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Abstract:

In this paper, we give explicit formulae of certain higher annihilators of the ideal

class groups defined by V. Kolyvagin and K. Rubin, which come from Euler systems of Stickelberger
elements and cyclotomic units. Further, using these explicit formulae, we reformulate Kolyvagin-
Rubin’s structure theorem of the ideal class groups of abelian number fields.
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1. Introduction. Let K be an abelian num-
ber field, and for a fixed odd rational prime p, we
denote by Ag the Sylow p-subgroup of the ideal
class group of K. In this paper, we will give ex-
plicit formulae of certain higher annihilators of Ax
which were introduced by V. Kolyvagin and K. Ru-
bin. These higher annihilators are given by Euler
systems of cyclotomic units and Stickelberger el-
ements (or Gauss sums), and they annihilate the
ideal class groups except finitely many primes. By
using these explicit formulae, we will reformulate
Kolyvagin-Rubin’s structure theorem of Ag in the
case pt [K : Q]. The contents of this paper are as fol-
lows. In Section 2, we recall the definition of higher
annihilators given by V. Kolyvagin and K. Rubin. In
Section 3, we give a Key proposition (Proposition 7)
and calculate higher annihilators (Theorem 9, 13).
In Section 4, we study the structure of Ax in the
case p1 [K : Q). We reformulate Kolyvagin-Rubin’s
structure theorem of Ax using the results of Sec-
tion 3 (Theorem 14, 15).

2. Higher annihilators. In this section, we
recall higher annihilators. For details, see [1, 3, 4].
Let K be an abelian number field and set G =
Gal(K/Q). We fix an odd rational prime p and
write G ~ A x G, with p { |A| and p-group G,.
For a character x of A, we say an odd character
(resp. even character) if x(—1) = —1 (resp. x(—1) =
1). By embedding Q (the algebraic closure of Q)
to Qp, we think of x as a Qp-valued character.
We define the idempotent e, € Z,[A] by e, =
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IiTIZUEA Tr(x *(0))o, where Tr : Qu(x(0) | o €
A) — Q, is the trace map. Let O, denote the ex-
tension ring of Z, generated by the values of x. For
any Z,[A]-module Y, we define the x-part Y, of ¥’
by Y, = e, Y. If two characters x; and x2 of A sat-
isfy x1 = x27 forsome o € Gral(Qp/Qp)7 we say x1 is
conjugate to x2 over Q,. The number of characters
that conjugate to x is rankz, Oy. The Z,[A]-module
Y is decomposed as YV ~ @, .., Yy, where x runs
over all representatives of Qp-conjugacy classes of
characters of A. Let Ax be the Sylow p-subgroup
of the ideal class group of K, then Ak is a Z,[A]-
module and decomposed as Ak ~ @, .., Ak, We
define the higher annihilators of Ay , for each char-
acter xy of A. The construction of these annihila-
tors are different according to odd characters or even
characters. For odd characters y, we use the Euler
system of Stickeberger elements, and for even char-
acters x, we use the Euler system of cyclotomic el-
ements. Let N be the conductor of K, then K is
a subfield of the cyclotomic field L = Q(uy). We
write N = p! Ny with ¢t > 0 and p{ Ny. Let M be a
power of p such that M > p'. For any integer i > 0,
let S; = {n € Z > 0| squarefree, n = ¢; - - - ¢; (prod-
uct of primes), £; = 1 (mod MNy)}, and set S =
;>0 Si- For every integer n € S and every prime
l €Sy, set Gy = Gal(L/Q), G} = Gal(LT/Q),
G = Gal(K/Q), Gt = Gal(Kt/Q), G, =
Gal(L(in)/L) = Gal(K (1)/K) = Gal(Qiin)/Q),
Ny = z:'reGn T Dy = Zf;glpél7 Dy, = H€|n Dé?
where LT (resp. KT) is the maximal real sub-
field of L (resp. K), and p; is a fixed generator
of Go(~ (Z/0)*). Fix n € S. By the canonical
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isomorphism Gal(L(p,)/Q) = (Z/nN)* we write
7o € Gal(L(pn)/Q) corresponding to a € (Z/nN)*
(¢ = ¢* for every ¢ € pupn). Further define o, €
Gy and 7,4 € Gy, by T, — (0g, Tn,q) under the iso-
morphism Gal(L(u,)/Q) =~ Gy X Gp.

2.1. Higher annihilators of the minus
part. In this subsection, we define the higher anni-
hilator of A , for an odd character x. We assume
X # w (Teichmiiller character). We know Stickel-
berger element as a good annihilator of Ak . For
each n € S, we choose an integer b, > 0 such that
(bn,mNp) =1 and b, =1 (mod n).

Definition 1 (Stickelberger element). For any
n € S, we define Stickelberger element 6, €

Zp|Gal(L(pn)/Q)] by

nN

a
6‘n = (O'bn — bn) Z W’ra_l'

a=1
(a,nN)=1

Stickelberger’s theorem says that e, Resz,/x (01)
annihilates Ag ., namely Ag > Rese/x®) — g
where Resy, /i : Zp[GN] — Z,[G] is the natural re-
striction ([6, Theorem 6.10]). We define an element
d(n) € (Z/M)[Gn] for each n € S, which is the nat-
ural image of #; for n = 1.

Lemma 2 (4, Lemma 2.1). Foranyn €S, we
have

D0, € (Z/M)[Gal(L(un)/Q)]G” = Ny (Z/M)[GN].

By this lemma, we define the higher annihila-
tor 6(n) € (Z/M)[GnN] to be the element satisfy-
ing Dp6, = N,d(n). For any n € S, let Bg(n)
be the Z,[Al]-submodule of Ay which is generated
by the classes of prime ideals of K dividing n. V.
Kolyvagin showed that e, Res,x d(n) annihilates
Ak x/Bk(n)y.

Proposition 3 (V. Kolyvagin [1, Theorem 5],
K. Rubin [4, Proposition 2.3)). Letn €S. If M is
a power of p satisfying M > |Ak |, then we have
(Akx/Br(n)y)ex Resp/k(6(n)) — (.

2.2. Higher annihilators of the plus part.
In this subsection, we define the higher annihilators
of A, for an even character . In this case, we can
consider x as a character of G = Gal(K*/Q), and
we have an isomorphism A, ~ Ag+ . Hence we
study Ag+ , instead of Ag . First, we define the
cyclotomic unit.

Definition 4 (cyclotomic unit). For any n €
S, we define the cyclotomic unit {;+ ,, by
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ptn= (@H@—l) (cN‘l H@—l) S AT

£n £n

Lemma 5 (3, Appendix, Lemma 2.2). For
any n € S, there is a unique K+, € Lt /(LT )M
such that kr+ , = v 7 (mod (LT (1) )M).

Next, we define certain map whose image is in
(Z/M)[G¥;], and we construct higher annihilators by
the image of kp+ ,. Let £ € S; and fix a prime ideal
L of L™ above £, and denote the unique prime ideal
of L*(ug) above £ by £. We choose an element 7,
of the ring of integers O+ (,,) of L*(j) such that
the principal ideal generated by 7, satisfies (7.) =
La, where a is an ideal of L*(us) which is prime
to ¢. For a fixed generator p; of Gy, we can see
that 7,2¢~! mod L is a generator of ((’)L+(W)/£~)X ~
(Z/0)* and 7zPe~1 =1 (mod ENT) for every 7(# 1) €

G- Hence mz”*~1 mod [I.cqt £7 is a generator of
N

Xp+y = (OL+(W)/HTGG; ENT)X as a G]"{,-module.
Further, we can easily show that the following map
is an isomorphism of (Z/M)[G}]-modules.

Yrp XpsofXp+ oM ~ (Z/M)[G}]

—~\ T
(ﬂg”‘l mod HTGG; ET) — x.

Remark. Let I;+ denote the ideal group of
Lt. For x € LT™, let [x] € I ,+/MI.;+ be the
projection of the principal ideal (z) and [z], €
I+ o/MIp+, be its (-part (product of prime ide-
als dividing ¢). The map 1., satisfies the following
commutative diagram.

T = [Npt o)+ ()]

r L ()™ = g+ o/MIp+, L
! ! ! !
aP =t Xy o/ Xpe oM o0 (z/Mm)[Gy] 1
L
Proposition 6 (V. Kolyvagin [1, Theorem 5],
K. Rubin [3, Appendix, Lemma 2.2]). Let n € S.
Assume that M is a power of p satisfying M >
|Ag+ |- For each class ¢ € A+, we choose a
prime ideal \ as the representative of ¢ which di-
vides a rational prime ¢ € Sy satisfying ¢ = 1
(mod MnNy) (We can choose such \ by the Cheb-
otarev density theorem). Then for any prime ideal L
of LT above A, we have & Fesut/r+ ¥re(mis ) —
in A+ /Bg+(n)y-
Remarks. (1) Note that the higher annihila-
tor ¢, (kr+ ) of the plus part are different for each
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class ¢ € Ag+ . (2) For n = 1, this proposition is
essentially the result of F. Thaine [5].

3. Explicit formulae of higher annihila-
tors. In this section, we will give explicit formulae
of the higher annihilators é(n) and ¥y, (kp+ ) in
Section 2. First, we show the following Key proposi-
tion. For any prime ¢ € Sy, let gy be the generator of
(Z/0)* corresponding to a fixed generator py € Gy
by the canonical isomorphism Gy ~ (Z/¢)*.

Proposition 7. For any

Z YaTa

(a, nN) 1

€ (Z/M)[Gal(L(pn)/Q)];

Yo € Z/M satisfying
DY € (Z/M)[Gal(L(1n) / Q)| = No(Z/M)[G),

if we write D, Y,, = NpZ, with Z, € (Z/M)[Gy],
then we have

nN
Z, = Z ya< H yg(q))UG e (z/M)[GN],
a=1 ln
(a,nN):l prilme

where vg : (Z/0)* — Z /(£ —1) denotes the logarithm
map given by g;**» = a (mod £).

Proof. This proposition is a consequence of the
following lemma by putting n’ = n. |

Lemma 8. For any divisor n’ of n,
DY, = Dyyn Ny

nN

—1 —1
X Z ya( H V@(a)>o—a Tn/n’,a
a=1 £n’
(a,nN)=1 prime

(mod M).

Proof. We use the induction with respect to the
number of primes dividing n’. For n’ = 1, it is triv-
ial. Let ¢ be a rational prime such that ¢ { n’ and
g|n, then we have n’q|n. We will prove the assertion
for n’q. Let p, be the fixed generator of G, corre-
sponding to a generator g, of (Z/q)*
pq”q(“). From the decomposition G,/ == Gy /(nrg) X

, we have 74, =

G4, we can write Tn/n/@_l = Tn/(n'q)a  Tga = =
Tn/(n/q)7a_1pq”q(“71). Further we have
qg—1
Dyjwr = DyjrgyDg and Dy = vg(d)pg"s®.
d=1

By the assumption of the induction, we obtain
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D,Y,
nN
E-Drz/rz"zvrl’ Z ya< H V@ ) Oq Tn/n a -1
a=1 Ln
(a,nN)=1 prlime
qg—1 niN
= Dn/(n’q)Nn’ Z Z
= (anN)=1
- - vg(da™!
ya( H V@(a)>0a 1Tn/(n’q),a lpq ald )Vq(d)
£n’
prime
(mod M).
By replacing d with ad, we can write
qg—1
D,Y, =Y Kapg"'»  (mod M),
d=1

where

Ka = Dy /wq)No

Xzya(H ve(a ) 00 Taj(na),a Va(ad)

€|n
prime

€ (Z/M)[Gal(L(pn/q)/ Q)]-

Since D,Y,, € (Z/M)[Gal(L(1,,)/Q)]%, we have
Ky = K for every d with 1 < d < ¢ — 1. There-
fore, we get

DnYn = Kqu = Dn/(n’q)Nn’q
nN

Z ya(H V@ ) Oq Tn/(nq)a -1
a=1 £in'q
(a,nN)=1 prime
(mod M).
|

Next, we calculate higher annihilators by us-
ing Proposition 7. First, we consider the annihila-
tor d(n) of the minus part. For n € S, let 6, €
Z,|Gal(L(u,)/Q)] be the Stickelberger element de-
fined in Subsection 2.1. By Lemma 2, we apply
Proposition 7 to 6, and get the explicit formula of
o(n).

Theorem 9. For any n € S, we have

o) = o —b) S (T wi@)ou™

a=1 £n
(a,nN)=1

€ (Z/M)[Gn].

prime
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Proof. We apply Proposition 7 to
nN

nN
en = (o'bn - bn) Z %Ta_l = Z yaTa_l

a=1 a=1
(a,nN)=1 (a,nN)=1

bna a
a — Y bn {_} € Z7
Y {nN } nN
where {x} denotes the fractional part of x for any
z € Q. Then we have

with

nN

W= Y wl I[ w@)a.
a=1 Ln
(a,nN)=1 prilme
nN b oa
— n -1
= Z {W} ( H yg(@))Ua
a=1, Ln
(a,nN)=1 prime
nN a
_bn AT a !
; — ( !I_g w(a))a
(a,nN)=1 prime
nN a
= —( H ve(aby, ))aab -1
a=1, Ln
(a,nN)=1 prime
nN a
_bn AT a !
> (Il ww)e
(a,nN)=1 prime
nN a
— -1
= (O'bn — bn) a; W( y Ug(&))aa
(a,nN)7:1 prime

because of ab, " = a (mod /) for any ¢ with £|n by
the definition of b, (cf. Subsection 2.1). Ul

Next, we consider the annihilator ¢, (kr+ ,,) of
the plus part. We begin with giving a new definition
of the map ¢,.. Let F/Q be a finite Galois exten-
sion, and A be a prime ideal of F’ which is completely
decomposed in F/Q. We denote the rational prime
below A by £ and denote the unique prime ideal of
F(ue) above X\ by X. Define the logarithm map vy :
{z € F* |ordy(z) =0} — Z/({ — 1) by g =g
(mod X), where g, € (Z/¢)* is a fixed generator. Let
Opr denote the ring of integers of F'. Set

I | )\T> ’
T€Gal(F/Q)
I )

(2 (Oru /
T€Gal(F/Q)

Xpy = (OF/

[Vol. 81(A),

We define the Gal(F/Q)-isomorphism
ox: Xpe =~ (Z/(—1))[Gal(F/Q)]

by ea(z) = ZTeGal(F/Q) var(Z)T (mod (£ — 1)),
where 7 is a lifting of z € Xpy to F*. If £ =
1 (mod M), then we also denote the isomorphism
Xpo/Xp ™ ~ (Z/M)[Gal(F/Q)] by pr. We can
show the following lemma by a direct calculation.

Lemma 10. Let F and )\ be as before. For
any subfield F' of F, we have

(i) Resp/r(oa(2)) = @n,, 00 /7)) for any

x e ij,

(i) oa(y) = Np/p(on,, o0 (Y)) for anyy € Xpr g,
where Resp/pr 2 (Z/(0 — 1))[Gal(F/Q)] — (Z/(¢ —
1))[Gal(F’/Q)] is the natural restriction map, and
Np/p = ZTEGal(F/F’) T

Lemma 11. Let L be a prime ideal of LT ly-
ing above a rational prime £ € S1. The map @ co-
incides with the map V., defined in Subsection 2.2 :
Yr = Yr.. Especially, the map V5. is independent
of the choice of an element 7 € Op+(,,)-

Proof. Tt is enough to show g (7z”¢~! mod
HTGG; L£7) = 1. By the definition of 7 (cf. Sub-
section 2.2), we can write 7, = (1 — (s)y where
y € L*(ug) is prime to £. Since (1 — ()P ! = g,
(mod £) and y?*~1 =1 (mod L), we get w1t =
ge (mod £). The assertion follows this. Ul

By the above lemma, we consider ¢ (kp+ ) in-
stead of ¥, (kp+ ). Let £ be a prime ideal of L
lying above a rational prime ¢ = 1 (mod MnNy).
Fix prime ideals £’ of L and L of L(py,) lying
above £ such that £ D £/. We apply Proposi-
tion 7 to w2(§p+n) € (Z/M)[Gal(L(p1n)/Q)], where
Er+m € LT(un)* is the cyclotomic unit defined
in Subsection 2.2. By the canonical isomorphism
Gal(L* (un)/Q) =~ ((Z/N)*/{£1}) x (Z/n)* ~
(Z/Nn)*/{(-1,1)}, we write 7, € Gal(L*(u,)/Q)
corresponding toa € (Z/Nn)*/{(—1,1)}, and define
7, € G = Gal(L*/Q) by 75 — (Fa, Tn,a) under the
isomorphsm Gal(L™ (11,)/Q) ~ G& x G,. Further,
we define 8, € (Z/Nn)* by B, — (—1,1) under the
isomorphism (Z/Nn)* ~ (Z/N)* x (Z/n)*.

Definition 12. For any a € (Z/Nn)*/
{(-1,1)}, we define T, .o € (Z/0)* by

T oo = (057 — 1) (g0 1),

where gy € (Z/0)* is a fixed generator.
Theorem 13. For any n € S and prime
ideal £ of L™ lying above a rational prime { = 1
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(mod MnNy), we have
Pr ('%L*,n)

= Z W(Tn,é,a)( H Vq(a)>0_a_1

a€(Z/Nn)* /{(-1,1)} ptrzilg1e
€ (2/M)[GY].
Proof. Since
Ep+ " € [LF ()™ /(L () OM]

(cf. [3, Appendix, Lemma 2.1]) and ¢z is a
Gal(L(r)/Q)-homomorphism, we have

= QOE(SLﬂnD”)

€ (Z/M)[Gal(L(un)/ Q)]

Hence we can apply Proposition 7 to w2(5L+7n).
Then we have

(pE(SL+ n Dn )

=No > vp. SL+n<Huq )

a€(Z/Nn)* q|n
prime

Dn(pE(SLﬂn)

By the injection pn, < ((’)L(M)/@)X (cf. 6,
Lemma 2.12]), we have the isomorphism of abelian
groups:

(O /B = (/0 (5 T[ G~ ).
qln

Using this isomorphism, for any a € (Z/Nn)* we
get

o = ((CNng)a - 1) ((sz‘l [Ia) - 1)

qin qln
(mod L).

= In,ta

Hence we have

Vo1 (€L+,n) = VZ(SL*,nTa) = V@(Tn,é,a)'

We conclude
(pE(SL+ n Dn )

N Y ,,M(qu )

a€(Z/Nn)X* qln
prime

We consider the following diagram which is commu-
tative by Lemma 10 (ii).
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Qrr X/ XpoM
! 1 Nn
07t (Xpgun e/ Xpgun ™) = (Z/M)[Gal(L(ua)/Q)] "
I

Nn(Z/M)[GN]
D,

1R

(Z/M)[GN]

From this diagram and kp+, = mod

(LT (1) )M (Lemma 5), we get

<P£'("€L+,n) = Z néa (H Vq )

a€(Z/Nn)* qln
prime

€L+,n

By Lemma 10 (i), we have

SOE(K/L+7HNL/L+)

_ m(nyq )

a€(Z/Nn)X* q|n

o T (o)

a€(Z/Nn)>* /{(=1,1)} aln

prime

Since I<LL+7nNL/L+ = 5L+7n2 and p # 2, we have

oc(kr+n)

= Z néa (H Vq )
a€(Z/Nn)* /{(-1,1)} qln

prime

U

4. The ideal class groups of abelian num-

ber fields whose degrees are prime to p. In
this section, we reformulate the Kolyvagin-Rubin’s
structure theorem of Ag in the case pt [K : Q], us-
ing the results of Section 3. Let y : Gal(Q/Q) —
Q_pX be a character of finite and prime-to-p order
with conductor N, and K be the abelian number field
corresponding to x. If x is the Teichmiiller character
w or the trivial character 1, then we have Ak, = 0.
Hence we assume x # w, 1. For an odd character Y,
we see that B; ,-1 (the generalized Bernoulli num-
ber) annihilates Ag . On the other hand, for an
even character y, F. Thaine [5] constructed annihi-
lators of Ak, from cyclotomic units. Let E denote
the group of units in K, and set E, = (F ®z Zp).
By the Dirichlet unit theorem, we have E, ~ O,.
We define the x-part C, of the group of cyclotomic
units to be the O,-module generated by {x 1% =
{(Cv = D¢y~ = D}t/ € By, where Np+ i
is the norm map. Let n be the power of p such that
E,/Cy ~ Oy/nOs. We know from Thaine’s result
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that n annihilates Ak . V. Kolyvagin [1] extended
Thaine’s method and showed |0y /B; ,-10y| (resp.
|Ey/Cx]) = |Akx|) (they were also known as con-
sequences of the Iwasawa main conjecture [2]). Fur-
ther, Kolyvagin’s method determines the structure of
Ak y by using higher annihilators of Ak /B (n)y
defined in Section 2.

4.1. The minus part of the ideal class
groups. For an odd character x (# w), we use the
Euler system of Gauss sums to determine the struc-
ture of A . For each n € S, choose the integer b,, €
S in Subsection 2.1 so that x(b,) — b, € O, ™. For
any n € S, we define d(n) € (Z/M)[Gn] as in Subsec-
tion 2.1, and let d(n) be the largest power of p which
divides ey Resy/x(0(n)) € (Z/M)[Gle, ~ Oy/M,
where Resy /i : (Z/M)[GN] — (Z/M)[G] is the nat-
ural restriction. Note that d(1) is the largest power
of p which divides By ,-1. V. Kolyvagin showed that
ey Resy i (6(n)) annihilates Ak, / Bk (n)y (Proposi-
tion 3), and showed that the structure of Ak, is de-
termined by d(n)’s (cf. V. Kolyvagin [1, Theorem 7|
K. Rubin [4, Theorem 4.4]). From this and Theo-
rem 9, we get the following theorem.

Theorem 14. Let x (# w) be an odd charac-
ter whose order is finite and prime-to-p, K be the
abelian number field corresponding to x, and M be a
power of p satisfying M > |Ag |?. Write

m
AK’X = @OX/pe% €12 2 em,
=1

as Oy -modules. Then we have

€yl + -t em

nN
= min{ordp( Z

a=1
(a,nN)=1

- Il (o) )3~ @

prime

€ (’)X/M> ‘ ne SZ}7

for any i with0 <i<m—1.

4.2. The plus part of the ideal class
groups. For an even character x (# 1), we use the
Euler system of cyclotomic units to determine the
structure of Ak . In this case, we have K = K.
We write N = p!Ny with ¢ = 0 or 1 and p t No.
Let n € S and £ be a prime ideal of L™ lying above
a rational prime ¢ = 1 (mod MnNy). V. Kolyvagin
[1, Theorem 5] showed that e, Resp+ /x (¢¥r, (Kr+ 5))
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annihilates the class of Np+,x (L) in Ak /B (n)y
(Proposition 6) and that the structure of Ag
is determined by ordy(ey Resp+ g (Vn (Fr+.n)))’s
(cf. V. Kolyvagin [1, Theorem 7]). From this and
Lemma 11, Theorem 13, we get the following theo-
rem.
Theorem 15. Let x (# 1) be an even charac-
ter whose order is finite and prime-to-p, K be the
abelian number field corresponding to x, and M be a
power of p satisfying M > |Ag |?. Write

m
AK’X = @OX/pe% €12 2 em,
=1

as Oy -modules. Then we have

eix1+ -+ em
>

= min{ordp(
a€(Z/Nn)* /{{=1,1)}

x ( I1 uq(a)>x_1(a) € (’)X/M> ‘ nes,

qln
prime

V@(Tn,é,a)

rational primes ¢ with £ =1 (mod ]\471]\70)}7

for any i with0 <i<m—1.
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