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A comparison theorem on sectors for Kähler magnetic fields
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Abstract: We take sectors as real 2-dimensional objects associated with trajectories for
Kähler magnetic fields. As a sequel of [2] we make a bit more consideration on comparison theorem
on mangetic Jacobi fields and study lengths of arcs for sectors.
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1. Introduction. Let (M, J, 〈 , 〉) be a
Kähler manifold. We call a constant multiple Bκ =
κBJ of the Kähler form BJ on M a Kähler magnetic
field. As a generalization of static magnetic fields
on a Euclidean 3-space, we generally say a closed 2-
form to be a magnetic field. Kähler magnetic fields
are typical examples of magnetic fields with uniform
strengths. We say a smooth curve γ to be a trajectory
for Bκ if it satisfies the equation ∇γ̇ γ̇ = κJγ̇. When
κ = 0, trajectories for this trivial magnetic field B0

are geodesics, therefore we may say that trajectories
for Kähler magnetic fields are natural objects from
the viewpoint of Riemannian geometry (see [1]).

In Riemannian geometry, it is a natural way to
compare the geometry of arbitrary Riemannian man-
ifolds with the geometry of space forms. In the pre-
ceding paper [2], in order to study variation of tra-
jectories, we introduced magnetic Jacobi fields and
investigated their comparison theorem. Though this
corresponds to Rauch’s comparison theorem, it is not
so powerful because we need to separate a complex
direction and totally real directions. In this context
we came to study some real 2-dimensional objects
associated with Kähler magnetic fields. In [3] we
took crescents which are made of trajectories and
geodesics and studied their comparison theorem un-
der a condition that sectional curvatures are bounded
from above. In this paper, we make a bit more con-
sideration on comparison theorem on magnetic Ja-
cobi fields and investigate how complex lines in a
tangent space are mapped through a magnetic expo-
nential map. We take sectors which are images of
variations of trajectories and study their comparison
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theorem under a condition that sectional curvatures
are bounded from below.

2. Magnetic Jacobi fields. For a unit tan-
gent vector u ∈ TM of a Kähler manifold M , we
denote by γu,κ a trajectory for a Kähler magnetic
field Bκ with initial vector u. Given a point x ∈ M

we define the magnetic exponential map Bκ expx :
TxM → M of the tangent space TxM at x for Bκ by

Bκ expx(v) =

{
γv/‖v‖,κ(‖v‖), if v �= 0x,

x, if v = 0x,

where 0x is the origin of TxM . For the trivial case
that κ = 0, this is the usual exponential map at x.

Since the differential of magnetic exponential
maps corresponds to variations of trajectories, we in-
troduced in [2] the notion of magnetic Jacobi fields.
A vector field Y along a trajectory γ for Bκ is said to
be a normal magnetic Jacobi field for Bκ if it satisfies

i) ∇γ̇∇γ̇Y − κJ∇γ̇Y + R(Y, γ̇)γ̇ = 0,
ii) ∇γ̇Y ⊥ γ̇,

where R denotes the curvature tensor on M . Every
normal magnetic Jacobi field is obtained by some
variation of trajectories and has similar properties
to those of Jacobi fields (see [2] for more detail).

When we study a magnetic Jacobi field, its com-
ponent orthogonal to a trajectory is important. For
a vector field X along a trajectory γ for Bκ, we
put X� = X − 〈X, γ̇〉γ̇. A real number t0 is said
to be a Bκ-conjugate value for γ(0) along γ if there
exists a nontrivial normal magnetic Jacobi field Y

for Bκ along γ with Y �(0) = 0 and Y �(t0) = 0.
In this case we call γ(t0) a Bκ-conjugate point of
γ(0) along γ. We denote by tc(γ(0); γ, κ) the mini-
mum positive Bκ-conjugate value of γ(0) along γ. In
our study of Kähler magnetic fields, complex space
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forms, which are complex projective spaces, complex
Euclidean spaces and complex hyperbolic spaces, are
model spaces. For a complex space form Mn(c;C) of
constant holomorphic sectional curvature c, we see
this minimum positive Bκ-conjugate value is given
by

tc(κ, c) =

{
π/

√
κ2 + c, if κ2 + c > 0,

∞, if κ2 + c � 0.

More precisely, on Mn(c;C), there are no Bκ-
conjugate points when κ2 + c ≤ 0, and all conjugate
values are πj/

√
κ2 + c, j = ±1,±2, · · · when κ2 +

c > 0.
For a vector field Z along a trajectory γ for Bκ

which is perpendicular to γ̇, we define its index by

IT (Z) =
∫ T

0

{
(h′)2 − κ2h2

+ 〈∇γ̇Z⊥ − κJZ⊥,∇γ̇Z⊥〉
− 〈R(Z, γ̇)γ̇, Z〉

}
dt,

where h = 〈Z, Jγ̇〉 and Z⊥ = Z −hJγ̇. For a normal
magnetic Jacobi field Y along γ, we see

IT (Y �) = 〈∇γ̇Y �(T ), Y �(T )〉 − 〈∇γ̇Y �(0), Y �(0)〉.

For a general vector field Z which is perpendicular to
γ̇ and with initial condition Z(0) = 0, the following
holds: If Z(T ) = Y �(T ) for some normal magnetic
Jacobi field Y with Y (0) = 0 at T with 0 < T <

tc(γ(0); γ, κ), then we see IT (Z) ≥ IT (Y �), and the
equality holds if and only if Z = Y �. Along the
lines for the proof of Rauch’s comparison theorem,
we defined a vector field from a magnetic Jacobi field
by parallel transformation and showed the following
comparison theorem on magnetic Jacobi fields in [2]
by use of the comparison on the index IT (see also
[4, 5]).

Proposition 1. Let γ and γ̂ be trajectories for
Kähler magnetic fields Bκ on Kähler manifolds M

and M̂ , respectively. Suppose their dimensions sat-
isfy dim(M) ≥ dim(M̂), and their sectional curva-
tures along trajectories satisfy

min
v⊥γ̇(t)

Riem(γ̇(t), v) ≥ max
v̂⊥ ˙̂γ(t)

Riem( ˙̂γ(t), v̂).

We then have the following properties.
1) tc(γ(0); γ, κ) ≤ tc(γ̂(0); γ̂, κ).
2) If normal magnetic Jacobi fields Y and Ŷ along

γ and γ̂ satisfy Y �(0) = Ŷ �(0) = 0 and
‖∇γ̇Y �(0)‖ = ‖∇ ˙̂γ Ŷ �(0)‖, then for every T with
0 ≤ T < tc(γ(0); γ, κ) we find

(2.1)
〈∇σ̇Y �(T ), Y �(T )〉

/
‖Y �(T )‖2

� 〈∇ ˙̂σŶ �(T ), Ŷ �(T )〉
/
‖Ŷ �(T )‖2,

(2.2) ‖Y �(T )‖ � ‖Ŷ �(T )‖.

If an equality holds in one of these inequalities
(2.1) and (2.2), then for all t with 0 ≤ t ≤ T we
see

i) 〈∇σ̇Y �(t), Y �(t)〉
/
‖Y �(t)‖2

= 〈∇ ˙̂σ Ŷ �(t), Ŷ �(t)〉
/
‖Ŷ �(t)‖2,

ii) ‖Y �(t)‖ = ‖Ŷ �(t)‖,
iii) Riem(γ̇(t), Y (t)) = Riem( ˙̂γ(t), Ŷ (t)).

Here we give a bit more consideration on norms
of normal magnetic Jacobi fields. If we denote a nor-
mal magnetic Jacobi field Y along γ for Bκ as Y =
fγ̇ + gJγ̇ + Y ⊥ with functions f, g and a vector field
Y ⊥ along γ which is perpendicular to both γ̇ and Jγ̇,
the equations for nomal magnetic Jacobi fields turn
to

(2.3) f ′ = κg,

(2.4)
(g′′ + κ2g)Jγ̇ + ∇γ̇∇γ̇Y ⊥

− κJ∇γ̇Y ⊥ + R(Y �, γ̇)γ̇ = 0.

In order to study images of complex lines
through magnetic exponential maps, we need to in-
vestigate normal magnetic Jacobi fields whose initial
derivatives lie in the complex line spanned by initial
vector of a trajectory.

Example 1. On Mn(c;C), as a normal mag-
netic Jacobi field Y along a trajectory γ for Bκ with
initial condition Y (0) = 0 and ∇γ̇Y (0) = Jγ̇(0) sat-
isfies Y ⊥ ≡ 0, we find its norm Λ(t; κ, c) is given as
follows (c.f. [2]):
(1) When c ≥ 0 or when c < 0 and κ2 > |c|, we see

Λ2(t; κ, c) =
κ2

(κ2 + c)2
(
1 − cos

√
κ2 + c t

)2

+
1

κ2 + c
sin2

√
κ2 + c t,

(2) when c < 0 and κ2 = |c|, we see

Λ2(t; κ, c) = (c/4)t4 + t2,

(3) when c < 0 and κ2 < |c|, we see

Λ2(t; κ, c) =
κ2

(κ2 + c)2
(
cosh

√
|c| − κ2 t − 1

)2

+
1

κ2 + c
sinh2

√
|c| − κ2 t.
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A comparison theorem on norms of magnetic Ja-
cobi fields is given as follows:

Theorem 1. Let M be a Kähler manifold
whose sectional curvature satisfies RiemM ≥ c. Then
a normal magnetic Jacobi field Y along a trajectory γ

for Bκ on M with initial condition Y (0) = 0 satisfies

‖Y (T )‖ ≤ ‖∇γ̇Y (0)‖ Λ(T ; κ, c)

for 0 ≤ T ≤ tc(γ(0); γ, κ). The equality holds if and
only if Y �(t) is parallel to Jγ̇(t) and the holomorphic
sectional curvature HRiem(γ̇(t)) of the complex line
spanned by γ̇(t) is equal to c for all 0 ≤ t ≤ T .

Proof. We take M̂ as a complex space line
M1(c;C). Let γ̂ be a trajectory for B|κ| on M1(c;C),
and Ŷ be a normal magnetic Jacobi field along γ̂ with
initial condition Ŷ (0) = 0, ∇ ˙̂γ Ŷ = J ˙̂γ(0). Since Ŷ

does not have a component orthogonal to both γ̇ and
Jγ̇, we see by Proposition 1

‖Y �(t)‖ ≤ ‖∇γ̇Y (0)‖ ‖Ŷ �(t)‖
= ‖∇γ̇Y (0)‖ 〈Ŷ (t), J ˙̂γ(t)〉

for 0 ≤ t ≤ tc(γ(0); γ, κ). By use of (2.3), we find for
T with 0 ≤ T ≤ tc(γ(0); γ, κ) that

(2.5)

|〈Y (T ),γ̇(T )〉| = |κ|
∣∣∣∫ T

0

〈Y (t), Jγ̇(t)〉dt
∣∣∣

≤ |κ|
∫ T

0

‖Y �(t)‖dt

≤ |κ| ‖∇γ̇Y (0)‖
∫ T

0

〈Ŷ (t), J ˙̂γ(t)〉dt

= ‖∇γ̇Y (0)‖ 〈Ŷ (T ), ˙̂γ(T )〉.

Thus we obtain

‖Y (T )‖ ≤ ‖∇γ̇Y (0)‖ ‖Ŷ �(T )‖
= ‖∇γ̇Y (0)‖ Λ(T ; κ, c).

We now consider the case that the equality
holds. If the equality holds, we need by (2.5) that
Y ⊥(t) = 0 for 0 ≤ t ≤ T . Also by Proposition 1 we
find

HRiem(γ̇(t)) = Riem(γ̇(t), Y �(t)) = c.

On the other hand, if Y satisfies Y ⊥(t) = 0 and
HRiem(γ̇(t)) = c for 0 ≤ t ≤ T , it satisfies the same
equation as for a normal magnetic Jacobi field on
M1(c;C). Hence we see the equality holds.

Example 2. On Mn(c;C) of complex dimen-
sion n ≥ 2, every normal magnetic Jacobi field Y

along a trajectory γ for Bκ with initial condition

Y (0) = 0 and 〈∇γ̇Y (0), Jγ̇(0)〉 = 0 satisfies Y = Y ⊥

and its norm is given by ‖Y (t)‖ = ‖∇γ̇Y (0)‖λ(t; κ, c)
for 0 ≤ t ≤ tc(κ, c), where

λ(t; κ, c)

=




2√
κ2 + c

sin
√

κ2 + c

2
t,

when c ≥ 0 or when c < 0 and κ2 > |c|,
t, when c < 0 and κ = ±

√
|c|,

2√
|c| − κ2

sinh

√
|c| − κ2

2
t,

when c < 0 and κ2 < |c|.
As an explanation we here give an estimate

from below which follows Proposition 1. Let M be
a Kähler manifold with RiemM ≤ c. In order to
compare normal magnetic Jacobi fields we choose
CPn(4c) when c > 0, Cn when c = 0 and CHn(c)
when c < 0. We then obtain the following as a direct
consequence of Proposition 1.

Corollary. When M is a Kähler manifold
whose sectional curvature satisfies RiemM ≤ c, then
every normal magnetic Jacobi field Y along a trajec-
tory γ for Bκ on M with initial condition Y (0) = 0
satisfies

‖Y (T )‖ ≥ ‖∇γ̇Y (0)‖ λ(T ; κ, 4c),

for 0 ≤ T ≤ tc(κ, 4c), when c > 0, and

‖Y (T )‖ ≥ ‖∇γ̇Y (0)‖ λ(T ; κ, c),

for 0 ≤ T ≤ tc(κ, c), when c ≤ 0.
3. Sectors for Kähler magnetic fields.

In order to study a Kähler manifold M by trajec-
tories for Kähler magnetic fields, it is necessary to
take real 2-dimensional objects associated with tra-
jectories. As a candidate of such an object we take
images of tangent complex line through magnetic ex-
ponential maps. For a unit vector u ∈ TxM and real
positive numbers r, θ with 0 ≤ θ ≤ 2π, we take a
tangent sector

T (u, r, θ)

=
{

t(cos s u + sin s Ju) ∈ TxM

∣∣∣∣ 0 ≤ s ≤ θ,

0 ≤ t ≤ r

}
.

We call Sκ(u, r, θ) = Bκ expx

(
T (u, r, θ)

)
a Bκ-sector

of radius r and vertical angle θ if r ≤ tc(x; γws , κ) for
all s with 0 ≤ s ≤ θ, where ws = cos su+sin sJu. For
a Bκ-sector S = Sκ(u, r, θ) we call a curve ρS defined
by s �→ Bκ expx(rws) the arc of this Bκ-sector.
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Since every Bκ-sector forms a variation of tra-
jectories for Bκ, we find the following:

Example 3. On a complex space form
Mn(c;C), the length L(r, θ; κ, c) of a Bκ-sector is
given as

L(r, θ; κ, c) = θΛ(r; κ, c).

Therefore we find the following:
(1) When c ≥ 0 or when c < 0 and κ2 > |c|, we have

L(r, θ; κ, c) =
2θ

κ2 + c
sin

√
κ2 + c r

2

×

√
κ2 + c cos2

√
κ2 + c r

2
,

(2) when c < 0 and κ2 = |c|, we have

L(r, θ; κ, c) =
1
2
θr

√
4 + |c|r2,

(3) when c < 0 and κ2 < |c|, we have

L(r, θ; κ, c) =
2θ

|c| − κ2
sinh

√
|c| − κ2 r

2

×

√
|c| cosh2

√
|c| − κ2 r

2
− κ2.

It is better to explain Bκ-sectors on a complex
space form in another way. On a complex space form
Mn(c;C), every Bκ-sector of radius r

(
≤ tc(κ, c)

)
and vertical angle 2π is an intersection of a geodesic
ball of radius �(r; κ, c) and a totally geodesic complex
line M1(c;C). We hence find lengths of Bκ-sectors
on a complex space form are also given as

L(r, θ; κ, c) =




(θ/
√

c) sin
√

c�(r; κ, c),
when c > 0,

θ�(r; κ, 0), when c = 0,

(θ/
√
|c|) sinh

√
|c|�(r; κ, c),

when c < 0.

Here the distance �(r; κ, c) between end points of a
trajectory segment for Bκ on Mn(c : C) is given by
the following relations.
(1) When c > 0, it satisfies√

κ2 + c sin
(√

c �(r; κ, c)/2
)

=
√

c sin
(√

κ2 + c r/2
)
.

(2) When c = 0, it is given by

�(r; κ, 0) = (2/|κ|) sin |κ|r/2.

(3) When c < 0, it satisfies




√
|c| − κ2 sinh

√
|c| �(r; κ, c)

2

=
√
|c| sinh

√
|c| − κ2 r

2
,

if κ2 < |c|,

2 sinh
(√

|c| �(r; κ, c)/2
)

=
√
|c| r, if κ2 = |c|,

√
κ2 + c sinh

√
|c| �(r; κ, c)

2

=
√
|c| sin

√
κ2 + c r

2
,

if κ2 > |c|.

We now compare Bκ-sectors on a general Kähler
manifold with those on a complex space form.

Theorem 2. Let M be a Kähler manifold
whose sectional curvatures satisfy RiemM ≥ c. Then
for every Bκ-sector S of radius r and vertical an-
gle θ on M , the length length(ρS) of its arc is not
longer than L(r, θ; κ, c). The equality length(ρS) =
L(r, θ; κ, c) holds if and only if S is totally geodesic,
holomorphic and of constant (holomorphic) sectional
curvature c.

Proof. For a Bκ-sector S = Bκ expx(T (u, r, θ)),
we define a variation of trajectory segments α :
[0, θ] × [0, r] → M by α(s, t) = Bκ expx(tws), where
ws = cos su + sin sJu. Then we have

length(ρS) =
∫ θ

0

∥∥∥∂α

∂s
(s, r)

∥∥∥ds.

As ∂α/∂s(s, ·) is a normal magnetic Jacobi field
along a Bκ-trajectory α(s, ·) and satisfies


∂α

∂s
(s, 0) = 0,

∇ ∂α
∂t

∂α

∂s
(s, 0) = − sin s u + cos s Ju,

we obtain our conclusion by Theorem 1.
By standing another point of view, we see The-

orem 2 assures the following:

Corollary. If a Bκ-sector S of radius r on a
Kähler manifold M with RiemM ≥ c has an arc of
length L(r, θ; κ, c), then its vertical angle is not less
than θ. The vertical angle is equal to θ if and only
if S is totally geodesic, holomorphic and of constant
(holomorphic) sectional curvature c.

Unfortunately our proof does not use essentially
the property that our Bκ-sectors are obtained as im-
ages of subsets of complex lines. As a matter of
course, if we take
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T (u, v; t, θ)

=
{

t(cos s u + sin s v) ∈ TxM

∣∣∣∣ 0 ≤ s ≤ θ,

0 ≤ t ≤ r

}

for an orthonormal pair (u, v) ∈ TxM ×TxM of unit
tangent vectors and put

Sκ(u, v; r, θ) = Bκ expx

(
T (u, v; r, θ)

)
,

we see the length of its arc satisfies the same es-
timate as in Theorem 2 under the same condition.
This is because we pose an assumption on sectional
curvatures. On Mn(c;C), if (u, v) ∈ TMn(c;C) ×
TMn(c;C) is a totally real orthonormal pair, which
means they satisfy 〈u, Jv〉 = 0, we find the length of
the arc of Sκ(u, v; r, θ) is θλ(r; κ, c) when r ≤ tc(κ, c).
Thus we can obtain a trivial estimate of lengths of
arcs from below under a condition that sectional cur-
vatures are bounded from above by use of Corollary.

We should note that trajectories for Kähler mag-
netic fields are also called Kähler circles. In sub-
manifold theory some results are obtained by use of
some properties of Kähler circles (see [6] and its ref-
erences).
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