Bernoulli numbers and multiple zeta values

By Takashi Nakamura
Graduate School of Mathematics, Nagoya University
Furou-cho, Chikusa-ku, Nagoya, Aichi 464-8602
(Communicated by Heisuke Hironaka, m. J. a., Feb. 14, 2005)

Abstract

We show an apparently new expression of Bernoulli numbers, simultaneously we give an expression of multiple zeta values $\zeta(2 m, 2 m, \ldots, 2 m)$.

Key words: Bernoulli numbers; multiple zeta values.

1. Introduction. Bernoulli numbers B_{n} ($n=1,2,3, \ldots$) are defined by

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=1}^{\infty} B_{n} \frac{t^{n}}{n!} \quad(|t|<2 \pi) \tag{1.1}
\end{equation*}
$$

In Gould [1], there are many formulas about those numbers. For example,

$$
B_{n}=\sum_{k=0}^{n} \frac{1}{k+1} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} j^{n}
$$

and
$B_{n}=$

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n+1}{j+1} \frac{n!}{(n+j)!} \sum_{k=0}^{j}(-1)^{j-k}\binom{j}{k} k^{n+j}
$$

Gould ended the paper [1] with the following conjecture.

The writer has seen no formula for B_{n} which does not require at least two actual summations. All the formulas we have quoted here are of this type.
In this paper, we show an expression for B_{n} which needs only 'one' summation (Corollary 2.2). Simultaneously, we consider the Zagier multiple sum [2]

$$
\begin{align*}
& \zeta\left(m_{1}, m_{2}, \ldots, m_{n}\right) \\
& \quad:=\sum_{k_{1}>k_{2}>\cdots>k_{n}>0} \frac{1}{k_{1}^{m_{1}} k_{2}^{m_{2}} \cdots k_{n}^{m_{n}}}, \tag{1.2}
\end{align*}
$$

and give an explicit formula for $\zeta(2 m, 2 m, \ldots, 2 m)$ (Corollary 2.3).
2. Results. After I had completed my proof of the following result, Professor Masanobu Kaneko kindly informed me that the same result is included in an unpublished paper [3].

[^0]Theorem 2.1. Let l, m and n be positive integers, x be an indeterminate element. Then

$$
\begin{align*}
& \frac{(-1)^{m+1} i}{(2 \pi x)^{m}} \sum^{\prime} \delta \exp \left(\left(\pm \omega_{2 m} \pm \omega_{2 m}^{2} \pm \cdots \pm \omega_{2 m}^{m}\right) \pi i x\right) \tag{2.1}\\
& \quad=1+\sum_{n=1}^{\infty}(-1)^{n} \zeta(\underbrace{2 m, 2 m, \ldots, 2 m}_{n}) x^{2 m n}
\end{align*}
$$

where

$$
\omega_{m}^{l}=\exp (2 \pi i l / m) \quad(1 \leq l \leq m)
$$

The symbol \sum^{\prime} means that all cases of \pm are taken, namely it contains 2^{m} cases. And δ is defined by

$$
\delta:=\left\{\begin{array}{cl}
1 & \text { if }-1 \text { appears even times } \\
-1 & \text { if }-1 \text { appears odd times }
\end{array} .\right.
$$

Proof. Using

$$
\sin \pi \omega_{2 m}^{l} x=\frac{\exp \left(i \pi \omega_{2 m}^{l} x\right)-\exp \left(-i \pi \omega_{2 m}^{l} x\right)}{2 i}
$$

and

$$
\prod_{l=1}^{m} \omega_{2 m}^{l}=\omega_{2 m}^{m(m+1) / 2}=i^{m+1}
$$

we obtain

$$
\begin{aligned}
& \prod_{l=1}^{m} \frac{\sin \pi \omega_{2 m}^{l} x}{\pi \omega_{2 m}^{l} x}=\frac{(-1)^{m+1} i}{(2 \pi x)^{m}} \\
& \quad \times \sum^{\prime} \delta \exp \left(\left(\pm \omega_{2 m} \pm \omega_{2 m}^{2} \pm \cdots \pm \omega_{2 m}^{m}\right) \pi i x\right)
\end{aligned}
$$

On the other hand, using

$$
\frac{\sin \pi t}{\pi t}=\prod_{n=1}^{\infty}\left(1-\frac{t^{2}}{n^{2}}\right)
$$

we have

$$
\begin{aligned}
& \prod_{l=1}^{m} \frac{\sin \pi \omega_{2 m}^{l} x}{\pi \omega_{2 m}^{l} x}=\prod_{l=1}^{m} \prod_{n=1}^{\infty}\left(1-\frac{\omega_{m}^{l} x^{2}}{n^{2}}\right) \\
= & \prod_{n=1}^{\infty}\left(1-\frac{x^{2 m}}{n^{2 m}}\right) \\
= & \left(1-\frac{x^{2 m}}{1^{2 m}}\right)\left(1-\frac{x^{2 m}}{2^{2 m}}\right)\left(1-\frac{x^{2 m}}{3^{2 m}}\right) \cdots \\
= & 1-\left(\sum_{k=1}^{\infty} \frac{1}{k^{2 m}}\right) x^{2 m}+\left(\sum_{k_{1}>k_{2}>0} \frac{1}{k_{1}^{2 m} k_{2}^{2 m}}\right) x^{4 m} \\
& -\left(\sum_{k_{1}>k_{2}>k_{3}>0}^{\left.\frac{1}{k_{1}^{2 m} k_{2}^{2 m} k_{3}^{2 m}}\right) x^{6 m}+\cdots}\right. \\
= & 1+\sum_{n=1}^{\infty}(-1)^{n} \zeta(\underbrace{2 m, 2 m, \ldots, 2 m}_{n}) x^{2 m n}
\end{aligned}
$$

By (2.1) and

$$
B_{2 m}=\frac{(-1)^{m-1} 2(2 m)!}{(2 \pi)^{2 m}} \zeta(2 m)
$$

Corollary 2.2. we have
(2.2) $B_{2 m}=\frac{-2 i^{3 m+1}(2 m)!}{2^{3 m}(3 m)!}$

$$
\times \sum^{\prime} \delta\left(\pm \omega_{2 m} \pm \omega_{2 m}^{2} \pm \cdots \pm \omega_{2 m}^{m}\right)^{3 m}
$$

This formula includes only 'one' summation.
Corollary 2.3. Using (2.1), we obtain

$$
\zeta(\underbrace{2 m, 2 m, \ldots, 2 m}_{n})
$$

$$
\begin{align*}
& =\frac{(-1)^{(n+1)(m+1)} i^{m+1} \pi^{2 n m}}{2^{m}(2 n m+m)!} \tag{2.3}\\
& \times \sum^{\prime} \delta\left(\pm \omega_{2 m} \pm \omega_{2 m}^{2} \pm \cdots \pm \omega_{2 m}^{m}\right)^{2 n m+m}
\end{align*}
$$

Example 2.4.

$$
\begin{align*}
& \zeta(\underbrace{2,2, \ldots, 2}_{n}) \\
& =\frac{(-1)^{2 n+2}(-1) \pi^{2 n}}{2(2 n+1)!} \sum^{\prime} \delta(\pm(-1))^{2 n+1} \tag{2.4}\\
& =\frac{\pi^{2 n}}{(2 n+1)!}
\end{align*}
$$

$\zeta(\underbrace{4,4, \ldots, 4}_{n})$

$$
\begin{align*}
& =\frac{(-1)^{3 n+3}(-i) \pi^{4 n}}{4(4 n+2)!} \sum^{\prime} \delta(\pm i \pm(-1))^{4 n+2} \tag{2.5}\\
& =\frac{2^{2 n+1} \pi^{4 n}}{(4 n+2)!}
\end{align*}
$$

Remark. We can obtain (2.5) by another method. Note that

$$
\begin{aligned}
& \frac{2}{\pi^{2} t^{2}} \sin \left(\frac{1+i}{2} \pi t\right) \sin \left(\frac{1-i}{2} \pi t\right) \\
& =\frac{\cosh \pi t-\cos \pi t}{\pi^{2} t^{2}}=\sum_{n=0}^{\infty} \frac{2 \pi^{4 n} t^{4 n}}{(4 n+2)!}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \frac{2}{\pi^{2} t^{2}} \sin \left(\frac{1+i}{2} \pi t\right) \sin \left(\frac{1-i}{2} \pi t\right) \\
& =\prod_{n=1}^{\infty}\left(1-\frac{i t^{2}}{2 n^{2}}\right) \times \prod_{n=1}^{\infty}\left(1+\frac{i t^{2}}{2 n^{2}}\right) \\
& =\prod_{n=1}^{\infty}\left(1+\frac{t^{4}}{4 n^{4}}\right) \\
& =\left(1+\frac{t^{4}}{4 \cdot 1^{4}}\right)\left(1+\frac{t^{4}}{4 \cdot 2^{4}}\right)\left(1+\frac{t^{4}}{4 \cdot 3^{4}}\right) \cdots \\
& =1+\left(\sum_{k=1}^{\infty} \frac{4^{-1}}{k^{4}}\right) t^{4}+\left(\sum_{k_{1}>k_{2}>0} \frac{4^{-2}}{k_{1}^{4} k_{2}^{4}}\right) t^{8} \\
& +\left(\sum_{k_{1}>k_{2}>k_{3}>0}^{\left.\frac{4^{-3}}{k_{1}^{4} k_{2}^{4} k_{3}^{4}}\right) t^{12}+\cdots}\right. \\
& =1+\sum_{n=1}^{\infty} 4^{-n} \zeta(\underbrace{4,4, \ldots, 4}_{n}) t^{4 n}
\end{aligned}
$$

Hence (2.5) follows.
Acknowledgements. I thank Prof. Kohji Matsumoto and Prof. Yoshio Tanigawa for their advice on my study. I also thank Prof. Masanobu Kaneko for useful advice.

References

[1] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), 44-51.
[2] D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, Vol. II (Paris, 1992), 497-512, Progr. Math., 120, Birkhäuser, Basel, 1994.
[3] D. Zagier, Multiple zeta values. (Unpublished manuscript).

[^0]: 2000 Mathematics Subject Classification. 11M41.

