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Abstract:

We take sectors as real 2-dimensional objects associated with trajectories for

Kéhler magnetic fields. As a sequel of [2] we make a bit more consideration on comparison theorem
on mangetic Jacobi fields and study lengths of arcs for sectors.
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1. Introduction. Let (M,J,{ , )) be a
Kahler manifold. We call a constant multiple B, =
kB of the Kéhler form B; on M a Kahler magnetic
field. As a generalization of static magnetic fields
on a Euclidean 3-space, we generally say a closed 2-
form to be a magnetic field. Kéhler magnetic fields
are typical examples of magnetic fields with uniform
strengths. We say a smooth curve v to be a trajectory
for B, if it satisfies the equation V4% = xJ¥. When
k = 0, trajectories for this trivial magnetic field By
are geodesics, therefore we may say that trajectories
for Kahler magnetic fields are natural objects from
the viewpoint of Riemannian geometry (see [1]).

In Riemannian geometry, it is a natural way to
compare the geometry of arbitrary Riemannian man-
ifolds with the geometry of space forms. In the pre-
ceding paper [2], in order to study variation of tra-
jectories, we introduced magnetic Jacobi fields and
investigated their comparison theorem. Though this
corresponds to Rauch’s comparison theorem, it is not
so powerful because we need to separate a complex
direction and totally real directions. In this context
we came to study some real 2-dimensional objects
associated with Kéhler magnetic fields. In [3] we
took crescents which are made of trajectories and
geodesics and studied their comparison theorem un-
der a condition that sectional curvatures are bounded
from above. In this paper, we make a bit more con-
sideration on comparison theorem on magnetic Ja-
cobi fields and investigate how complex lines in a
tangent space are mapped through a magnetic expo-
nential map. We take sectors which are images of
variations of trajectories and study their comparison
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theorem under a condition that sectional curvatures
are bounded from below.

2. Magnetic Jacobi fields. For a unit tan-
gent vector u € TM of a Kahler manifold M, we
denote by <, . a trajectory for a Kahler magnetic
field B, with initial vector u. Given a point x € M
we define the magnetic exponential map B exp,, :
T,M — M of the tangent space T, M at x for B, by

Yo/l (0], i v 7 0,
:Z:’ if V= OI7

B, exp,(v) = {

where 0, is the origin of T, M. For the trivial case
that x = 0, this is the usual exponential map at x.
Since the differential of magnetic exponential
maps corresponds to variations of trajectories, we in-
troduced in [2] the notion of magnetic Jacobi fields.
A vector field Y along a trajectory v for B, is said to
be a normal magnetic Jacobi field for By, if it satisfies
i) V4ViY —kJVLY + R(Y, %)y =0,
i) V5Y L4,
where R denotes the curvature tensor on M. Every
normal magnetic Jacobi field is obtained by some
variation of trajectories and has similar properties
to those of Jacobi fields (see [2] for more detail).
When we study a magnetic Jacobi field, its com-
ponent orthogonal to a trajectory is important. For
a vector field X along a trajectory v for By, we
put Xf = X — (X,4)¥. A real number t, is said
to be a By-conjugate value for v(0) along ~ if there
exists a nontrivial normal magnetic Jacobi field Y
for B, along v with Y#(0) = 0 and Y*(ty) = 0.
In this case we call v(tg) a Bg-conjugate point of
~(0) along v. We denote by t.(v(0);7, ) the mini-
mum positive B,-conjugate value of v(0) along ~. In
our study of Kéhler magnetic fields, complex space
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forms, which are complex projective spaces, complex
FEuclidean spaces and complex hyperbolic spaces, are
model spaces. For a complex space form M"(c; C) of
constant holomorphic sectional curvature ¢, we see
this minimum positive B,-conjugate value is given
by

00, if kK2+c=<0.

7/vVKk2+e, if K24+c>0,
te(k,c) =

More precisely, on M™(c;C), there are no B,-
conjugate points when k2 + ¢ < 0, and all conjugate
values are mj/vK2+e¢, j = £1,42,--- when k2 +
c> 0.

For a vector field Z along a trajectory ~ for By
which is perpendicular to 7, we define its index by

RGE

(V4 Z+ — kJZH, V4 ZF)
—(R(Z,%)%, Z) }dt,

where h = (Z, J4) and Z+ = Z — hJ#. For a normal
magnetic Jacobi field Y along -, we see

Ir(Y¥) = (V3YH(T), YH(T)) — (V5Y#(0), Y¥(0)).

For a general vector field Z which is perpendicular to
4 and with initial condition Z(0) = 0, the following
holds: If Z(T) = Y*(T) for some normal magnetic
Jacobi field YV with Y(0) = 0 at T with 0 < T <
te(7(0); 7, x), then we see Zr(Z) > Zr(Y*), and the
equality holds if and only if Z = Y% Along the
lines for the proof of Rauch’s comparison theorem,
we defined a vector field from a magnetic Jacobi field
by parallel transformation and showed the following
comparison theorem on magnetic Jacobi fields in [2]
by use of the comparison on the index Zr (see also
(4, 5]).

Proposition 1. Let~y and ¥ be trajectories for
Kahler magnetic fields B, on Kdhler manifolds M
and M, respectively. Suppose their dimensions sat-
isfy dim(M) > dim(M), and their sectional curva-
tures along trajectories satisfy
v) > max Riem(%(t), d).

bLA(t)

We then have the following properties.

1) te(y(0); 7, &) < te((0); 9, £)- )

2) If normal magnetic Jacobi fields Y andY along
v and 4 satisfy YH0) = Y¥0) = 0 and
[V5Y(0) = HV@Y’%O)H, then for every T' with
0 <T <te(v(0);7, k) we find

min Riem(5(¢
min Riem(3(0)
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(VL YHT), YH(T)) /||Y’i e
21 :<V&W<T /I DI,
22) IO D))

If an equality holds in one of these inequalities
(2.1) and (2.2), then for all t with 0 <t < T we
see
i) (VsYH(1),
=(V; Yjj
i) Y3 = V4 )II,
iii) Riem(%(t), Y (t)) = Riem(5(t), Y (t)).
Here we give a bit more consideration on norms
of normal magnetic Jacobi fields. If we denote a nor-
mal magnetic Jacobi field Y along v for B, as Y =
Y+ gJ4+ Y+ with functions f, g and a vector field
Y+ along v which is perpendicular to both 4 and J+,
the equations for nomal magnetic Jacobi fields turn
to

/HYji I
/I,

(2.3) f'=rg,
(9" + K2g)JY 4+ Vs Vs Y+

2.4
24 — RIVLY T + R(Y!, 4)y =0.

In order to study images of complex lines
through magnetic exponential maps, we need to in-
vestigate normal magnetic Jacobi fields whose initial
derivatives lie in the complex line spanned by initial
vector of a trajectory.

Example 1. On M"(c;C), as a normal mag-
netic Jacobi field Y along a trajectory v for B, with
initial condition Y (0) = 0 and V;Y(0) = J¥(0) sat-
isfies Y+ = 0, we find its norm A(t; s, c) is given as
follows (c.f. [2]):

(1) When ¢ > 0 or when ¢ < 0 and k2 > |c|, we see

) K2 2
A (t;k,c) = m(l —cos VK% + ct)
1
+ Q—Sin2 K2 +ct,
K +c
(2) when ¢ < 0 and k2 = |c|, we see
A2(t;k,c) = (c/4)t* + 12,
(3) when ¢ < 0 and k2 < ¢, we see
2
A% (t; R, c) = wzﬂw(cosh le] — k2t — 1)2
1
+ - sinh? \/|c| — k2 t.
K*+c
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A comparison theorem on norms of magnetic Ja-
cobi fields is given as follows:
Let M be a Kdahler manifold
whose sectional curvature satisfies Riempys > c¢. Then
a normal magnetic Jacobi field Y along a trajectory
for By, on M with initial condition Y (0) = 0 satisfies

Theorem 1.

Y (D) < IV5Y (0[] A(T; 5, ¢)

for 0 < T <t.(y(0);7,k). The equality holds if and
only if Y4(t) is parallel to J¥(t) and the holomorphic
sectional curvature HRiem(5§(t)) of the complex line
spanned by Y(t) is equal to ¢ for all0 <t <T.

Proof. We take M as a complex space line
M*(¢; C). Let 4 be a trajectory for B),,j on M*(c; C),
and Y be a normal magnetic Jacobi field along 4 with
initial condition Y (0) = 0, V,;Yf/ = J#(0). Since ¥
does not have a component orthogonal to both 4 and
J%, we see by Proposition 1

IYE@O < IV5Y ) Y]]
= [[V5Y ()1 (Y'(2), J¥(2))

for 0 <t < t.(y(0);v, k). By use of (2.3), we find for
T with 0 < T < t.(v(0);7, k) that

s =1n | [ 0.0
< |n] / 130 dt

< || [[V5Y (0 ||/ y(t))dt
= [[V5Y(0)]| (Y(T),3(T)).

Thus we obtain
1Y (T)[I < [V5Y ()] [YHT)]]
= [|[V5Y(0)[| A(T; 5, c).

(2.5)

We now consider the case that the equality
holds. If the equality holds, we need by (2.5) that
YL(t) =0 for 0 <t < T. Also by Proposition 1 we
find

HRiem(%(t)) = Riem(5(t), Y¥(t)) = c.

On the other hand, if Y satisfies Y+ (t) = 0 and
HRiem(%(t)) = ¢ for 0 < ¢ < T, it satisfies the same
equation as for a normal magnetic Jacobi field on
M1(c; C). Hence we see the equality holds. 1

Example 2. On M™(c; C) of complex dimen-
sion n > 2, every normal magnetic Jacobi field Y
along a trajectory v for B, with initial condition
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Y (0) =0 and (V4Y(0), J¥(0)) = 0 satisfies Y = Y+
and its norm is given by ||Y (¢)|| = ||V Y (0)||A(¢; &, ¢)
for 0 <t < t.(k,c), where

At; K, €)

2 . VK?+e

sin t,

VK2 + ¢ 2

when ¢ > 0 or when ¢ < 0 and x? > |¢|,

when ¢ < 0 and k = £+/|¢,

= t’

when ¢ < 0 and x? < |¢.

As an explanation we here give an estimate
from below which follows Proposition 1. Let M be
a Kahler manifold with Riemj,; < c¢. In order to
compare normal magnetic Jacobi fields we choose
CP"(4c) when ¢ > 0, C™ when ¢ = 0 and CH"(c)
when ¢ < 0. We then obtain the following as a direct
consequence of Proposition 1.

Corollary. When M is a Kdahler manifold
whose sectional curvature satisfies Riemy; < ¢, then
every normal magnetic Jacobi field Y along a trajec-
tory v for B, on M with initial condition Y (0) = 0
satisfies

1Y (D) = [IV5Y (0)[| A(T'; 5, 4c),
for 0 <T <t.k,4c), when ¢ >0, and
Y (DI = [V5Y (0)[| ATk, ),

for 0 <T <t.k,c), when ¢ <0.
3. Sectors for Kahler magnetic fields.

In order to study a Kahler manifold M by trajec-
tories for Kéhler magnetic fields, it is necessary to
take real 2-dimensional objects associated with tra-
jectories. As a candidate of such an object we take
images of tangent complex line through magnetic ex-
ponential maps. For a unit vector u € T, M and real
positive numbers r, § with 0 < 0 < 27, we take a
tangent sector

T (u,r,0)

. 0<s<0,
= {t(cossu+smsJu) eT.M ‘ O<t<r }
We call S (u,r,0) = B, exp, (7 (u,r,0)) a B,-sector
of radius r and vertical angle 6 if r < t.(z; Y4, , k) for
all s with 0 < s < 0, where w, = cos su+sin sJu. For
a By-sector S = S, (u,r, 6) we call a curve ps defined

by s +— B, exp, (rws) the arc of this B,-sector.
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Since every B-sector forms a variation of tra-
jectories for B,;, we find the following:

Example 3. On a complex space form
M"™(c; C), the length L(r,0;k,c) of a By-sector is
given as

L(r,0;k,¢) = OA(r; K, ¢).

Therefore we find the following;:
(1) When ¢ > 0 or when ¢ < 0 and x? > |c|, we have

20 . VK24cr

L(r,0;k,¢) = P sin 5

Vo
x\/n2+cc032¥

)

(2) when ¢ < 0 and k2 = |¢|, we have

1
597'\/4 + |e|r?,
(3) when ¢ < 0 and k2 < |¢|, we have

26‘ Vel —k2r

h
5 sin 5

\/|c| cosh? Y=~ — Vi —r2r — k2.

It is better to explain B,-sectors on a complex
space form in another way. On a complex space form
M"(c; C), every B,-sector of radius r (< tc(k,c))
and vertical angle 27 is an intersection of a geodesic
ball of radius £(r; k, ¢) and a totally geodesic complex
line M!(c; C). We hence find lengths of B,-sectors
on a complex space form are also given as

(6/v/) sin v/el(r: k. c),

L(r,0;k,¢) =

L(r,0;k,c) =

when ¢ > 0,
L(r,0;k,c) = { 84(r; &, 0), when ¢ =0,
(0/+/|c|) sinh \/|c|l(r; &, ¢),

when ¢ < 0.

Here the distance £(r; k, ¢) between end points of a
trajectory segment for B,, on M™(c : C) is given by
the following relations.

(1) When ¢ > 0, it satisfies

\//<a2——i—csin(\/5 U(r;k,c)/2)
csin(\//£2—+c r/2).
(2) When ¢ =0, it is given by
0(r;k,0) = (2/]k|) sin |k|r/2.
(3) When ¢ < 0, it satisfies
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VI = w2 sinh VAL AT 5:0)
2 o
if K% < ¢,
= /|| sinh 7\/|c|;“2r7
2sinh(v/|c] £(r; k,¢)/2) = \/Ic| r,  if K2 =c],
/i + csinh VAL AR 0)
2 if kK2 > |c|.
_ /[dsin VKZ4cr
= Velsin =5

We now compare B-sectors on a general Kahler
manifold with those on a complex space form.

Let M be a Kahler manifold
whose sectional curvatures satisfy Riemy; > ¢. Then
for every By-sector S of radius r and wvertical an-
gle 0 on M, the length length(ps) of its arc is not
longer than L(r,0;k,c). The equality length(ps) =
L(r,0; k,¢) holds if and only if S is totally geodesic,
holomorphic and of constant (holomorphic) sectional
curvature c.

Proof. For a By-sector S = B, exp, (7 (u,r,0)),
we define a variation of trajectory segments a :
[0,0] x [0,7] — M by «a(s,t) = By exp, (tws), where
ws = cos su + sin sJu. Then we have

length(ps) = / H 95 5

As 0a/0s(s

along a B-trajectory a(s

92 5.0y =0,

0s
OJa
Va? E (870) —

we obtain our conclusion by Theorem 1. L]

Theorem 2.

,+) is a normal magnetic Jacobi field
,-) and satisfies

—sinsu + cos s Ju,

By standing another point of view, we see The-
orem 2 assures the following:

Corollary. If a By-sector S of radius v on a
Kahler manifold M with Riemy; > ¢ has an arc of
length L(r,0; k,c), then its vertical angle is not less
than 6. The vertical angle is equal to 6 if and only
if S is totally geodesic, holomorphic and of constant
(holomorphic) sectional curvature c.

Unfortunately our proof does not use essentially
the property that our B,-sectors are obtained as im-
ages of subsets of complex lines. As a matter of
course, if we take
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7T (u,v;t,0)

ogsga}

:{t(cossu—i—smsv)ETwM’ 0<t<r

for an orthonormal pair (u,v) € T, M X T, M of unit
tangent vectors and put

S (u,v;7,0) = By exp, (T (u, v;7,0)),

we see the length of its arc satisfies the same es-
timate as in Theorem 2 under the same condition.
This is because we pose an assumption on sectional
curvatures. On M"(¢; C), if (u,v) € TM"(c; C) x
TM™(c; C) is a totally real orthonormal pair, which
means they satisfy (u, Jv) =0, we find the length of
the arc of S (u, v; 7, 0) is OA\(r; K, ¢) when r < t.(k,c).
Thus we can obtain a trivial estimate of lengths of
arcs from below under a condition that sectional cur-
vatures are bounded from above by use of Corollary.

We should note that trajectories for Kahler mag-
netic fields are also called Kdhler circles. In sub-
manifold theory some results are obtained by use of
some properties of Kéhler circles (see [6] and its ref-
erences).
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