On the ranks of Conway group Co_{1}

By Faryad Ali and Mohammed Ali Faya Ibrahim
Department of Mathematics, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
(Communicated by Shigefumi Mori, M. J. A., June 14, 2005)

Abstract

Let G be a finite group and X a conjugacy class of G. We denote $\operatorname{rank}(G: X)$ to be the minimum number of elements of X generating G. In the present paper we investigate the ranks of the Conway group $C o_{1}$. Computations were carried with the aid of computer algebra system GAP [16].

Key words: Conway's group $C o_{1}$; rank; generator; sporadic group.

1. Introduction and preliminaries. Let G be a finite group and $X \subseteq G$. We denote the minimum number of elements of X generating G by $\operatorname{rank}(G: X)$. In the present paper we investigate $\operatorname{rank}(G: X)$ where X is a conjugacy class of G and G is a sporadic simple group.

Moori in $[12,13]$ and [14] proved that $\operatorname{rank}\left(F i_{22}: 2 A\right) \in\{5,6\}$ and $\operatorname{rank}\left(F i_{22}: 2 B\right)=$ $\operatorname{rank}\left(F i_{22}: 2 C\right)=3$ where $2 A, 2 B$ and $2 C$ are the conjugacy classes of involutions of the smallest Fischer group $F i_{22}$ as represented in the ATLAS [4]. The work of Hall and Soicher [10] shows that $\operatorname{rank}\left(F i_{22}: 2 A\right)=6$. Moori in [15] determined the ranks of the J anko group J_{1}, J_{2} and J_{3}. Recently in [1] and [2] the authors computed the ranks of the four sporadic simple groups $\mathrm{HS}, \mathrm{McL}, \mathrm{Co}_{2}$ and Co_{3}.

In the present article, the authors continue their study to determine the ranks of the sporadic simple groups and the problem is resolved for the Conway's largest sporadic simple group $C o_{1}$. We determine the rank for each conjugacy class of $C o_{1}$. We prove the following result:

Theorem 2.7. Let $C o_{1}$ be the Conway's largest sporadic simple group. Then
(a) $\operatorname{rank}\left(C o_{1}: n X\right)=3$ if $n X \in\{2 A, 2 B, 2 C, 3 A\}$.
(b) $\operatorname{rank}\left(C o_{1}: n X\right)=2$

$$
\text { if } n X \notin\{1 A, 2 A, 2 B, 2 C, 3 A\}
$$

For basic properties of $C o_{1}$, character tables of $C o_{1}$ and their maximal subgroups we use ATLAS [4] and GAP [16]. For detailed information about the computational techniques used in this paper the

[^0]reader is encouraged to consult [1, 9] and [14].
Throughout this paper our notation is standard and taken mainly from [1, 2] and [9]. In particular, for a finite group G with $C_{1}, C_{2}, \ldots, C_{k}$ conjugacy classes of its elements and g_{k} a fixed representative of C_{k}, we denote $\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with $g_{i} \in C_{i}$ such that $g_{1} g_{2} \ldots g_{k-1}=g_{k}$. It is well known that $\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ is structure constant for the conjugacy classes $C_{1}, C_{2}, \ldots, C_{k}$ and can be easily computed from the character table of G (see [11], p. 45) by the following formula
\[

\left.$$
\begin{array}{rl}
\Delta_{G}\left(C_{1}, C_{2}, \ldots,\right. & \left.C_{k}\right)
\end{array}
$$\right)=\frac{\left|C_{1}\right|\left|C_{2}\right| \cdots\left|C_{k-1}\right|}{|G|}
\]

where $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$ are the irreducible complex characters of G. Further let $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ denote the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with $g_{i} \in C_{i}$ and $g_{1} g_{2} \cdots g_{k-1}=g_{k}$ such that $G=\left\langle g_{1}, g_{2}, \ldots, g_{k-1}\right\rangle$. If $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)>0$, then we say that G is $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$-generated. If H is a subgroup of G containing g_{k} and B is a conjugacy class of H such that $g_{k} \in B$, then $\Sigma_{H}\left(C_{1}, C_{2}, \ldots C_{k-1}, B\right)$ denotes the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ such that $g_{i} \in C_{i}$ and $g_{1} g_{2} \cdots g_{k-1}=g_{k}$ and $\left\langle g_{1}, g_{2}, \ldots, g_{k-1}\right\rangle \leq H$.

For the description of the conjugacy classes, the character tables, permutation characters and information on the maximal subgroups readers are referred to ATLAS [4]. A general conjugacy class of elements of order n in G is denoted by $n X$. For example $2 A$ represents the first conjugacy class of invo-
lutions in a group G. We will use the maximal subgroups and the permutation characters of Co_{1} on the conjugates (right cosets) of the maximal subgroups listed in the ATLAS [4] extensively.

The following results will be crucial in determining the ranks of a finite group G.

Lemma 1.1 (Moori [15]). Let G be a finite simple group such that G is $(l X, m Y, n Z)$-generated. Then G is $(\underbrace{l X, l X, \ldots, l X}_{m \text {-times }},(n Z)^{m})$-generated.

Corollary 1.2. Let G be a finite simple group such that G is $(l X, m Y, n Z)$-generated, then $\operatorname{rank}(G$: $l X) \leq m$.

Proof. The proof follows immediately from Lemma 1.1.

Lemma 1.3 (Conder et al. [5]). Let G be a simple $(2 X, m Y, n Z)$-generated group. Then G is $\left(m Y, m Y,(n Z)^{2}\right)$-generated.

We will employ results that, in certain situations, will effectively establish non-generation. They include Scott's theorem (cf. [5] and [17]) and Lemma 3.3 in [19] which we state here.

Lemma 1.4 ([19]). Let G be a finite centerless group and suppose $l X, m Y, n Z$ are G-conjugacy classes for which $\Delta^{*}(G)=\Delta_{G}^{*}(l X, m Y, n Z)<$ $\left|C_{G}(n Z)\right|$. Then $\Delta^{*}(G)=0$ and therefore G is not ($l X, m Y, n Z$)-generated.
2. Ranks of $\boldsymbol{C o}_{\mathbf{1}}$. The Conway group $C o_{1}$ is a sporadic simple group of order

$$
4,157,776,806,543,360,000=2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 11 \cdot 13 \cdot 23
$$

The subgroup structure of $C o_{1}$ is discussed in Wilson [18]. The group Co_{1} has exactly 22 conjugacy classes of maximal subgroups as listed in Wilson [18]. $C o_{1}$ has 101 conjugacy classes of its elements. It has precisely three classes of involutions, namely $2 A, 2 B$ and $2 C$ as represented in the ATLAS [4]. $C o_{1}$ acts on a 24 -dimensional vector space Ω over $G F(2)$ and this action produces three orbits on the set of non-zero vectors. The point stabilizers are the groups Co_{2}, $C o_{3}$ and $2^{11}: M_{24}$ and the permutation character of $C o_{1}$ on $\Omega-\{0\}$, which is given in [6], is $\chi=3.1 a+$ $2.299 a+2.17250 a+3.80730 a+376740 a+644644 a+$ $2055625 a+2417415 a+2.5494125 a$, where na denotes the first irreducible character with degree n. For basic properties of $C o_{1}$ and information on its maximal subgroups the reader is referred to $[3,4,6]$ and $[18]$.

Recently Darafsheh, Ashrafi and Moghani in [6, 7] and [8] established (p, q, r)-generations and $n X$-complementary generations of the Conway group
$C o_{1}$. We will make use of these generations to determine the ranks of Co_{1} in some cases.

In the following we prove that the Conway group $C o_{1}$ can be generated by three involutions.

Lemma 2.1. The group $C o_{1}$ can be generated by three involutions $a, b, c \in 2 A$ such that abc $\in 13 A$.

Proof. Using the character table of $C o_{1}$ we have $\Delta_{C o_{1}}(2 A, 2 A, 2 A, 13 A)=9633$. In $C o_{1}$ we have only two maximal subgroups, up to isomorphism, with orders divisible by 13 , namely, $H_{1} \cong 3 . S u z .2$ and $H_{2} \cong\left(A_{4} \times G_{2}(4)\right): 2$. We also have

$$
\begin{aligned}
& \Sigma_{H_{1}}(2 A, 2 A, 2 A, 13 A) \\
& =\Delta_{H_{1}}(2 A, 2 A, 2 A, 13 A)=1521
\end{aligned}
$$

A fixed element of order 13 in Co_{1} lies in four conjugates of H_{1}. Hence H_{1} contributes $4 \times 1521=6084$ to the number $\Delta_{C o_{1}}(2 A, 2 A, 2 A, 13 A)$. Similarly, we compute that

$$
\begin{aligned}
& \Sigma_{H_{2}}(2 A, 2 A, 2 A, 13 A) \\
& =\Delta_{H_{2}}(2 A, 2 A, 2 A, 13 A)=169
\end{aligned}
$$

And a fixed element of order 13 in Co_{1} lies in a unique conjugate of H_{2}. This means that H_{2} contributes $1 \times 169=169$ to the number $\Delta_{C o_{1}}(2 A, 2 A, 2 A, 13 A)$. Since

$$
\Delta_{C o_{1}}^{*}(2 A, 2 A, 2 A, 13 A) \geq 9633-6084-169>0
$$

the group Co_{1} is $(2 A, 2 A, 2 A, 13 A)$-generated.
Lemma 2.2. Let $C o_{1}$ be the Conway's largest sporadic group $C o_{1}$ then $\operatorname{rank}\left(C o_{1}: 2 X\right)=3$ where $X \in\{A, B, C\}$.

Proof. We proved in the previous lemma that $C o_{1}$ is $(2 A, 2 A, 2 A, 13 A)$-generated and so $\operatorname{rank}\left(C o_{1}: 2 A\right) \leq 3$ but $\operatorname{rank}\left(C o_{1}: 2 A\right)=2$ is not possible, because if $\langle x, y\rangle=C o_{1}$ for some $x, y \in 2 A$ then $C o_{1} \cong D_{2 n}$ with $o(x y)=n$. Hence $\operatorname{rank}\left(C o_{1}\right.$: $2 A)=3$. Darafsheh et al. in [6] proved that $C o_{1}$ is $(2 Y, 3 D, 11 A)$-generated for $Y \in\{B, C\}$. Now by applying Corollary 1.2 , we have $\operatorname{rank}\left(C o_{1}: 2 Y\right) \leq 3$ for $Y \in\{B, C\}$, but we know that $\operatorname{rank}\left(C o_{1}: 2 Y\right)>$ 2 as we argue in the above case, hence $\operatorname{rank}\left(C o_{1}\right.$: $2 Y)=3$ where $Y \in\{B, C\}$. Therefore $\operatorname{rank}\left(C o_{1}\right.$: $2 X)=3$ where $X \in\{A, B, C\}$.

Lemma 2.3. $\operatorname{rank}\left(C o_{1}: 3 A\right)=3$.
Proof. First we show that $\operatorname{rank}\left(C o_{1}: 3 A\right)>2$ by proving that $C o_{1}$ is not $(3 A, 3 A, t X)$-generated for any conjugacy class $t X$. If $C o_{1}$ is $(3 A, 3 A, t X)$ generated then $1 / 3+1 / 3+1 / t<1$ and it follows that $t \geq 4$. Set $K=\{4 A, 5 A, 6 A\}$. Using GAP [16]
we see that $\Delta_{C o_{1}}(3 A, 3 A, t X)=0$ if $t X \notin K$ and for $t X \in K$ we have $\Delta_{C o_{1}}(3 A, 3 A, t X)<\left|C_{C o_{1}}(t X)\right|$. We get that

$$
\begin{aligned}
\Delta_{C o_{1}}^{*}(3 A, 3 A, t X) & <\Delta_{C o_{1}}(3 A, 3 A, t X) \\
& <\left|C_{C o_{1}}(t X)\right| .
\end{aligned}
$$

Using Lemma 1.4, we obtain that $\Delta_{C o_{1}}^{*}(3 A, 3 A$, $t X)=0$ for all $t X$ with $t \geq 4$ and therefore $C o_{1}$ is not $(3 A, 3 A, t X)$-generated and hence $\operatorname{rank}\left(C o_{1}\right.$: $3 A)>2$. Next we show that $\operatorname{rank}\left(C o_{1}: 3 A\right)=3$.

Consider the triple $(3 A, 3 A, 3 A, 10 E)$. From the maximal subgroups of $C o_{1}$, we see that the only maximal subgroups of $C o_{1}$ with order divisible by 10 and non-empty intersection with the conjugacy classes $3 A$ and $10 E$ are isomorphic to $H_{1}=2_{+}^{1+8} \cdot O_{8}^{+}(2), \quad H_{2}=3^{1+4} \cdot 2 U_{4}(2) \cdot 2, \quad H_{3}=$ $\left(A_{5} \times J_{2}\right): 2$ and $H_{4}=\left(D_{10} \times\left(A_{5} \times A_{5}\right) .2\right) .2$. We compute $\Delta_{C o_{1}}(3 A, 3 A, 3 A, 10 E)=600$ and $\Sigma_{H_{1}}(3 A, 3 A, 3 A, 10 E)=\Sigma_{H_{2}}(3 A, 3 A, 3 A, 10 E)=$ $\Sigma_{H_{3}}(3 A, 3 A, 3 A, 10 E)=\Sigma_{H_{4}}(3 A, 3 A, 3 A, 10 E)=$ 0 . Thus no proper subgroup of $C o_{1}$ is $(3 A, 3 A, 3 A, 10 E)$-generated and we get

$$
\begin{aligned}
& \Delta_{C o_{1}}^{*}(3 A, 3 A, 3 A, 10 E) \\
& =\Delta_{C o_{1}}(3 A, 3 A, 3 A, 10 E)=600
\end{aligned}
$$

Hence $C o_{1}$ is $(3 A, 3 A, 3 A, 10 E)$-generated and the result follows.

Lemma 2.4. $\operatorname{rank}\left(C o_{1}: t X\right)=2$ for $t X \in$ $\{3 B, 4 A, 4 B, 4 C, 4 D, 5 A, 6 A\}$.

Proof. Set $T=\{3 B, 4 B, 4 D, 5 A, 6 A\}$. Consider the triple $(t X, t X, 13 A)$ for each $t X \in T$. The maximal subgroups of Co_{1} containing elements of order 13 are, up to isomorphism, $H_{1} \cong 3 . S u z .2$ and $H_{2} \cong$ $\left(A_{4} \times G_{2}(4)\right): 2$. We see that a fixed element of order 13 in $C o_{1}$ is contained in precisely four copies of H_{1} in $C o_{1}$ and in a unique conjugate copy of H_{2} in Co_{1}. Now we calculate that for each $t X \in T$, we have

$$
\begin{aligned}
& \Delta_{C o_{1}}^{*}(t X, t X, 13 A) \\
& \geq \Delta_{C o_{1}}(t X, t X, 13 A)-4 \Sigma_{H_{1}}(t X, t X, 13 A) \\
& \quad-\Sigma_{H_{2}}(t X, t X, 13 A)>0
\end{aligned}
$$

We conclude that $C o_{1}$ is $(t X, t X, 13 A)$-generated for each $t X \in T$. Hence $\operatorname{rank}\left(C o_{1}: t X\right)=2$ for each $t X \in T$.

Next for $t X=4 A$ consider the triple $(2 C, 4 A$, $26 A$). Up to isomorphism, the only maximal subgroup of Co_{1} that may contain $(2 \mathrm{C}, 4 \mathrm{~A}, 26 \mathrm{~A})$ generated proper subgroup is isomorphic to $H_{2} \cong\left(A_{4} \times G_{2}(4)\right): 2$. We calculate that
$\Delta_{C o_{1}}(2 C, 4 A, 26 A)=91$ and $\Sigma_{H_{2}}(2 C, 4 A, 26 A)=$ 39. Now a fixed element of order 26 in Co_{1} lies in a unique conjugate of H_{2} in $C o_{1}$. Hence H_{2} contributes $1 \times 39=39$ to the number $\Delta_{C o_{1}}(2 C, 4 A, 26 A)$. Our calculation gives $\Delta_{C o_{1}}^{*}(2 C, 4 A, 26 A) \geq 91-39>0$ and therefore, $C o_{1}$ is $(2 C, 4 A, 26 A)$-generated. Now applying Lemma 1.2, we get $\operatorname{rank}\left(C o_{1}: 4 A\right)=2$.

Finally for the rank of the conjugacy class $t X=$ $4 C$ we consider the triple $(4 C, 4 C, 13 A)$. The $C o_{1-}{ }^{-}$ class $4 C$ fails to meet any copy of H_{1} or H_{2} in $C o_{1}$. Thus $C o_{1}$ contains no proper ($4 C, 4 C, 13 A$)subgroup. As $\Delta_{C o_{1}}(4 C, 4 C, 13 A)=7866268$ we conclude that $C o_{1}$ is $(4 C, 4 C, 13 A)$-generated and $\operatorname{rank}\left(C o_{1}: 4 C\right)=2$. This completes the proof.

Lemma 2.5. If $n \geq 4$ and $n X \notin T=$ $\{4 A, 4 B, 4 C, 4 D, 5 A, 6 A\}$ then $\operatorname{rank}\left(C o_{1}: n X\right)=2$.

Proof. Direct computation using GAP and results from Darafsheh, Ashrafi and Moghani ([8]) together with information about the power maps of $C o_{1}$ we can show that $C o_{1}$ is $(2 A, n X, m Z)$ generated for each conjugacy class $n X \notin T$ of $C o_{1}$ $(n \geq 4)$ with appropriate $m Z$. Now by Lemma 1.3, $C o_{1}$ is $\left(n X, n X,(m Z)^{2}\right)$-generated for all $n X \notin T$ $(n \geq 4)$. Hence $\operatorname{rank}\left(C o_{1}: n X\right)=2$ for all $n \geq 4$ and for each conjugacy class $n X \notin T$ of $C o_{1}$.

Remark 2.6. For example $C o_{1}$ is $(2 A, 23 A$, $23 B)$-generated. Hence $C o_{1}$ is $\left(23 A, 23 A,(23 B)^{2}\right)$ generated, so that $\operatorname{rank}\left(C o_{1}: 23 A\right)=2$.

We now state the main result of the paper.
Theorem 2.7. Let $C o_{1}$ be the Conway's largest sporadic simple group. Then
(a) $\operatorname{rank}\left(C o_{1}: n X\right)=3$ if $n X \in\{2 A, 2 B, 2 C, 3 A\}$.
(b) $\operatorname{rank}\left(C o_{1}: n X\right)=2$
if $n X \notin\{1 A, 2 A, 2 B, 2 C, 3 A\}$.
Proof. The proof follows from Lemmas 2.1, $2.2, \ldots$, and 2.5 .

References

[1] F. Ali and M. A. F. Ibrahim, On the ranks of $H S$ and $M c L$, Utilitas Mathematica, (2005). (To appear).
[2] F. Ali and M. A. F. Ibrahim, On the ranks of Co_{2} and Co_{3}. (Submitted).
[3] M. Aschbacher, Sporadic Groups, Cambridge Univ. Press, London-New York, 1994.
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Oxford Univ. Press, Eynsham, 1985.
[5] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc. 116 (1992), no. 3, 653-663.
[6] M. R. Darafsheh and A. R. Ashrafi, $(2, p, q)$ generations of the Conway group Co_{1}, Kumamoto J. Math. 13 (2000), 1-20.
[7] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, (p, q, r)-generations of the Conway group Co_{1} for odd p, Kumamoto J. Math. 14 (2001), 1-20.
[8] M. R. Darafsheh, A. R. Ashrafi and G. A. Moghani, $n X$-complementary generations of the sporadic group Co_{1}, Acta Math. Vietnam. 29 (2004), no. 1, 57-75.
[9] S. Ganief and J. Moori, Generating pairs for the Conway groups Co_{2} and Co_{3}, J. Group Theory 1 (1998), no. 3, 237-256.
[10] J. I. Hall and L. H. Soicher, Presentations of some 3-transposition groups, Comm. Algebra 23 (1995), no. 7, 2517-2559.
[11] I. M. Isaacs, Character theory of finite groups, Corrected reprint of the 1976 original [Academic Press, New York], Dover, New York, 1994.
[12] J. Moori, Generating sets for F_{22} and its automorphism group, J. Algebra 159 (1993), no. 2, 488499.
[13] J. Moori, Subgroups of 3-transposition groups generated by four 3 -transpositions, Quaestiones Math. 17 (1994), no. 1, 83-94.
[14] J. Moori, On the ranks of the Fischer group F_{22}, Math. Japon. 43 (1996), no. 2, 365-367.
[15] J. Moori, On the ranks of Janko groups J_{1}, J_{2} and J_{3}, in $41 s t$ annual congress of South African Mathematical Society, RAU, Auckland Park, (1998). (Private Communication).
[16] The GAP Group, GAP - Groups, Algorithms and programming, version 4.3, Aachen, St Andrews, 2003. (http://www-gap.dcs.st-and.ac.uk/~gap).
[17] L. L. Scott, Matrices and cohomology, Ann. of Math. (2) 105 (1977), no. 3, 473-492.
[18] R. A. Wilson, The maximal subgroups of Conway's group Co_{1}, J. Algebra 85 (1983), no. 1, 144-165.
[19] A. J. Woldar, Representing M_{11}, M_{12}, M_{22} and M_{23} on surfaces of least genus, Comm. Algebra 18 (1990), no. 1, 15-86.

[^0]: 2000 Mathematics Subject Classification. Primary 20D08, 20F05.

 Dedicated to Prof. Jamshid Moori on the occasion of his sixtieth birthday.

