No. 1] Proc. Japan Acad., 81, Ser. A (2005) 7

A generalization on the difference between an integer
and its inverse modulo g. (II)

By Tianping ZHANG™**) and Wenpeng ZHANG™
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Abstract:
a < q and (a,q) = 1, there exists one and only one b with 0 < b < ¢ such that ab =

q q q

Mg ken)=3 33 (@
a1=1 an=1 b=1
a1--apb=c (mod q)

Let ¢ > 2 and ¢ are two integers with (g,c¢) = 1, for each integer a with 0 <
¢ (mod gq). Let

b)Qk,

the main purpose of this paper is to study the asymptotic behavior of M(q, k, ¢, n), and prove that
for any positive integers k and n with n > 2 we have

M(qakacan) (2k/’+1)
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1. Introduction. Let g > 1 be a positive in-
teger. For any integers a and b, the classical Kloost-
erman sums S(a, b; ) is defined by:

q

(=),

n=1

(1) S(a,b;q

where 3" denotes the summation over all n such that
(n,q) =1, nn =1 (mod q) and e(y) = e2™.

The various properties of S(a,b;q) were inves-
tigated by many authors. Perhaps the most famous
property of S(a, b; ) is the estimate (see [1] and [2]):

2 1S(a,b59)] < d(q)g"/? (a,b,q)1/?,

where d(q) is the divisor function, (a,b,q) denotes
the greatest common divisor of a, b and q.

In reference [3], Professor Smith generalized the
classical Kloosterman sums S(a, b; ¢) by introducing
the n-dimensional Kloosterman sums as

(e
q )

x mod g

Sh (a; Q) =

where a = (aj,as,...,a,) is a given vector from
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n kn
¢ ( ' 10 (4kq(2k+1)n—(1/2)d2(q) mq) .

Generalization; asymptotic formula.

€ 7, summation is over vectors x =
Zp) from Z™ each of whose components

2", ani1
(x1,22,...,
belongs to a residue class relatively prime to ¢ > 1,
a-Xx=a121 + a2+ -+ anTp, NX =212 Tp,
and T as in (1) denotes the multiplicative inverse of
u (mod q). Then he proved a number of results con-
cerning Sy (a; ¢), among which is the upper bound,

1Sn(a;q)] < ¢ (a; )P dni1(q),

where (a; q), is precisely defied, and d,11(q) denotes
the number of representations of ¢ as a product of
n + 1 factors.

Apparently this inequality generalized (2) for
the one-dimensional Kloosterman sums S(a, b; q).

Let ¢ > 2 and ¢ are two integers with (¢, c) = 1.
For each integer 0 < a < ¢ with (a,q) = 1, we know
that there exists one and only one integer 0 < b < ¢
with (b,q) = 1 such that ab = ¢ (mod q). Let

q q
/ /
M(q,k,c) E (a — b
a=1 b=1
ab=c (mod gq)

q

where 3" denotes the summation over all a such that
a=1

(a,q) = 1. In reference [4], the second author used

the estimates for Kloosterman’s sums and trigono-
metric sums to obtain a sharp asymptotic formula
for M(q, k, c), and proved the following theorem:



8 T. ZHANG and W. ZHANG

Let ¢ > 2 and ¢ are two integers with (¢, c) = 1.
Then for any positive integer k, we have the asymp-
totic formula

(3) Mgk = .

2k +1)(k+1)
10 (4kq(4k+1)/2d2(q) In2 q) ,

d(q)q*"

where ¢(q) is the Euler function.
For k = 1 and any fixed positive integer ¢ with
(g,c) =1, let

E(q,1,¢) = M(q,1,¢) —

q)q ——qH (I-p

plg

The second author [5] showed that for any integer
q > 2, we have the asymptotic formula

7, (ptD* 1
F2(q.1 9 3,3 p(p*+1)  pPet
c=1 p*|lq p P

+ 0 [ exp 41lngq ,
Inlng

where HPQH o denotes the product over all prime di-
visors of ¢ with p®|q and p**1 1 q.

This proves the error terms in (3) is the best
possible.

Now we consider a generalization on this prob-
lem. For any integers ¢ > 2 and n > 1, let

q
M(q,k,c,n) = Z

awb ¢ (mod q)

for n = 1, we have M(q,kz,c, 1) = M(q, k, ¢), which
has been stated above; while for n > 2, we still know
nothing about it yet. In this paper, we shall use the
estimates of n-dimensional Kloosterman sums and
the properties of trigonometric sums to give an in-
teresting asymptotic formula for M(q, k, ¢, n). That
is, we shall prove the following

Theorem. Let g > 2 and c are two integers

with (q,¢) = 1, then for any positive integers n, k
with n > 2, we have the asymptotic formula
¢n( ) 2kn
M(q, k
(qa ,c,n) (2k/’+ 1)

10 (4kq(2k+1)n—(1/2)d2(q) In q) .

Taking k = 1, ¢ = p, an odd prime in our The-
orem, we immediately deduce the following

[Vol. 81(A),

Corollary. For any odd prime number p and
positive integer n with n > 2, we have

3n
M(p,1,¢e,n) = I;—n +0 ( 3n—(1/2) 1np) )

2. Several Lemmas. In this section, we
shall derive the estimates from n-dimensional Kloost-
ermann sums and trigonometric sums used in the
proof of the theorem. First we have the following
several lemmas.

Lemma 1. Fized integer n > 2. For any inte-
ger r and nonnegative integer p, we define K (r,p) =

>y aPe(%), where e(y) = €™ Then we we have

npt1
= +O0n?) if nlr;
p+1
K(r,p) P
if nir,

L V7
| sin (75) |

where s = min(r,n —r) with 1 <r <n—1.
Proof. See reference [4]. U

Lemma 2.
Zn+1

For each prime p, and any y €
, there exist a unique integer v > 0 such that
y = p"x for some x € Z"t1 — pZntl. let t denotes
the number of components of x which are divisible by
p so that 0 <t <n. For each a > 0, define

(¥:0%)n :pon(y;p")n
where
on(¥Y;P%)n
« if ™>aq;
) if T<a-—1;
r if r=a—1 and t=0;
r— 1+2(t 1 if r=a—1 and 1<t <n.

For any integer ¢ > 1, we now define
;) =[] :0")n-
r*llq
Then for all integers n,q > 1 and ally € Z"T!, we
have the upper bound
150 (v; )| < 4" (v @) *dnga ().

Proof.  See reference [3]. |

Lemma 3. Let g > 2 and ¢ are two integers
with (q,c) = 1, then for any positive integers n, p;,
(1 <i < n), fwithn > 2, we have the following
asymptotic formula



No. 1] Generalization on the difference between an integer and its inverse 9
q , q , q , qg—1 g—1
SIS Y Y S s @)K ()
a1=1 ap=1 b=1 yn=1s=1
e ot K (~yn,pa) K (=, f)
¢n(q)qp1+~~+m+f
it D) (at D(f+ 1) where C} = o, (1 <r < n), K(r,p) and
S(y1,---yYn,8¢;,q) = Sn(y;q) are defined on the
+0 (q’“+"'+p"+f+"_(1/2)d2(q) In q) ) above, and

Proof. Using the trigonometric identity

o ye(w)-{;

a=1

if n|u;
if nitu.

We obtain the identity

q
> Z e(yl(al—cl)-f-"'-i—yn(an
q

Y1y, Yn,5=1

1 g iy
Ly Yy

Y150y Yn,5=lar=1

q [
..Zle(ylal+...+ynan+sca1...an>
q

—cn) + S(b—d))

an,=1
q e
3o (=29 )
c1=1
1 —YnC 1 —sd
S e () S ()
cn=1 d=1
1 q
= n—+1 Z S(yla"'7ynasc;q)K(_ylap1)
q YiseesYn,s=1
--K(—yn,pn)K(—s,f)
1
= WS(q, o ,9¢;q) K (—q,p1)

- K(—q,pn)K

Cr 1
+Z n+1

+Z n+1
n+1 Z

y1=1

q—
Z yla"'ayTaqa"'aqaqc;q)

(yl,pl) K (=yr, pr) K (=¢,Pr41)

q—
Z
yi=1
x K

9—1 q-—
Z Z Zsyla --ayr—la%---aanC;(Z)
1=1 Yr—1=1s=1
x K(=y1,p1) -+ K(=yr—1,pr—1) K (=4, pr)
K (=q,pn)K(=s, f).
Since 2/7 < sin(x /) for |x| < 7/2, we obtain
1
(6) 7500 60 ) K(—, p1)
- K(=q,pn)K(=q, f)
¢"(q) (g

— P1
7+ \pr+1 +0(q )>

i O(q”")> (qf+1 + O(qf)>

" (q)qpl ++pnt+f

(1) (o F(f D)
+ 0 <q101+"'+10n+f+n—1) .

Sl
3 L
+
=

Similarly, we can get the estimates

(7)

anp=1
- K(=yr, pr)K(—q,Pr41)
qg—1 qg—1 1/2 p
_ Y1,9)"'"q
<" (Q)gPd(g) Y Y W
y1=1 yr=1 q
1/2 DPr Pri1+1
(f‘] Q)Wy q q - +O(qpr+1)
[sin(Z=)[ \prt!t +1
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nt1 f+1
(riowm) (Fa+0w)

q—1
< q(il?1+"'+10n+f+2n—%-i—l)dr(q) Z
y1=1
q—1
3 (a2 (e 0)'?
yl .. y/’_

yr=1

& qPrttpntfA2n— %“)d%(q) In" ¢,

q"*(y; @)1 dn11(q)

qpl qp’r‘fl qf

[sin(F)] [sin(TZ)] Tsin(%)]

q—1
< q(p1+ +pntf+E +1)dn+1(q) Z
=1

-1 q-— 2
Z Z yl,---,yr—hé’,Q)n/
yr—1=1s=1 ©Yr—18
, (¢g—1)/d
<<q(p1+~~~+m+f+7'+1)dn+1 Z Z
dlg h=1

(- D/d@1)/d n20)/2
' Iy~ -lp_qly

lo_i=1 =1

< q(p1+...+pn+f+2n—r+1)dn+1(q)d(q) In" q,

q— qg—1 g—1
< n+1 qn/Q(}U Q)Z/anﬂ(q)
y1=1 yn=1s=1
qpl qpn qf
™y TYn s
| sin(T4L)] | sin(TL)] |s1n(7:1 |
qg—1
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,_.
Q

-1 (n/2)

Z y1,---,yn,5,Q)

Yn=1s=1 Yr---Yns

(g—1)/d

DY

dlg l1=1

< q(p1+~~~+m+f+%)dn+1(

(¢=1)/d(q—1)/d 1

+2)/2]. ...
ln=1 lpj1=1 d /2,

lnln—i-l
< q(;v1+~..+;vn+f+%)dn+1(q) ot q.

Combmmg (5)—(9) we immediately deduce that

q q
/
5y 2
a1=1 anp=1b

ai1--anb=c (mod q)

!’

—alrbf

¢n(q)qp1+~~~+m+f
(p1+1)-(pn+1)(f+1)

+0 (qp1+~~~+m+f+n—(1/2)d2(q) In q) )

This completes the proof of Lemma 3. |

3. Proof of the theorem. In this section,
we shall complete the proof of the Theorem. In
fact by the expansion of the binomial expression and
Lemma 3 we get

M(q,k,c,n)

2k q q q
DX TICEVED DR W W CPRER

2k .
- Y ¢n(q)qn(2k—z)+z
=2 Oal(-D) {(Qk —i+1)"(i+1)

10 (qn(Qk—i)—i-i—i-n—(l/Q)dQ(q) In q)}

; ¢n(q)qn(2k—i)+i
b {(Qki — i+ D" +1)

2k
= Z Co(

=1
10 (qn(Qk—i)—i-i—i-n—(l/Q)dQ(q) In q)}

n an
! (?215 J)r 79 (44 +m g) Ing)

¢n an e
(2/5 J)r g + 0 (44 g ng).

where n > 2.
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This completes the proof of the theorem.
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