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Secondary Whittaker functions for PJ-principal series

representations of Sp(3, R)
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Abstract: In this paper, we give explicit formulas for the secondary Whittaker functions
for PJ -principal series representations of Sp(3,R), which are power series solutions of a holonomic
system of rank 24.
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1. Introduction. We discuss in this paper
the secondary Whittaker functions for a generalized
principal series representation of Sp(3,R). Here the
secondary functions mean the power series solutions
at the regular singularity of the holonomic system
coming from the realization of the representation,
which is originated in Harish-Chandra’s study [2]
on the matrix coefficients. In view of automorphic
forms, it is known that these are fundamental in con-
structing the Poincaré series (cf. [9, 10]). Moreover,
the functions obtained in this paper give concrete
examples of confluent hypergeometric series of three
variables, which are not simple Γ-series. It is also in-
teresting to compare this result with the other ones
(cf. [3, 5, 13]).

2. Preliminaries.
2.1. Groups and algebras. Let Mn(R) be

the space of real matrices of size n and 1n (resp. On)
be the unit (resp. the zero) matrix in Mn(R). The
real symplectic group G = Sp(3,R) of degree three
is defined by

G = Sp(3,R)

=
{
g ∈ M6(R) | tgJ3 = J3g

−1, det g = 1
}

,

with J3 =
(

O3 13

−13 O3

)
, which is connected,

semisimple, and split over R. Let θ(g) = tg−1,
g ∈ G, be a Cartan involution of G. Then K =
{g ∈ G | θ(g) = g} is a maximal compact subgroup
of G which is isomorphic to the unitary group U(3)
of degree three.
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Let g = sp(3,R) be the Lie algebra of G and
k (resp. p) be the +1 (resp. −1) eigenspace of the
differential of θ in g. Then k is the Lie algebra of
K which is isomorphic to the unitary algebra u(3) of
degree three and g has a Cartan decomposition g =
k ⊕ p. Now we fix an isomorphism κ between u(3)
and k given by

κ : u(3) � X

�→ 1
2

(
X + X̄

√
−1(X̄ − X)√

−1(X − X̄) X + X̄

)
∈ k.

For a Lie algebra l, we denote by lC = l ⊗R C
the complexification of l. Take a compact Cartan
subalgebra h of g defined by h =

⊕3
i=1 RTi with

Ti = κ(
√
−1Eii) ∈ k, where Eij is the matrix unit in

M3(R) with (i, j) entry. For each 1 ≤ i ≤ 3, define a
linear form βi on hC by βi(Tj) =

√
−1δij , 1 ≤ j ≤ 3.

Here δij is the Kronecker’s delta. Then the set ∆
of roots of (hC, gC) is given by ∆ = ∆(hC, gC) =
{±2βi, ±βj ± βk (j < k)} and the subset ∆+ =
{2βi, βj ± βk (j < k)} forms a positive root system.
Let ∆+

c = {βi − βj (i < j)} and ∆+
n = {2βi, βj +

βk (j < k)} be the set of compact and non-compact
positive roots, respectively. If we denote the root
space for β ∈ ∆ by gβ, then kC 	 gl(3,C) and pC

have the decompositions

kC = hC ⊕
(⊕

β∈∆+
c

g±β

)
,

pC = p+ ⊕ p−, p± =
⊕

β∈∆+
n

g±β.

Now we take a basis of kC and p± consisting of root
vectors. Let us denote the extension of the isomor-
phism κ to their complexifications again by κ. Then
we have κ(Eij) ∈ gβi−βj for i 
= j and thus the set
{κ(Eij) | 1 ≤ i, j ≤ 3} forms a basis of kC. Define a
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map

p± : {X ∈ M3(C) | X = tX} � X

�→
(

X ±
√
−1X

±
√
−1X −X

)
∈ p±.

Then the element X±ij = p±
(

1
2 (Eij + Eji)

)
is a root

vector in g±(βi+βj) for i ≤ j and the set {X±ij | 1 ≤
i ≤ j ≤ 3} gives a basis of p±.

Take a maximal abelian subalgebra ap =⊕3
i=1 RHi of p with H1 = diag(1, 0, 0,−1, 0, 0),

H2 = diag(0, 1, 0, 0,−1, 0), and H3 =
diag(0, 0, 1, 0, 0,−1), and define ei ∈ a∗p for each
1 ≤ i ≤ 3 by ei(Hj) = δij for 1 ≤ j ≤ 3. Then
the set Σ of the restricted roots of (ap, g) is given
by Σ = Σ(ap, g) = {±2ei, ±ej ± ek (j < k)} and
the subset Σ+ = {2ei, ej ± ek (j < k)} forms a
positive root system. For each α ∈ Σ, we denote the
restricted root space by gα and choose a restricted
root vector Eα in gα. If we put np =

⊕
α∈Σ+ gα,

then g has an Iwasawa decomposition g = np⊕ap⊕k.
Also we have G = NAK, where A (resp. N) is the
analytic subgroup with Lie algebra ap (resp. np).

Set

aJ =
⊕2

i=1
RHi, nJ =

⊕
α∈Σ+\{2e3}

gα,

mJ = RH3 ⊕ g2e3 ⊕ g−2e3 .

Moreover let AJ , NJ , MJ,0 be the analytic sub-
roups with Lie algebras aJ , nJ , mJ , respectively.
Then PJ = MJAJNJ with MJ = ZK(aJ )MJ,0 is
a parabolic subgroup of G corresponding to the root
2e3 and the right-hand side gives its Langlands de-
composition. Here ZK(aJ ) = {16, µ1}×{16, µ2} with
µi = exp πTi is the centralizer of aJ in K. We call
PJ the second Jacobi parabolic subgroup of G.

2.2. Representations. Here we introduce
some notations for representations of K, G, and N

which we need in this paper.

The equivalence classes of irreducible represen-
tations of K 	 U(3) can be parameterized by the
set Λ = {λ = (λ1, λ2, λ3) | λi ∈ Z, λ1 ≥ λ2 ≥ λ3}.
If we denote the representation of K associated to
λ ∈ Λ by (τλ, Vλ), the representation space Vλ has
the Gelfand-Zelevinsky basis {f(M)}M∈G(λ) param-
eterized by the set G(λ) of all G-patterns of type λ

(cf. [1, 4]). Here a G-pattern M ∈ G(λ) of type λ =
(λ1, λ2, λ3) ∈ Λ is a triangular array

M =


λ1 λ2 λ3

α1 α2

β




of integers satisfying the conditions λ1 ≥ α1 ≥ λ2 ≥
α2 ≥ λ3 and α1 ≥ β ≥ α2. When λ = (m, m, m) ∈
Λ, the associated representation (τλ, Vλ) is one di-
mensional and

τλ(κ(Eii))v = mv, (1 ≤ i ≤ 3),

τλ(κ(Eij))v = 0, (i 
= j), v ∈ Vλ.

Moreover, it is known that both of p± become K-
modules via the adjoint action of K, and we have
isomorphisms p+ 	 V(2,0,0) and p− 	 V(0,0,−2).

Let σ = (ε1, ε2, D) be a representation of MJ

with characters εi : {16, µi} → C× and a (limit of)
discrete series representation D = D±

k of MJ,0 	
SL(2,R) with the Blattner parameter ±k (k ∈ Z≥1),
and take a quasi-character ν of AJ . Then we can
construct an induced representation IndG

PJ
(σ ⊗ ν ⊗

1NJ ) of G from the second Jacobi parabolic subgroup
PJ in the usual manner, which we call a PJ -principal
series representation of G. The multiplicity theorem
for the K-types can be computed by the Frobenius
reciprocity for induced representations.

Proposition 2.1. Put sgn(D) = 1 (resp. −1)
for D = D+

k (resp. D−
k ). Then each irreducible K-

module (τλ, Vλ) with λ ∈ Λ occurs in the restriction
of IndG

PJ
(σ ⊗ ν ⊗ 1NJ ) to K with the following mul-

tiplicity mλ.

mλ = #


M ∈ G(λ)

∣∣∣∣∣∣
εi(µi) = (−1)wi , i = 1, 2

k ≡ w3 (mod 2)
k ≤ sgn(D)w3


 .

Here w = (w1, w2, w3) is the weight for M ∈ G(λ)
defined by the formula

w1 =β, w2 = α1+α2−β, w3 =λ1+λ2+λ3−α1−α2.

For π = IndG
PJ

(σ⊗ν⊗1NJ ) with σ = (ε1, ε2,D+
k )

such that εi(µi) = (−1)k, one can see from the above
formula that m(k,k,k) = 1 and m(k−2,k−2,k−2) = 0.
The K-type τ(k,k,k) of π is called corner.

Let η be a unitary character of N and denote
the derivative of η by the same letter. Since nab

p =
np/[np, np] 	 ge1−e2 ⊕ ge2−e3 ⊕ g2e3 , η is specified by
three real numbers c12, c23, and c3 such that

η(Ee1−e2) = 2π
√
−1c12, η(Ee2−e3) = 2π

√
−1c23,

η(E2e3 ) = 2π
√
−1c3.
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When c12c23c3 
= 0, a unitary character η of N is
called non-degenerate.

3. Whittaker functions. For a finite di-
mensional representation (τ, Vτ ) of K and a non-
degenerate unitary character η of N , we consider the
space C∞

η,τ (N\G/K) of smooth functions ϕ : G → Vτ

with the property

ϕ(ngk) = η(n)τ(k)−1ϕ(g), (n, g, k) ∈ N × G × K.

Here we remark that any function f ∈ C∞
η,τ (N\G/K)

is determined by its restriction f |A to A from the
Iwasawa decomposition G = NAK of G. Let
(τ∗, Vτ∗) be the contragradient representation of
(τ, Vτ ) and C∞ IndG

N (η) be the C∞-induced repre-
sentation from η. Then the space C∞

η,τ (N\G/K) is
isomorphic to HomK(τ∗, C∞ IndG

N (η)) via the corre-
spondence between ι ∈ HomK(τ∗, C∞ IndG

N (η)) and
F [ι] ∈ C∞

η,τ (N\G/K) given by the relation ι(v∗)(g) =
〈v∗, F [ι](g)〉 for v∗ ∈ Vτ∗ and g ∈ G with the canon-
ical bilinear form 〈·, ·〉 on Vτ∗ × Vτ .

Let (π, Hπ) be an irreducible admissible rep-
resentation of G, and take a multiplicity one K-
type (τ∗, Vτ∗) of π with an injection i : τ∗ → π.
Then, for each element T in the intertwining space
Iη,π = Hom(gC,K)(π, C∞ IndG

N (η)) between (gC, K)-
modules consisting of all K-finite vectors, the rela-
tion T (i(v∗))(g) = 〈v∗, Ti(g)〉 for v∗ ∈ Vτ∗ and g ∈ G

determines an element Ti ∈ C∞
η,τ (N\G/K). Now we

put

Wh(π, η, τ)

=
⋃

i∈HomK(τ∗,π)

{Ti ∈ C∞
η,τ (N\G/K) | T ∈ Iη,π},

and call Wh(π, η, τ) the space of Whittaker functions
for (π, η, τ).

4. Differential equations. Let π =
IndG

PJ
(σ ⊗ ν ⊗ 1NJ ) be an irreducible PJ -

principal series representation of G with σ =
(ε1, ε2,D+

k ) and ν such that εi(µi) = (−1)k and
ν(diag(a1, a2, 1, a−1

1 , a−1
2 , 1)) = aν1

1 aν2
2 , and let τ∗

be the corner K-type of π, that is, τ = τ(−k,−k,−k).
Moreover, let η be a non-degenerate unitary charac-
ter of N specified by three real numbers c12, c23 and
c3. In the rest of this paper, we discuss the space
Wh(π, η, τ) of Whittaker functions for the above
(π, η, τ).

Definition 4.1. The ±-chirality matrices
mi(C±) for 1 ≤ i ≤ 3 are defined by

m1(C±) =


 X±11 X±12 X±13

X±12 X±22 X±23

X±13 X±23 X±33


 ,

m2(C±) =


 M±11 −M±12 M±13

−M±12 M±22 −M±23

M±13 −M±23 M±33


 ,

and m3(C±) = det(m1(C±)). Here M±ij is the (i, j)-
minor of the matrix m1(C±) for each 1 ≤ i ≤ j ≤
3.

Put C2i = Tr(mi(C+)mi(C−)) for 1 ≤ i ≤ 3.
Then one can see that C2i ∈ U(gC)K = {X ∈
U(gC) | Ad(k)X = X, k ∈ K}.

Remark 4.2. In the case of Sp(n,R), we can
define C2i for 1 ≤ i ≤ n belonging to U(gC)K sim-
ilarly. The operator C2n is essentially the same as
the so-called Maass shift operator in the classical lit-
erature [7].

The explicit actions of the operators C2i on
C∞

η,τ (N\G/K) can be computed by expressing them
in the normal order modulo [np, np] with respect to
the Iwasawa decomposition of g, according to the
following fundamental lemma.

Lemma 4.3. Let f ∈ C∞
η,τ (N\G/K). For

X ∈ U(kC), Y ∈ U(npC), Z ∈ U(apC) and a ∈ A, we
have (Ad(a−1)Y )ZXf(a) = η(Y )τ(−X)(Zf)(a). In
particular, for a = diag(a1, a2, a3, a

−1
1 , a−1

2 , a−1
3 ) ∈

A, we have Hif(a) = ai
∂

∂ai
f(a) and

Ee1−e2f(a) = 2π
√
−1c12

a1

a2
f(a),

Ee2−e3f(a) = 2π
√
−1c23

a2

a3
f(a),

E2e3f(a) = 2π
√
−1c3a

2
3f(a),

and Eαf(a) = 0 for ∀α ∈ Σ+\{e1 − e2, e2 − e3, 2e3}.
Now we consider a holonomic system of par-

tial differential equations which is satisfied by the
A-radial part of each element in Wh(π, η, τ). For our
convenience, we use a coordinate x = (x1, x2, x3) on

A with x1 =
(
πc12

a1
a2

)2

, x2 =
(
πc23

a2
a3

)2

and x3 =

4πc3a
2
3 for diag(a1, a2, a3, a

−1
1 , a−1

2 , a−1
3 ) ∈ A.

Theorem 4.4. Each element ϕ in the space
Wh(π, η, τ)|A of the restriction of Whittaker func-
tions to A satisfies the following holonomic system
of partial differential equations of rank 24:

(1)




D2ϕ(x) = 0,

D3ϕ(x) = 0,

D4ϕ(x) = 0.
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Here

D2 = (2∂1 + k − 6) (2∂1 − k)

+ (−2∂1 + 2∂2 + k − 4) (−2∂1 + 2∂2 − k)

+ (−2∂2 + 2∂3 − x3 + k − 2)

· (−2∂2 + 2∂3 + x3 − k)

− 8x1 − 8x2 − χ2,k,ν ,

D3 = (2∂1 − k − 2)

·
{
(−2∂1 + 2∂2 − k − 1)

· (−2∂2 + 2∂3 + x3 − k) + 4x2

}
+ 4x1 (−2∂2 + 2∂3 + x3 − k) ,

D4 =
{
(−2∂1 + 2∂2 + k − 3)

· (−2∂2 + 2∂3 − x3 + k − 2) + 4x2

}
·
{
(−2∂1 + 2∂2 − k − 1)

· (−2∂2 + 2∂3 + x3 − k) + 4x2

}
+ (2∂1 + k − 5) (−2∂2 + 2∂3 − x3 + k − 2)

· (2∂1 − k − 1) (−2∂2 + 2∂3 + x3 − k)

+
{
(2∂1 + k − 5)

· (−2∂1 + 2∂2 + k − 4) + 4x1

}
· {(2∂1 − k − 1) (−2∂1 + 2∂2 − k) + 4x1}

− 8x1 (−2∂2 + 2∂3 − x3 + k − 2)

· (−2∂2 + 2∂3 + x3 − k)

+ 32x1x2 − 8x2 (2∂1 + k − 5) (2∂1 − k − 1)

− χ4,k,ν ,

χ2,k,ν = {ν2
1 − (k − 3)2} + {ν2

2 − (k − 2)2},
χ4,k,ν = {ν2

1 − (k − 2)2}{ν2
2 − (k − 2)2},

and ∂i = xi
∂

∂xi
is the Euler operator with respect to

the variable xi.
Proof. It is easy to see that the eigenvalues

of the scalar actions of C2 and C4 on Wh(π, η, τ)
are χ2,k,ν and χ4,k,ν , respectively. By computing
their explicit actions from Lemma 4.3, the equa-
tions D2ϕ = D4ϕ = 0 can be obtained. The op-
erator m3(C−) maps the K-type τ∗ = τ(k,k,k) into
τ(k−2,k−2,k−2) in the Harish-Chandra module of π

from the definition. However, since τ(k,k,k) is the
corner K-type of π, the K-module τ(k−2,k−2,k−2)

does not occur in the K-types of π. Therefore
each element in Wh(π, η, τ) vanishes by the action
of m3(C−), and the equation D3ϕ = 0 follows.

By combining the results of Kostant ([6] Theo-
rem 6.8.1) and Matumoto ([8] Corollary 2.2.2, The-
orem 6.2.1) together with some standard arguments,
we obtain the following assertion.

Corollary 4.5. Let π, τ , and η be as above.
Then we have

dimC Iη,π = dimC Wh(π, η, τ) =
1
2
|W | = 24,

and thus every solution of the holonomic system in
Theorem 4.4 gives an element of Wh(π, η, τ)|A. Here
W 	 {±1}3 × S3 is the little Weyl group W (g, ap).

5. Secondary Whittaker functions. The
holonomic system (1) has regular singularities along
3 divisors x1 = 0, x2 = 0, and x3 = 0 with normal
crossing at x = (0, 0, 0), in the sense of [11]. In this
section, we determine the power series solutions of
the system (1) around the point x = (0, 0, 0), which
are called the secondary Whittaker functions.

First, we give 24 characteristic indices for the
secondary Whittaker functions. For a characteristic
index γ = (γ1, γ2, γ3) for the holonomic system (1),
put δ = (δ1, δ2, δ3) = (γ1,−γ1 + γ2,−γ2 + γ3). Then
we have

(2) δ = σ

(
ε1ν1

2
,
ε2ν2

2
,
k − 1

2

)
,

with ε1, ε2 ∈ {±1} and σ ∈ S3. Here S3 means the
symmetric group of degree 3.

The explicit secondary Whittaker functions for
(π, η, τ) are given in the following theorem, which is
the main result in this paper.

Theorem 5.1. For each γ ∈ C3 such that δ is
given in (2), put

Mγ(x) = x
3/2+γ1
1 x

5/2+γ2
2 x3+γ3

3 exp
(
−x3

2

)
×

∑
l,m,n≥0

Cγ
l,m,nxl

1x
m
2 xn

3 ,

where the coefficients {Cγ
l,m,n} are defined as follows:

For l, m, n ∈ Z≥0 and constants a, b, c, a′, b′, c′, put

kl,m,n = kl,m,n(a, b, c, a′, b′, c′)

=
1
n!

· (m + a)n(−l + b)n

(c)n

× 4F3

(
−n, 1 − n − c, −m + a′, l + b′

1 − n − m − a, 1 − n + l − b, c′

∣∣∣∣ 1
)

,

where (a)n is Pochhammer’s symbol and pFq is the
generalized hypergeometric function (cf. [12]). If ei-
ther δ1 or δ2 is k−1

2 , then

Cγ
l,m,n =

1
m!

Γ
[

l + m − n + α2, α1, α3

m − n + α1, l + α2, m + α3

]

× Γ
[

α4, α5, α6

n + α4, l + α5, l + α6

]
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× kl,m,n(α4,−α2 + 1,−α3 + α4 + 1,

0, α2 + α4 − 1, α3 + α4 − 1),

with

α1 = −δ3 +
k + 1

2
, α2 = δ1 − δ3 + 1,

α3 = δ∗ − δ3 + 1, α4 = δ∗ + δ3 + 1,

α5 = δ1 −
k − 3

2
, α6 = −δ2 +

k + 1
2

,

and δ∗ = δ1 + δ2 − k−1
2 . If δ3 = k−1

2 , then

Cγ
l,m,n =

1
(m − n)!l!

Γ
[

l + m − n + β1, β2

l + β1, l + β2

]

× Γ
[

β3, β1, β4

n + β3, m + β1, m + β4

]

× km,l,n(β3, −β1 + 1, −β2 + β3 + 1,

0, β1 + β3 − 1, β2 + β3 − 1),

for m ≥ n and Cγ
l,m,n = 0 for m < n, where

β1 = δ1 −
k − 3

2
, β2 = δ1 − δ2 + 1,

β3 = δ1 + δ2 + 1, β4 = δ2 −
k − 3

2
.

Then, the set {Mγ(x)} gives a system of linearly in-
dependent solutions of the holonomic system (1) at
x = (0, 0, 0).

Proof. To obtain this result, we transform the
system (1) into a system of difference equations for
the coefficients of formal power series solutions. The
resulted system can be reduced the difference equa-
tions in the next lemma.

Lemma 5.2. For any constants a, b, c, a′, b′,
c′ such that c, c′ 
∈ Z≤0 and a, b 
∈ Z, {kl,m,n} satis-
fies the following two difference equations.

f1(l, m, n)kl,m,n = f2(l, m, n)kl,m,n−1

+ 2(m − a′)(m + a − c)kl,m−1,n,

g(l, m, n)kl,m,n = (m − a′)(m + a − c)kl,m−1,n

− (l − b)(l + b′ − c′)kl−1,m,n.

Here

f1(l, m) = n2 + (−2m + 2a′ + c − 1)n

+ 2(m − a′)(m + a − c),

f2(l, m, n) = n2 − (m + l − 2a′ − a − b + 2)n

− (a + a′ − 1)(m + l − a′ − b + 1),

g(l, m, n) = (l − m − a − b + c)n

− (l + m − a′ − b)(l − m − a − b + c),
and we promise that kl,m,n = 0 if l, m, or n < 0.
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