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On the structure of Jackson integrals of BCn type

and holonomic q-difference equations

By Kazuhiko Aomoto∗) and Masahiko Ito∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Nov. 14, 2005)

Abstract: Finiteness of non-symmetric and symmetric cohomologies associated with
Jackson integrals of type BCn is studied. Explicit bases of the cohomologies are also stated.
It is shown that the integrals using these bases satisfy holonomic systems of linear q-difference
equations with respect to the parameters.
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The aim of this note is to explain finite dimen-
sionality and to find bases of non-symmetric and
symmetric cohomologies associated with Jackson in-
tegrals of type BCn. More explicitly they are indi-
cated by

dimHn(X,Φ,∇q) = {m+ 2(n− 1)l}n,

dimHn
sym(X,Φ,∇q) =

(
s+ (n− 1)l

n

)
using terminology in §1.2 of this note. As a conse-
quence, they lead us to the fact that the integrals us-
ing these bases satisfy linear holonomic q-difference
equations with respect to the parameters. In a
generic case, finite dimensionality was proved in full
generality in [1, 7, 17]. But here under the condi-
tion being a little more restrictive, we show it by
constructing a concrete basis (see Theorems 6–9).

Throughout this note, q is a real number such
that 0 < q < 1 and we use the notation (a)i =
(a)∞/(aqi)∞, i ∈ Z where (a)∞ =

∏∞
i=0(1 − aqi).

We also use the notations κ̃ := {m+2(n−1)l}n and
κ :=

(
s+(n−1)l

n

)
.

1. Finiteness of cohomologies of type
BCn. In order to explain the main theorems we
first state the concepts of the Jackson integrals and
their cohomologies.

1.1. Jackson integrals. Let m be an even
positive integer m = 2s+2, s = −1, 0, 1, 2, 3, . . . and
a1, a2, . . . , am, t1, t2, . . . , tl be arbitrary constants in
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C∗. We denote by Φ(z) = Φ(z1, z2, . . . , zn) the mul-
tiplicative function of Bn type

n∏
r=1

(
zm/2−δ+(n−r)(l−2τ)
r

m∏
k=1

(qa−1
k zr; q)∞

(akzr; q)∞

)

×
l∏

k=1

∏
1≤i<j≤n

(qt−1
k zi/zj ; q)∞(qt−1

k zizj ; q)∞
(tkzi/zj ; q)∞(tkzizj ; q)∞

defined on X = (C∗)n, where we put

qδ = a1a2 · · · am, qτ = t1t2 · · · tl.

We denote by ∆(z) the function
n∏

i=1

1− z2
i

zi

∏
1≤j<k≤n

(1− zj/zk)(1− zjzk)
zj

,

which is called Weyl’s denominator of type Cn.
For an arbitrary z = (z1, z2, . . . , zn) ∈ X, we de-
fine the q-shift z → zqν by the lattice point ν =
(ν1, ν2, . . . , νn) ∈ Zn as

zqν := (z1qν1 , z2q
ν2 , . . . , znq

νn) ∈ X.

The set Λz := {zqν ∈ X ; ν ∈ Zn} forms an orbit of
a lattice subgroup of X.

Definition 1. For a function ϕ(z) on X and
an arbitrary point ξ = (ξ1, ξ2, . . . , ξn) ∈ X, the
Jackson integral over the lattice Λξ is defined as the
pairing of difference n-forms and lattices∫

Λξ

Φ(z)ϕ(z)
dqz1
z1
∧ · · · ∧ dqzn

zn

:= (1− q)n
∑

ν∈Zn

Φ(ξqν)ϕ(ξqν)
(1)

if it is summable. The LHS of (1) will simply be
denoted by 〈ϕ, ξ〉. Moreover we set

(2) 〈ϕ, ξ〉∆ := 〈ϕ∆, ξ〉
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where ϕ∆(z) = ϕ(z)∆(z).

The Weyl group W of type Cn is generated by
the reflections

σi : zi ←→ zi+1 (1 ≤ i ≤ n− 1),

σn : zn ←→ z−1
n .

The group W acts on a space of functions on X by
the rule σf(z) := f(σ−1z), σ ∈W .

Let Θ(z) be the functions on X defined by

n∏
r=1

(
zm/2−δ+(n−r)(l−2τ)
r

m∏
h=1

1
θ(ahzr)

)

×
l∏

k=1

∏
1≤i<j≤n

1
θ(tkzi/zj)θ(tkzizj)

where θ(z) := (z)∞(q/z)∞. Since the function θ(z)
has the property θ(qz) = −θ(z)/z, if we put

(3) Uσ(z) :=
σΘ(z)
Θ(z)

for σ ∈W,

then Uσ(z) are the cocycle of pseudo-constants, i.e.,
constants with respect to the q-shifts z → zqν , ν ∈
Zn. More precisely, by definition of Φ(z), it follows
that the function σΦ(z) is equal to Φ(z) up to the
pseudo-constant Uσ(z) as follows:

(4) σΦ(z) = Φ(z)Uσ(z).

In this sense, we regard the function Φ(z) as symmet-
ric with respect to W , and both of Φ(z) and σΦ(z)
satisfy the same q-difference equations with respect
to z → zqν , ν ∈ Zn.

From (1) and (4) and σ∆(z) = sgn(σ)∆(z) we
have the following lemma immediately:

Lemma 2. If σ ∈W , then

σ〈ϕ, ξ〉 = Uσ(ξ)〈σϕ, ξ〉.

In particular, if ϕ(z) is symmetric under the action
of W , i.e., σϕ(z) = ϕ(z), then

σ〈ϕ, ξ〉∆ = sgn(σ)Uσ(ξ)〈ϕ, ξ〉∆.

1.2. Rational de Rham cohomology of
type BCn. We denote by L the ring of Laurent
polynomials C[z1, . . . , zn, z

−1
1 , . . . , z−1

n ] in z over C.
Let R be the L-module generated by the following
set of rational functions of z:

⋃
h≥0


m∏

k=1

n∏
j=1

(akzj ; q)−h

(qa−1
k zj ; q)h

×
l∏

k=1

∏
1≤i<j≤n

(tkzi/zj ; q)−h(tkzizj ; q)−h

(qt−1
k zi/zj ; q)h(qt−1

k zizj ; q)h


and Rsym and Ralt be the parts of R consisting of the
elements which are symmetric and skew-symmetric
under the action of W respectively, i.e.,

Rsym := {ϕ(z) ∈ R ; σϕ(z) = ϕ(z), σ ∈W},
Ralt := {ϕ(z) ∈ R ; σϕ(z) = sgn(σ)ϕ(z), σ ∈W}.

This implies

Ralt = Rsym∆(z) := {ϕ(z)∆(z) ; ϕ(z) ∈ Rsym}.

Lemma 3. For ϕ(z) ∈ R and ξ ∈ X, the
Jackson integral 〈ϕ, ξ〉 is described as

〈ϕ, ξ〉 = fϕ(ξ)Θ(ξ)

where fϕ(z) is a holomorphic function on X. More-
over, if ϕ(z) ∈ Rsym, then there exists a holomorphic
function gϕ(z) on X such that

〈ϕ, ξ〉∆ = gϕ(ξ)Θ∆(ξ)

where Θ∆(z) := Θ(z)θ∆(z) and

θ∆(z) :=
n∏

r=1

θ(z2
r )

zr

∏
1≤i<j≤n

θ(zi/zj)θ(zizj)
zi

.

See [11] for details. Note that the func-
tion θ∆(z) is obviously skew-symmetric, i.e.,
σθ∆(z) = sgn(σ)θ∆(z), so that we have σΘ∆(z) =
sgn(σ)Uσ(z)Θ∆(z).

Let {ε1, ε2, . . . , εn} be the standard basis of Rn.
The cocycle function associated with Φ(z) is defined
by bν(z) := Φ(zqν)/Φ(z) for ν ∈ Zn, which is the
so-called b-function. In particular, if ν = εr, r =
1, 2, . . . , n, we have

bεr (z) = qm/2−δ+(n−r)(l−2τ)
m∏

k=1

1− akzr

1− qa−1
k zr

×
l∏

k=1

r−1∏
j=1

(1− t−1
k zj/zr)(1− tkzjzr)

(1− q−1tkzj/zr)(1− qt−1
k zjzr)

×
n∏

j=r+1

(1− tkzr/zj)(1− tkzjzr)
(1− qt−1

k zr/zj)(1− qt−1
k zjzr)

,
which will simply be denoted by br(z).

Let∇q : Rn → R be the n-dimensional covariant
q-differenciation defined by
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∇q : (ψ1(z), ψ2(z), . . . , ψn(z)) 7→
n∑

j=1

∇q,jψj(z)

where ∇q,jψ(z) := ψ(z) − bj(z)Tzjψ(z). We denote
by A : R→ Ralt the alternation

A : f(z) 7→
∑
σ∈W

sgn(σ)σf(z)

for a function f(z) on X. Then we have

Ralt = AR,
A∇q(Rn) = ∇q(Rn) ∩Ralt.

Definition 4. The quotient H = R/∇q(Rn)
and Hsym = Ralt/A∇q(Rn) define the n-dimensional
non-symmetric and symmetric rational de Rham co-
homologies Hn(X,Φ,∇q) and Hn

sym(X,Φ,∇q) asso-
ciated with the Jackson integrals (1) respectively,
because they are isomorphic to each other (see also
[3, 7] for the definitions of these cohomologies).

Remark 4.1. Because of symmetry, it follows
that

A∇q(Rn) ⊂ ∇q(Rn)

and that all A∇q,r are the same for r = 1, 2, . . . , n,
so that we have

A∇q(Rn) = A∇q,rR.

This implies that Hsym is identified with the linear
subspace of H consisting of the elements which are
skew-symmetric under the Weyl group W .

Lemma 5. Suppose ϕ(z) ∈ ∇q(Rn). Then

〈ϕ, ξ〉 = 0 and 〈Aϕ, ξ〉 = 0

if it is summable.
This lemma shows that the integral 〈ϕ, ξ〉 for

ϕ(z) ∈ R and that for ϕ(z) ∈ Ralt depend only on
the quotients H and Hsym respectively.

1.3. Regularization of Jackson integrals.
We denote byH the linear space of holomorphic func-
tions f(z) on X satisfying

Tzif(z) =
(
qz2

i

)−m/2−(n−1)l
f(z)

for i = 1, 2, . . . , n. The space H has the dimension
κ̃. Let Hsym be the linear space of holomorphic func-
tions f(z) on X satisfying σf(z) = f(z) and

Tzif(z) =
(
qz2

i

)−m/2−(n−1)l+n+1
f(z)

for i = 1, 2, . . . , n. The space Hsym has the dimen-
sion κ. By definition, the Jackson integrals 〈ϕ, z〉
and 〈ϕ, z〉∆ are meromorhic as functions on X. For

〈ϕ, z〉 and 〈ϕ, z〉∆ we define the regularized Jackson
integrals as follows respectively:

〈〈ϕ, z〉〉 := 〈ϕ, z〉/Θ(z),

〈〈ϕ, z〉〉∆ := 〈ϕ, z〉∆/Θ∆(z).

Lemma 3 implies that 〈〈ϕ, z〉〉 ∈ H and that 〈〈ϕ, z〉〉∆
∈ Hsym if ϕ ∈ Rsym, so that they are holomorphic
functions on X.

1.4. Symplectic Schur functions. For a
sequence of integers λ = (λ1, λ2, . . . , λn) ∈ Zn we
set zλ := zλ1

1 zλ2
2 · · · zλn

n . Let Q be the set defined by{
λ ∈ Zn ;

− s− 1− (n− 1)l ≤ λi ≤ s+ (n− 1)l

for i = 1, 2, . . . , n

}
,

which consists of κ̃ elements. We denote the skew-
symmetric Laurent polynomials in z

Azλ :=
∑
σ∈W

sgn(σ)σ(zλ).

The Weyl denominator formula says that

Azρ = (−1)n∆(z)

where ρ = (n, n− 1, . . . , 2, 1) ∈ Zn. Let P be the set
of all partitions defined by {λ ∈ Zn ; s−1+(n−1)(l−
1) ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}, which consists of κ
elements. We define the symplectic Schur function

χλ(z) :=
Azλ+ρ

Azρ

which occurs in the Weyl character formula.
1.5. Main results. In the sequel we assume

that

(C) all the parameters a1, a2, . . . , am and t1,
t2, . . . , tl are generic.

The following four theorems are the main results of
this note:

Theorem 6. Under the condition (C),
Hn(X,Φ,∇q) has dimension κ̃ = {m + 2(n − 1)l}n
and is spanned by the basis {zλ ; λ ∈ Q}.

Theorem 7. Under the condition (C),
Hn

sym(X,Φ,∇q) has dimension κ =
(
s+(n−1)l

n

)
and

is spanned by the basis {χλ(z)∆(z) ; λ ∈ P}.
We denote by Tu the shift operator on a pa-

rameter u → uq. From Theorems 6 and 7 we have
the holonomic q-difference equations for 〈zλ, ξ〉 and
〈χλ, ξ〉∆ respectively, with respect to the q-shift of
the parameters a1, a2, . . . , am, t1, t2, . . . , tl as follows:

Theorem 8. There exist invertible matrices
Yak

, Ytj
whose components η(ak)

λ,ν , η
(tj)
λ,ν are rational
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functions of a1, . . . , am, t1, . . . , tl respectively, such
that

Tak
〈zλ, ξ〉 =

∑
ν∈Q

η
(ak)
λ,ν 〈z

ν , ξ〉,

Ttj
〈zλ, ξ〉 =

∑
ν∈Q

η
(tj)
λ,ν 〈z

ν , ξ〉

where λ runs over the set Q.
Theorem 9. There exist invertible matrices

Yak
, Ytj whose components y

(ak)
λ,ν , y

(tj)
λ,ν are rational

functions of a1, . . . , am, t1, . . . , tl respectively, such
that

Tak
〈χλ, ξ〉∆ =

∑
ν∈P

y
(ak)
λ,ν 〈χν , ξ〉∆,(5)

Ttj 〈χλ, ξ〉∆ =
∑
ν∈P

y
(tj)
λ,ν 〈χν , ξ〉∆(6)

where λ runs over the set P .
Remark 9.1. When (m, l) = (2n + 2, 0) or

(4, 1) in Theorem 7 the number κ equals 1 and hence
the matrices Yak

and Yt1 in Theorem 9 reduce to
scalars which are explicitly expressible as ratios of
products of q-gamma functions. These coincide with
some of the results in [8–10, 12–15, etc.]. See also
Theorems 10 and 11 in the next section.

The proofs of Theorems 6–9 are given in [5] by
indicating the isomorphisms

H
∼→ H, Hsym

∼→ Hsym,

which are based on the results in [2, 7].
2. Special symmetric cases. We consider

the map

Msym : Rsym∆(z)→ Hsym

ϕ(z)∆(z) 7→ 〈〈ϕ, z〉〉∆,

which is well-defined from Eq.(3), Lemmas 2 and 3.
Since we see in [5] that KerMsym = A∇q(Rn),
the map Msym naturally induces the isomorphism
Hsym

∼→ Hsym.
Using the map Msym, Eqs.(5) and (6) in The-

orem 9 are rewritten as the equations in Hsym as
follows:

Tak
〈〈χλ, ξ〉〉∆ =

∑
ν∈P

ȳ
(ak)
λ,ν 〈〈χν , ξ〉〉∆,

Ttj 〈〈χλ, ξ〉〉∆ =
∑
ν∈P

ȳ
(tj)
λ,ν 〈〈χν , ξ〉〉∆,

and Y ak
:=
(
ȳ
(ak)
λ,ν

)
, Y tj :=

(
ȳ
(tj)
λ,ν

)
denote square

matrices of degree κ =
(
s+(n−1)l

n

)
whose components

are rational functions of a1, a2, . . . , am, t1, t2, . . . , tl
respectively.

The following two facts are essential for proving
the isomorphism Hsym

∼→ Hsym in [5]. One is that
Y ak

, Y tj are invertible, i.e., detY ak
, detY tj do not

vanish identically. The other is that the map Msym

does not degenerate, i.e., the functions 〈〈χλ, z〉〉∆, λ ∈
P are linearly independent in Hsym. This is equiva-
lent to the fact det

(
〈〈χλ, ζ(µ)〉〉∆

)
λ,µ

does not vanish
identically for some κ points ζ(µ) in X.

In this section, we mention more concrete results
about them when l = 0 and 1.

2.1. Symmetric case where l = 0. In this
case, Hn

sym(X,Φ,∇q) has dimension κ =
(

s
n

)
. Ac-

cording to the following theorem, we see directly that
detY ak

and det
(
〈〈χλ, ζ(µ)〉〉∆

)
λ,µ

do not vanish iden-
tically:

Theorem 10. The explicit form of detY ak
is

given by

detY ak
=

( ∏2s+2
i=1

(
1− a−1

k a−1
i

)(
1− a−2

k

) (
1− a−1

1 a−1
2 . . . a−1

2s+2

))(s−1
n−1)

.

Moreover, the κ × κ determinant with (λ, µ) entry
〈〈χλ, ζ(µ)〉〉∆ is evaluated as

{(1− q)(q)∞}n(s
n)

×

(∏
1≤i<j≤2s+2

(
qa−1

i a−1
j

)
∞(

qa−1
1 a−1

2 · · · a
−1
2s+2

)
∞

)(s−1
n−1)

×

 ∏
1≤i<j≤s

θ(ai/aj)θ(aiaj)
ai

(s−2
n−1)

where ζ(µ) := (aµ1+n, aµ2+n−1, . . . , aµn+1) ∈ X for
µ = (µ1, µ2, . . . , µn) ∈ P .

Proof. See [4].

Remark 10.1. When m = 2n + 2, i.e., s =
n, the above determinant, whose matrix size

(
s
n

)
equals 1, becomes nothing but the formula investi-
gated by Gustafson [10]. See also [15].

2.2. Symmetric case where l = 1. We
shall simply write t in place of t1. In this case,
Hn

sym(X,Φ,∇q) has dimension κ =
(
s+n−1

n

)
. The

following implies that detY ak
does not vanish iden-

tically:

Theorem 11. The explicit form of detY ak
is

given by
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n∏
j=1

( ∏2s+2
i=1

(
1−tj−na−1

k a−1
i

)(
1−tj−na−2

k

)(
1−t2−n−ja−1

1 a−1
2 ···a

−1
2s+2

))(s+j−2
j−1 )

.

Proof. See [6].
Next we show the explicit form of the determi-

nant det
(
〈〈χλ, ζ(µ)〉〉∆

)
λ,µ

for some κ points ζ(µ) in
X. In order to explain it, we choose special criti-
cal points ζ(µ) for the Jackson integrals (2) in the
following manner.

Let Z be the set of all s-tuples defined by{
(µ1, µ2, . . . , µs) ∈ Zs ;

µ1 + · · ·+ µs = n,

µ1 ≥ 0, . . . , µs ≥ 0

}
,

which consists of κ elements. For s-tuples µ =
(µ1, µ2, . . . , µs) and ν = (ν1, ν2, . . . , νs) ∈ Z, we de-
fine the ordering µ ≺Z ν on Z if there exists i such
that µ1 = ν1, µ2 = ν2, . . . , µi−1 = νi−1, µi < νi.
Corresponding to the s-tuple µ = (µ1, µ2, . . . , µs) ∈
Z, we take the point (ζ1, ζ2, . . . , ζn) ∈ X satisfying

ζi =



a1t
µ1−i if 1 ≤ i ≤ µ1,

a2t
µ1+µ2−i if µ1 + 1 ≤ i ≤ µ1 + µ2,

...
...

ast
n−i if

s−1∑
k=1

µk + 1 ≤ i ≤ n.

We denote by ζ(µ) = (ζ(µ)1, ζ(µ)2, . . . , ζ(µ)n) ∈ X such
a point.

For λ = (λ1, λ2, . . . , λn), ν = (ν1, ν2, . . . , νn) ∈
P , we also define the reverse lexicographic ordering
λ ≺ ν on P if λ1 = ν1, λ2 = ν2, . . . , λi−1 = νi−1,
λi < νi for some i ∈ {1, 2, . . . , n}.

Theorem 12. The κ × κ determinant with
(λ, µ) entry 〈〈χλ, ζ(µ)〉〉∆ is evaluated as

{(1− q)(q)∞}n(s+n−1
n )

×
n∏

k=1

((
qt−(n−k+1)

)s
∞

(qt−1)s
∞

×
∏

1≤i<j≤2s+2

(
qt−(n−k)a−1

i a−1
j

)
∞(

qt−(n+k−2)a−1
1 a−1

2 · · ·a
−1
2s+2

)
∞

)(s+k−2
k−1 )

×
n∏

k=1

n−k∏
r=0

∏
1≤i<j≤s

θ
(
t2r−(n−k)aia

−1
j

)
trai

× θ
(
tn−kaiaj

))(s+k−3
k−1 )

,

where the rows λ ∈ P and the columns µ ∈ Z of
the matrix det

(
〈〈χλ, ζ(µ)〉〉∆

)
λ,µ

are arranged in the
decreasing orders of ≺ and ≺Z respectively.

Proof. See [6].
As a corollary, we see det

(
〈〈χλ, ζ(µ)〉〉∆

)
λ,µ

does
not vanish identically.

Remark 12.1. In the special case where
(m, l) = (4, 1), i.e., (s, l) = (1, 1), κ is equal to 1,
and the determinant reduces to Jackson integral it-
self which is explicitly evaluated by van Diejen [9].
See also [8, 13, 14, etc.].
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