), from the assumption (ii) and Theorem A we obtain that $\mu_n(\boldsymbol{a}, f) = \delta_n(\boldsymbol{a}, f)$ for any \boldsymbol{a} in X, so that we obtain this theorem from Theorem 3.3.

Acknowledgements. The author was supported in part by Grant-in-Aid for Scientific Research (C)(1) 16540202, Japan Society for the Promotion of Science during the preparation of this paper and he thanks the referee for his/her valuable comments to improve the paper.

References

- H. Cartan, Sur les combinaisons linéaires de p [1] fonctions holomorphes données, Mathematica 7 (1933), 5-31.
- [2] J. Dufresnoy, Théorie nouvelle des familles complexes normales. Applications à l'étude des fonctions algébroïdes, Ann. Sci. École Norm. Sup. (3) **61** (1944), 1–44.
- [3] H. Fujimoto, Value distribution theory of the Gauss map of minimal surfaces in \mathbf{R}^m , Vieweg, Braunschweig, 1993.
- [4] E. I. Nochka, On the theory of meromorphic curves, Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 547-552.
- [5] N. Toda, A survey of extremal holomorphic curves for the truncated defect relation, Bull. Nagoya Inst. Tech. 55 (2003), 1–18 (2004).
- [6] N. Toda, On a holomorphic curve extremal for the defect relation, Proc. Japan Acad., 80A (2004), no. 9, 169-174.