Noether's problem for some meta-abelian groups of small degree

By Akinari Hoshi

Department of Mathematical Sciences, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Communicated by Heisuke Hironaka, M. J. A., Jan. 12, 2005)

Abstract: In this note we solve Noether's problem over \mathbf{Q} for some meta-abelian groups of small degree n. Let G be a subgroup of the group of one-dimensional affine transformations on $\mathbf{Z}/n\mathbf{Z}$ which contains $\mathbf{Z}/n\mathbf{Z}$. For n=9,10,12,14,15, we show that Noether's problem for G has an affirmative answer by constructing an explicit transcendental basis of the fixed field over \mathbf{Q} .

Key words: Inverse Galois problem; generic polynomial; affine transformation group.

1. Introduction. Let $K = \mathbf{Q}(x_0, \dots, x_{n-1})$ be the field of rational functions in n variables and Ga transitive subgroup of S_n the symmetric group of degree n. Let G act on K by permuting the variables x_0, \ldots, x_{n-1} . Emmy Noether [11, 12] raised the following problem which is called Noether's problem for G (over \mathbf{Q}): Is the subfield K^G of G-invariant elements of K rational (i.e. purely transcendental) over **Q**? This is one of central problems of the inverse Galois theory because if this problem has an affirmative answer then we get a \mathbf{Q} -generic polynomial for G (cf. [7]). The polynomial $g(\mathbf{t}; X) := g(t_1, \dots, t_n; X) \in$ $\mathbf{Q}(t_1,\ldots,t_n)[X]$, where t_1,\ldots,t_n and X are indeterminates, is called \mathbf{Q} -generic for G if the splitting field of $g(\mathbf{t}; X)$ over $\mathbf{Q}(t_1, \dots, t_n)$ has Galois group Gand every Galois extension L/M with $Gal(L/M) \cong$ G and $M \supset \mathbf{Q}$ is the splitting field of a polynomial $g(\mathbf{a};X)$ for some $\mathbf{a}=(a_1,\ldots,a_n)\in M^n$. Namely every G-extension over a field M whose characteristic is zero can be obtained by some specialization of the parameters of $g(\mathbf{t}; X)$. In this note we shall solve Noether's problem for some meta-abelian groups Gof small degree n by constructing an explicit transcendental basis of K^G over \mathbf{Q} . Let $\mathrm{Aff}(\mathbf{Z}/n\mathbf{Z})$ be the group of one-dimensional affine transformations on $\mathbb{Z}/n\mathbb{Z}$. We have $\operatorname{Aff}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z}) \rtimes (\mathbb{Z}/n\mathbb{Z})^*$. The main result of this note is the following

Main Theorem. Let G be a subgroup of $Aff(\mathbf{Z}/n\mathbf{Z})$ containing $\mathbf{Z}/n\mathbf{Z}$. For n=9,10,12,14,15, Noether's problem for G has an affirmative answer.

We treated this problem in the cases $n \leq 7$ and n = 11 in [3, 4, 6]. In the previous paper [6], we ex-

tended Masuda's method [8, 9] for cyclic groups C_n , and we also use Masuda's approach in this note (cf. Lemma 1). Note that n=8 is the smallest degree for which K^{C_n} is not rational over \mathbf{Q} . Moreover it is known that there does not exist \mathbf{Q} -generic polynomial for C_{8m} , and hence Noether's problem for C_{8m} has a negative answer (see [7]). Recently, however, it has been showed that K^{D_8} , K^{QD_8} and $K^{M_{16}}$ are rational over \mathbf{Q} , where D_8 (resp. QD_8 , M_{16}) is the dihedral (resp. quasi-dihedral, modular) group of order 16 (see [1, 5]). The case n=13 can not be applied original Masuda's approach as remarked by Endo-Miyata [2]. We shall treat some prime degree cases n=p with $p\geq 13$ in a separate paper by studying the structure of the fixed field K^{C_p} in detail.

2. Preliminaries. In this section, we recall Masuda's method [8] for cyclic groups and its extension [6] for subgroups of Aff($\mathbb{Z}/n\mathbb{Z}$). Let σ be the cyclic permutation of the variables x_0, \ldots, x_{n-1} , i.e. $\sigma(x_0) = x_1, \ldots, \sigma(x_{n-1}) = x_0$ and τ_{λ} the x_0 fixed permutation defined by $\tau_{\lambda}(x_i) = x_{\lambda i}$ for $\lambda \in$ $(\mathbf{Z}/n\mathbf{Z})^*$, where we take the subscript of x modulo n. We can identify a subgroup G of $Aff(\mathbf{Z}/n\mathbf{Z})$ which contains $\mathbf{Z}/n\mathbf{Z}$ with $\langle \sigma, \tau_{\lambda_1}, \dots, \tau_{\lambda_r} \rangle$ for cer $tain \lambda_1, \ldots, \lambda_r \in (\mathbf{Z}/n\mathbf{Z})^*$. For example, we have $D_n = \langle \sigma, \tau_{-1} \rangle$; the dihedral group of order 2n. Let ζ be a primitive *n*-th root of unity, $k := \mathbf{Q}(\zeta)$, $y_j := \sum_{i=0}^{n-1} \zeta^{-ij} x_i$, and $c_{j,k} := y_j y_k / y_{j+k}$ for j,k = 0 $0, \ldots, n-1$. We shall take the subscript of y and c modulo n, since $y_j = y_{mn+j}, (j = 0, ..., n-1)$. We have that $K^G(\zeta) = \mathsf{k}(x_0, \dots, x_{n-1})^G$ for $G \subset S_n$ and $k(x_0, ..., x_{n-1}) = k(y_0, ..., y_{n-1})$. And we see that the actions of σ and τ_{λ} on the y_j 's and the $c_{j,k}$'s are given by $\sigma(y_i) = \zeta^j y_i, \sigma(c_{i,k}) = c_{i,k}, \tau_{\lambda}(y_i) =$

²⁰⁰⁰ Mathematics Subject Classification. Primary 12F12; Secondary 11R32, 12F10.

 $y_{\lambda^{-1}j}, \tau_{\lambda}(c_{j,k}) = c_{\lambda^{-1}j,\lambda^{-1}k}, \text{ for } j,k = 0,\ldots,n-1.$ First we can obtain that

$$k(x_0, \dots, x_{n-1})^{C_n} = k(c_{j,k} \mid 0 \le j, k \le n-1),$$

and the $c_{i,k}$'s satisfy the following relations:

(1)
$$c_{j,k} = \frac{c_{1,k}c_{1,k+1}\cdots c_{1,k+j-1}}{c_{1,1}c_{1,2}\cdots c_{1,j-1}}, \quad (j \ge 2).$$

Hence we have

(2)
$$\mathsf{k}(x_0,\ldots,x_{n-1})^{C_n} = \mathsf{k}(c_{1,0},c_{1,1},\ldots,c_{1,n-1}).$$

Namely $k(x_0, ..., x_{n-1})^{C_n}$ is rational over k for any n. Masuda's method teaches us when we can descend the base field from k to \mathbf{Q} . For $f \in k(x_0, ..., x_{n-1})^{C_n}$, we define a set $[f]_{\text{conj}} := \{ \text{ all conjugates of } f \text{ over } K^{C_n} \}$ and we put $\iota(f) := \#[f]_{\text{conj}}$.

Lemma 1 (Masuda [8]). Suppose that there exist elements $a_1, \ldots, a_t \in \mathsf{k}(x_0, \ldots, x_{n-1})^{C_n}$ such that $\mathsf{k}(x_0, \ldots, x_{n-1})^{C_n} = \mathsf{k}([a_i]_{\operatorname{conj}} \mid 1 \leq i \leq t)$ and $\sum_{i=1}^t \iota(a_i) = n$. Let $\omega_{i,1}, \ldots, \omega_{i,\iota(a_i)}$ be a basis of $\mathsf{k} \cap K^{C_n}(a_i)$ over \mathbf{Q} . If we write $a_i = \sum_{j=1}^{\iota(a_i)} \omega_{i,j} m_{j,i}$, $(m_{j,i} \in K^{C_n})$, for $i = 1, \ldots, t$, then $K^{C_n} = \mathbf{Q}(m_{j,i} \mid 1 \leq i \leq t, 1 \leq j \leq \iota(a_i))$.

Indeed, in the next section, we shall give such elements a_1, \ldots, a_t as in above lemma for n = 9, 10, 12, 14, 15 explicitly. For a subgroup $G = \langle \sigma, \tau_{\lambda_1}, \ldots, \tau_{\lambda_r} \rangle$ of Aff($\mathbf{Z}/n\mathbf{Z}$) containing $\mathbf{Z}/n\mathbf{Z}$, we have from Lemma 1 that

$$K^{G} = (K^{C_{n}})^{G/C_{n}} = (K^{\langle \sigma \rangle})^{\langle \tau_{\lambda_{1}}, \dots, \tau_{\lambda_{r}} \rangle}$$
$$= \mathbf{Q}(m_{j,i} \mid 1 \leq i \leq t, 1 \leq j \leq \iota(a_{i}))^{\langle \tau_{\lambda_{1}}, \dots, \tau_{\lambda_{r}} \rangle}.$$

We also can obtain the action of τ_{λ} on the transcendental basis $\{m_{j,i}\}$ of K^{C_n} over \mathbf{Q} by using the equation $\tau_{\lambda}(c_{j,k}) = \alpha_{\lambda^{-1}}(c_{j,k})$ for $\lambda \in (\mathbf{Z}/n\mathbf{Z})^*$, where $\alpha_{\lambda} \in \operatorname{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q})$ such that $\alpha_{\lambda}(\zeta) = \zeta^{\lambda}$.

Let $x_0^{(j)},\ldots,x_{n-1}^{(j)},(j=1,\ldots,m)$ be variables and $L:=K(x_0^{(1)},\ldots,x_{n-1}^{(1)},\ldots,x_{n-1}^{(m)},\ldots,x_{n-1}^{(m)})$. It is well-known from the No-Name Lemma that if C_n acts on L as the cyclic permutation of the variables $x^{(j)}:x_0\mapsto\cdots\mapsto x_{n-1}\mapsto x_0,\,x_0^{(j)}\mapsto\cdots\mapsto x_{n-1}^{(j)}\mapsto x_0^{(j)}$ for $j=1,\ldots,m$, then L^{C_n} is rational over K^{C_n} (cf. [10],[7, page 22]). Moreover we can give an explicit transcendental basis of L^{C_n} over K^{C_n} .

Lemma 2 ([6]). We have

$$L^{C_n} = K^{C_n} \left(\text{Tr}(x_0 x_0^{(1)}), \dots, \text{Tr}(x_0 x_{n-1}^{(1)}), \dots, \text{Tr}(x_0 x_{n-1}^{(m)}), \dots, \text{Tr}(x_0 x_{n-1}^{(m)}) \right),$$

where Tr is the trace under the action of C_n .

Proof. The assertion follows from

$$L = K(\operatorname{Tr}(x_0 x_0^{(1)}), \dots, \operatorname{Tr}(x_0 x_{n-1}^{(1)}), \dots, \operatorname{Tr}(x_0 x_0^{(m)}), \dots, \operatorname{Tr}(x_0 x_{n-1}^{(m)})),$$

(see also [6]).

3. Explicit transcendental basis of K^G . We shall solve Noether's problem for subgroups G of $Aff(\mathbf{Z}/n\mathbf{Z})$ containing $\mathbf{Z}/n\mathbf{Z}$ for each degree n=9,10,12,14,15.

For n = 9, the subgroups of Aff($\mathbf{Z}/9\mathbf{Z}$) containing $\mathbf{Z}/9\mathbf{Z}$ are $C_9 = \langle \sigma \rangle$, $D_9 = \langle \sigma, \tau_{-1} \rangle$ ($\cong C_9 \rtimes C_2$), $G_{9,3} := \langle \sigma, \tau_4 \rangle$ ($\cong C_9 \rtimes C_3$), Aff($\mathbf{Z}/9\mathbf{Z}$) = $\langle \sigma, \tau_2 \rangle$ ($\cong C_9 \rtimes C_6$).

Proposition 1. We have

$$\begin{aligned} &\mathsf{k}(x_0,\dots,x_8)^{C_9} \\ &= \mathsf{k}(c_{0,1},[c_{1,2}+c_{4,8}+c_{5,7}]_{\mathrm{conj}},[c_{1,4}]_{\mathrm{conj}}). \end{aligned}$$

Proof. We see easily that $c_{0,1}=y_0=x_0+\cdots+x_8\in K^{C_9},\ [c_{1,2}]_{\mathrm{conj}}=\{c_{1,2},c_{2,4},c_{4,8},c_{1,5},c_{5,7},c_{7,8}\}$ and $[c_{1,4}]_{\mathrm{conj}}=\{c_{1,4},c_{2,8},c_{4,7},c_{2,5},c_{1,7},c_{5,8}\}$. By using (1), we can obtain that

$$\begin{split} c_{1,1} &= \frac{c_{1,6}c_{7,8}}{c_{2,8}}, \ c_{1,3} = \frac{c_{1,6}c_{7,8}}{c_{4,8}}, \ c_{1,5} = \frac{c_{2,5}c_{7,8}}{c_{2,8}}, \\ c_{1,6} &= \frac{c_{1,2}c_{2,5}c_{4,7}}{c_{2,4}c_{5,7}}, \ c_{1,7} = \frac{c_{1,2}c_{4,7}}{c_{4,8}}, \ c_{1,8} = \frac{c_{1,6}c_{7,8}}{c_{0,1}}. \end{split}$$

Therefore it follows from (2) that $\mathsf{k}(x_0,\ldots,x_8)^{C_9} = \mathsf{k}(c_{0,1},[c_{1,2}]_{\mathrm{conj}},[c_{1,4}]_{\mathrm{conj}})$. And we have the following relations:

$$c_{1,5}c_{2,8} - c_{2,5}c_{7,8} = 0,$$
 $c_{2,4}c_{5,8} - c_{2,5}c_{7,8} = 0,$
 $c_{1,2}c_{4,7} - c_{1,7}c_{4,8} = 0,$ $c_{1,2}c_{4,7} - c_{1,4}c_{5,7} = 0.$

Put $u_{1,2} := c_{1,2} + c_{4,8} + c_{5,7}, u_{1,5} := c_{1,5} + c_{2,4} + c_{7,8},$ then we have from above equations that

$$\begin{split} c_{4,8} &= \frac{c_{1,4}c_{4,7}u_{1,2}}{W_1}, \qquad c_{5,7} = \frac{c_{1,7}c_{4,7}u_{1,2}}{W_1}, \\ c_{2,4} &= \frac{c_{2,5}c_{2,8}u_{1,5}}{W_2}, \qquad c_{7,8} = \frac{c_{2,8}c_{5,8}u_{1,5}}{W_2}, \end{split}$$

where $W_1 = c_{1,4}c_{1,7} + c_{1,4}c_{4,7} + c_{1,7}c_{4,7}, W_2 = c_{2,5}c_{2,8} + c_{2,5}c_{5,8} + c_{2,8}c_{5,8}$. The assertion follows from $\mathsf{k}(x_0,\ldots,x_8)^{C_9} = \mathsf{k}(c_{0,1},u_{1,2},u_{1,5},[c_{1,4}]_{\mathrm{conj}})$.

Thus it follows from Lemma 1 that

$$K^{C_9} = \mathbf{Q}(y_0, s_1', s_2', t_1', t_2', \dots, t_6'),$$

where

$$c_{1,2} + c_{4,8} + c_{5,7} = s_1' \zeta^3 + s_2' \zeta^6,$$

 $c_{1,4} = t_1' \zeta + t_2' \zeta^2 + \dots + t_6' \zeta^6.$

We see that the τ_2 -action on K^{C_9} is given by

$$y_0 \mapsto y_0, \ s'_1 \leftrightarrow s'_2,$$

 $t'_1 \mapsto t'_2 - t'_5, \ t'_2 \mapsto t'_4, \ t'_3 \leftrightarrow t'_6, \ t'_4 \mapsto -t'_5, \ t'_5 \mapsto t'_1,$

since $\tau_2(c_{1,4}) = \alpha_5(c_{1,4})$, where $\alpha_5(\zeta) = \zeta^5$. We use the following non-singular transformation

$$\begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \end{bmatrix} := \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} t_1' \\ t_2' \\ t_3' \\ t_4' \\ t_5' \\ t_6' \end{bmatrix}.$$

Then we have

$$K^{C_9} = \mathbf{Q}(y_0, s_1', s_2', t_1, t_2, \dots, t_6)$$

and the τ_2 -action on it can be described as

$$y_0 \mapsto y_0, \ s_1' \leftrightarrow s_2', \ t_1 \mapsto t_2 \mapsto \cdots \mapsto t_6 \mapsto t_1.$$

We see that $s_1' = f_1^{(3)}/f_3^{(2)}$, $s_2' = f_2^{(3)}/f_3^{(2)}$, $t_i = g_i^{(7)}/g_7^{(6)}$, where $f_j^{(k)}$, $g_i^{(k)}$ are homogeneous elements of degree k in $\mathbf{Q}[x_0, \ldots, x_8]$ for j = 1, 2, 3 and $i = 1, \ldots, 7$. From Lemma 2, we put

$$s_1 := s'_1(t_1 + t_3 + t_5) + s'_2(t_2 + t_4 + t_6),$$

$$s_2 := s'_1(t_2 + t_4 + t_6) + s'_2(t_1 + t_3 + t_5),$$

then we see that s_1, s_2 are τ_2 -invariants, i.e. Aff($\mathbf{Z}/9\mathbf{Z}$)-invariants, and we have

$$K^{C_9} = \mathbf{Q}(y_0, s_1, s_2, t_1, t_2, \dots, t_6).$$

For D_9 and $G_{9,3} = \langle \sigma, \tau_4 \rangle$, since the τ_{-1} -action (resp. τ_4 -action) on K^{C_9} above is given by $t_1 \leftrightarrow t_4$, $t_2 \leftrightarrow t_5$, $t_3 \leftrightarrow t_6$ (resp. $t_1 \mapsto t_3 \mapsto t_5 \mapsto t_1$, $t_2 \mapsto t_4 \mapsto t_6 \mapsto t_2$), we have from Lemma 2 that

 $K^{D_9} = (K^{C_9})^{\langle \tau_{-1} \rangle}$

$$= \mathbf{Q}(y_0, s_1, s_2, t_1 + t_4, t_1t_4, t_1t_2 + t_4t_5, t_1t_5 + t_2t_4, t_1t_3 + t_4t_6, t_1t_6 + t_3t_4),$$

$$K^{G_{9,3}} = (K^{C_9})^{\langle \tau_4 \rangle}$$

$$= \mathbf{Q}\left(y_0, s_1, s_2, t_1 + t_3 + t_5, \frac{\operatorname{Nr}(t_1 + t_3 - 2t_5)}{\operatorname{Tr}(t_1^2 - t_1t_3)}, \frac{\operatorname{Nr}(t_1 - t_3)}{\operatorname{Tr}(t_1^2 - t_1t_3)}, \operatorname{Tr}(t_1t_2), \operatorname{Tr}(t_1t_4), \operatorname{Tr}(t_1t_6)\right),$$

where Nr and Tr are the norm and the trace under the action of τ_4 . Because it is well-known a transcendental basis of $\mathbf{Q}(x_0,\ldots,x_5)^{C_6} = \mathbf{Q}(z_1,\ldots,z_6)$ over \mathbf{Q} (see, for example, [6]), we can obtain an explicit transcendental basis of $K^{\mathrm{Aff}(\mathbf{Z}/9\mathbf{Z})}$ over \mathbf{Q} by using z_1,\ldots,z_6 . For n=10, we see that the subgroups of Aff($\mathbf{Z}/10\mathbf{Z}$) containing $\mathbf{Z}/10\mathbf{Z}$ are $C_{10} = \langle \sigma \rangle$, $D_{10} = \langle \sigma, \tau_{-1} \rangle$, Aff($\mathbf{Z}/10\mathbf{Z}$) = $\langle \sigma, \tau_{3} \rangle$ ($\cong C_{10} \rtimes C_{4}$). In the previous paper [6], we showed the following

Proposition 2 ([6]). We have

$$k(x_0, ..., x_9)^{C_{10}}$$

= $k(c_{0,1}, [c_{1,4}]_{\text{conj}}, [c_{1,8}]_{\text{conj}}, c_{1,9} + c_{3,7}).$

Hence, by applying Lemma 1 to Proposition 2, we have

$$K^{C_{10}} = \mathbf{Q}(y_0, r_1, s'_1, \dots, s'_4, t_1, \dots, t_4),$$

where

$$r_1 = c_{1,9} + c_{3,7},$$

$$c_{1,4} = s'_1 \zeta + s'_2 \zeta^3 + s'_4 \zeta^7 + s'_3 \zeta^9,$$

$$c_{1,8} = t_1 \zeta + t_2 \zeta^3 + t_4 \zeta^7 + t_3 \zeta^9.$$

And the action of τ_3 on it is given by

$$y_0 \mapsto y_0, \ r_1 \mapsto r_1,$$

 $s'_1 \mapsto s'_2 \mapsto s'_3 \mapsto s'_4 \mapsto s'_1,$
 $t_1 \mapsto t_2 \mapsto t_3 \mapsto t_4 \mapsto t_1.$

We also see that $s_i' = f_i^{(5)}/f_5^{(4)}$, $t_j = g_j^{(5)}/g_5^{(4)}$, where $f_i^{(k)}$, $g_j^{(k)}$ are homogeneous elements of degree k in $\mathbf{Q}[x_0,\ldots,x_9]$ for $i,j=1,\ldots,5$. From Lemma 2, we put $s_i := \mathrm{Tr}(s_1't_i)$ for $i=1,\ldots,4$, where Tr is the trace under the action of τ_3 , then we see that s_1,\ldots,s_4 are τ_3 -invariants (i.e. Aff $(\mathbf{Z}/10\mathbf{Z})$ -invariants) and we have

$$K^{C_{10}} = \mathbf{Q}(y_0, r_1, s_1, \dots, s_4, t_1, \dots, t_4).$$

Therefore if we put $u_1 := t_1 + t_3$, $u_2 := t_2 + t_4$, $v_1 := t_1 - t_3$, $v_2 := t_2 - t_4$, then we get

$$K^{D_{10}} = \mathbf{Q}(y_0, r_1, s_1, s_2, s_3, s_4, t_1 + t_3, t_1t_3, t_1t_2 + t_3t_4, t_1t_4 + t_2t_3),$$

$$K^{\text{Aff}(\mathbf{Z}/10\mathbf{Z})} = \mathbf{Q}(y_0, r_1, s_1, \dots, s_4, u_1 + u_2, v_1^2 + v_2^2, (u_1 - u_2)v_1v_2, (u_1 - u_2)(v_1^2 - v_2^2)).$$

For n=12, the groups $C_{12}=\langle \sigma \rangle$, $D_{12}=\langle \sigma, \tau_{-1} \rangle$, $G_{12,2}^{(1)}=\langle \sigma, \tau_{5} \rangle$, $G_{12,2}^{(2)}=\langle \sigma, \tau_{7} \rangle$ and $\operatorname{Aff}(\mathbf{Z}/12\mathbf{Z})=\langle \sigma, \tau_{-1}, \tau_{5} \rangle$ ($\cong C_{12} \rtimes (C_{2} \rtimes C_{2})$) are subgroups of $\operatorname{Aff}(\mathbf{Z}/12\mathbf{Z})$ which contain $\mathbf{Z}/12\mathbf{Z}$.

Proposition 3. We have

$$\mathsf{k}(x_0,\dots,x_{11})^{C_{12}} = \mathsf{k}(c_{0,1},[c_{1,2}+c_{5,10}]_{\mathrm{conj}},[c_{1,3}]_{\mathrm{conj}}, \\ [c_{1,5}]_{\mathrm{conj}},[c_{1,7}]_{\mathrm{conj}},c_{1,11}+c_{5,7}).$$

Proof. We have that $c_{0,1} = y_0 = x_0 + \cdots + x_{11} \in K^{C_{12}}$, $[c_{1,2}]_{\text{conj}} = \{c_{1,2}, c_{5,10}, c_{2,7}, c_{10,11}\}$, $[c_{1,3}]_{\text{conj}} = \{c_{1,3}, c_{3,5}, c_{7,9}, c_{9,11}\}$, $[c_{1,5}]_{\text{conj}} = \{c_{1,5}, c_{7,11}\}$, $[c_{1,7}]_{\text{conj}} = \{c_{1,7}, c_{5,11}\}$ and $[c_{1,11}]_{\text{conj}} = \{c_{1,11}, c_{5,7}\}$. By using (1), we can obtain that

$$\begin{split} c_{1,1} &= \frac{c_{0,1}c_{1,7}c_{1,11}}{c_{2,7}c_{9,11}}, \ c_{1,4} = \frac{c_{0,1}c_{1,11}}{c_{5,11}}, \ c_{1,6} = \frac{c_{0,1}c_{1,11}}{c_{7,11}}, \\ c_{1,8} &= \frac{c_{0,1}c_{1,11}}{c_{9,11}}, \ c_{1,9} = \frac{c_{0,1}c_{1,11}}{c_{10,11}}, \ c_{1,10} = \frac{c_{1,3}c_{5,10}}{c_{5,11}}. \end{split}$$

Hence it follows from (2) that $k(x_0, ..., x_{11})^{C_{12}} = k(c_{0,1}, [c_{1,i}]_{\text{conj}} | i = 2, 3, 5, 7, 11)$ and we also have

$$\begin{aligned} c_{1,3}c_{5,10}c_{7,11} - c_{1,5}c_{7,9}c_{10,11} &= 0, \\ c_{1,2}c_{5,7}c_{10,11} - c_{1,11}c_{2,7}c_{5,10} &= 0, \\ c_{1,3}c_{5,7}c_{9,11} - c_{1,11}c_{3,5}c_{7,9} &= 0. \end{aligned}$$

Put $u_{1,2} := c_{1,2} + c_{5,10}$, $u_{2,7} := c_{2,7} + c_{10,11}$, $u_{1,11} := c_{1,11} + c_{5,7}$, then we have from above equations that

$$c_{5,10} = \frac{c_{7,9}(c_{3,5}c_{7,11}u_{1,2} - c_{1,5}c_{9,11}u_{2,7})}{c_{7,11}(c_{3,5}c_{7,9} - c_{1,3}c_{9,11})},$$

$$c_{10,11} = \frac{c_{1,3}(c_{3,5}c_{7,11}u_{1,2} - c_{1,5}c_{9,11}u_{2,7})}{c_{1,5}(c_{3,5}c_{7,9} - c_{1,3}c_{9,11})},$$

$$c_{5,7} = \frac{c_{3,5}c_{7,9}u_{1,11}}{c_{3,5}c_{7,9} + c_{1,3}c_{9,11}}.$$

Thus the assertion follows from $k(x_0, ..., x_{11})^{C_{12}} = k(c_{0,1}, u_{1,2}, u_{2,7}, [c_{1,3}]_{\text{conj}}, [c_{1,5}]_{\text{conj}}, [c_{1,7}]_{\text{conj}}, u_{1,11}).$

By applying Lemma 1 to Proposition 3, we have

$$K^{C_{12}} = \mathbf{Q}(y_0, r_1, s_1', s_2', s_3', s_4', t_1, t_2, u_1', u_2', v_1, v_2),$$

where

$$r_1 = c_{1,11} + c_{5,7},$$

$$c_{1,3} = s'_1 \zeta + s'_2 \zeta^2 + s'_3 \zeta^3 + s'_4 \zeta^4,$$

$$c_{1,5} = t_1 (\zeta^2 - \zeta^4) + t_2 \zeta^3,$$

$$c_{1,7} = u'_1 \zeta^2 + u'_2 \zeta^4,$$

$$c_{1,2} + c_{5,10} = v_1 (\zeta^2 - \zeta^4) + v_2 \zeta^3.$$

Since $\zeta^2 - \zeta^4 = 1$, we have that y_0 , r_1 , t_1 , v_1 are Aff($\mathbf{Z}/12\mathbf{Z}$)-invariants. From the equation $\tau_{\lambda}(c_{j,k}) = \alpha_{\lambda^{-1}}(c_{j,k})$, we obtain that the action of τ_{-1} (resp. τ_5, τ_7) on $K^{C_{12}}$ above is given as follows: $(s'_1, s'_2, s'_3, s'_4, t_2, u'_1, u'_2, v_2) \mapsto (s'_1, -s'_4, -(s'_1 + s'_3), -s'_2, -t_2, -u'_2, -u'_1, -v_2)$, (resp. $(-s'_1, -s'_4, s'_1 + s'_3, -s'_2, t_2, -u'_2, -u'_1, v_2)$, $(-s_1, s_2, -s_3, s_4, -t_2, u'_1, u'_2, -v_2)$). Now we use the following bi-rational transformation:

$$\begin{cases} s_1 := s'_1, \\ s_2 := s'_2 + s'_4, \\ s_3 := s'_1 + 2s'_3, \\ s_4 := s'_2 - s'_4, \\ u_1 := u'_1 + u'_2, \\ u_2 := u'_1 - u'_2, \end{cases} \begin{cases} s'_1 = s_1, \\ s'_2 = (s_2 + s_4)/2, \\ s'_3 = (-s_1 + s_3)/2, \\ s'_4 = (s_2 - s_4)/2, \\ u'_1 = (u_1 + u_2)/2, \\ u'_2 = (u_1 - u_2)/2. \end{cases}$$

Then we have that s_4, u_2 are Aff($\mathbf{Z}/12\mathbf{Z}$)-invariants and $\tau_{-1}: (s_1, s_2, s_3, u_1) \mapsto (s_1, -s_2, -s_3, -u_1), \ \tau_5: (s_1, s_2, s_3, u_1) \mapsto (-s_1, -s_2, s_3, -u_1), \ \tau_7 = \tau_{-1}\tau_5.$ We put $W:=(y_0, r_1, s_4, t_1, u_2, v_1)$ then $K^{C_{12}}=\mathbf{Q}(W, s_1, s_2, s_3, t_2, u_1, v_2)$, and hence we get

$$K^{D_{12}} = \mathbf{Q}\left(W, s_1, s_2^2, \frac{s_3}{s_2}, \frac{t_2}{s_2}, \frac{u_1}{s_2}, \frac{v_2}{s_2}\right),$$

$$K^{G_{12,2}^{(1)}} = \mathbf{Q}\left(W, s_1^2, \frac{s_2}{s_1}, s_3, t_2, \frac{u_1}{s_1}, v_2\right),$$

$$K^{G_{12,2}^{(2)}} = \mathbf{Q}\left(W, s_1^2, s_2, \frac{s_3}{s_1}, \frac{t_2}{s_1}, u_1, \frac{v_2}{s_1}\right).$$

Since τ_5 acts on $K^{D_{12}}$ as

$$\left(s_1, s_2^2, \frac{s_3}{s_2}, \frac{t_2}{s_2}, \frac{u_1}{s_2}, \frac{v_2}{s_2}\right)$$

$$\mapsto \left(-s_1, s_2^2, -\frac{s_3}{s_2}, -\frac{t_2}{s_2}, \frac{u_1}{s_2}, -\frac{v_2}{s_2}\right),$$

we have

$$K^{\text{Aff}(\mathbf{Z}/12\mathbf{Z})} = \mathbf{Q}\Big(W, s_1^2, s_2^2, \frac{s_3}{s_1s_2}, \frac{t_2}{s_1s_2}, \frac{u_1}{s_2}, \frac{v_2}{s_1s_2}\Big).$$

For n=14, we have that the subgroups of Aff($\mathbf{Z}/14\mathbf{Z}$) containing $\mathbf{Z}/14\mathbf{Z}$ are $C_{14}=\langle \sigma \rangle$, $D_{14}=\langle \sigma, \tau_{-1} \rangle$, $G_{14,3}:=\langle \sigma, \tau_{9} \rangle$ ($\cong C_{14} \rtimes C_{3}$), Aff($\mathbf{Z}/14\mathbf{Z}$) = $\langle \sigma, \tau_{3} \rangle$ ($\cong C_{14} \rtimes C_{6}$).

Proposition 4. We have

$$\begin{aligned} &\mathsf{k}(x_0,\dots,x_{13})^{C_{14}} \\ &= \mathsf{k}(c_{0,1},[c_{1,6}]_{\mathrm{conj}},[c_{1,12}]_{\mathrm{conj}},c_{1,13}+c_{3,11}+c_{5,9}). \end{aligned}$$

Proof. We have that $c_{0,1} = y_0 = x_0 + \cdots + x_{13} \in K^{C_{14}}$, $[c_{1,6}]_{\text{conj}} = \{c_{1,6}, c_{3,4}, c_{2,5}, c_{9,12}, c_{10,11}, c_{8,13}\}$, $[c_{1,12}]_{\text{conj}} = \{c_{1,12}, c_{3,8}, c_{4,5}, c_{9,10}, c_{6,11}, c_{2,13}\}$ and $[c_{1,13}]_{\text{conj}} = \{c_{1,13}, c_{3,11}, c_{5,9}\}$. By using (1), we can obtain that

$$c_{1,1} = \frac{c_{0,1}c_{1,13}}{c_{2,13}}, \quad c_{1,2} = \frac{c_{1,5}c_{2,5}c_{6,11}c_{9,10}}{c_{0,1}c_{5,9}c_{10,11}},$$

$$c_{1,3} = \frac{c_{0,1}c_{1,13}c_{3,8}c_{10,11}}{c_{4,5}c_{8,13}c_{9,10}}, \quad c_{1,4} = \frac{c_{1,5}c_{3,4}c_{6,11}c_{9,10}}{c_{0,1}c_{5,9}c_{10,11}},$$

$$c_{1,5} = \frac{c_{0,1}c_{1,13}c_{2,5}}{c_{1,6}c_{2,13}}, \quad c_{1,7} = \frac{c_{0,1}c_{1,13}}{c_{8,13}},$$

$$c_{1,8} = \frac{c_{1,5}c_{3,8}c_{6,11}}{c_{0,1}c_{5,9}}, \quad c_{1,9} = \frac{c_{1,5}c_{3,4}c_{6,11}}{c_{4,5}c_{10,11}},$$

$$c_{1,10} = \frac{c_{1,13}c_{3,8}c_{10,11}}{c_{3,11}c_{8,13}}, \quad c_{1,11} = \frac{c_{1,5}c_{3,4}c_{6,11}}{c_{4,5}c_{9,12}}.$$

Thus it follows from (2) that $k(x_0, \ldots, x_{13})^{C_{14}} = k(c_{0,1}, [c_{1,6}]_{\text{conj}}, [c_{1,12}]_{\text{conj}}, [c_{1,13}]_{\text{conj}})$. We also get the following two relations:

$$c_{1,6}c_{3,11}c_{4,5}c_{8,13}c_{9,10} - c_{1,13}c_{3,4}c_{3,8}c_{6,11}c_{10,11} = 0,$$

$$c_{2,5}c_{3,11}c_{4,5}c_{9,10}c_{9,12} - c_{1,12}c_{2,13}c_{3,4}c_{5,9}c_{10,11} = 0.$$

Put $r_1 := c_{1,13} + c_{3,11} + c_{5,9}$, then we have

$$c_{3,11} = \frac{c_{1,12}c_{2,13}c_{3,4}c_{3,8}c_{6,11}c_{10,11}r_1}{c_{1,6}c_{8,13}v_1v_2 + c_{2,5}c_{9,12}v_2v_3 + c_{3,4}c_{10,11}v_1v_3}$$

$$c_{5,9} = \frac{c_{2,5}c_{3,8}c_{4,5}c_{6,11}c_{9,10}c_{9,12}r_1}{c_{1,6}c_{8,13}v_1v_2 + c_{2,5}c_{9,12}v_2v_3 + c_{3,4}c_{10,11}v_1v_3}$$

where $v_1 = c_{1,12}c_{2,13}, v_2 = c_{4,5}c_{9,10}, v_3 = c_{3,8}c_{6,11}$. Hence the assertion follows.

From Lemma 1 we have

$$K^{C_{14}} = \mathbf{Q}(y_0, r_1, s'_1, \dots, s'_6, t_1, \dots, t_6),$$

where

$$r_1 = c_{1,13} + c_{3,11} + c_{5,9},$$

$$c_{1,6} = s'_1 \zeta + s'_2 \zeta^3 + s'_3 \zeta^9 + s'_4 \zeta^{13} + s'_5 \zeta^{11} + s'_6 \zeta^5,$$

$$c_{1,12} = t_1 \zeta + t_2 \zeta^3 + t_3 \zeta^9 + t_4 \zeta^{13} + t_5 \zeta^{11} + t_6 \zeta^5,$$

and the τ_3 -action on it is given by

$$y_0 \mapsto y_0, r_1 \mapsto r_1,$$

 $s'_1 \mapsto s'_2 \mapsto \cdots \mapsto s'_6 \mapsto s'_1,$
 $t_1 \mapsto t_2 \mapsto \cdots \mapsto t_6 \mapsto t_1.$

since $\tau_3(c_{1,k}) = \alpha_5(c_{1,k})$ for k = 6, 12. From Lemma 2, we put $s_i := \text{Tr}(s_1't_i)$ for $i = 1, \ldots, 6$, where Tr is the trace under the action of τ_3 , then we see that s_1, \ldots, s_6 are Aff($\mathbf{Z}/14\mathbf{Z}$)-invariants and

$$K^{C_{14}} = \mathbf{Q}(y_0, r_1, s_1, \dots, s_6, t_1, \dots, t_6).$$

Therefore we obtain an explicit transcendental basis of $K^{D_{14}}$, $K^{G_{14,3}}$ and $K^{Aff}(\mathbf{Z}/14\mathbf{Z})$ by using the same manner as in the case n=9.

For n=15, we see that the subgroups of Aff($\mathbf{Z}/15\mathbf{Z}$) containing $\mathbf{Z}/15\mathbf{Z}$ are $C_{15}=\langle \sigma \rangle$, $D_{15}=\langle \sigma, \tau_{-1} \rangle$, $G_{15,2}^{(1)}:=\langle \sigma, \tau_{4} \rangle$, $(\cong C_{15} \rtimes C_{2} \cong C_{5} \rtimes C_{6} \cong D_{5} \times C_{3})$, $G_{15,2}^{(2)}:=\langle \sigma, \tau_{11} \rangle$, $(\cong C_{15} \rtimes C_{2} \cong S_{3} \times C_{5})$, $G_{15,2,2}:=\langle \sigma, \tau_{-1}, \tau_{4} \rangle$ $(\cong C_{15} \rtimes (C_{2} \times C_{2}))$, $G_{15,4}:=\langle \sigma, \tau_{2} \rangle$ $(\cong C_{15} \rtimes C_{4})$, Aff($\mathbf{Z}/15\mathbf{Z}$) = $\langle \sigma, \tau_{-1}, \tau_{2} \rangle$ $(\cong C_{15} \rtimes (C_{2} \times C_{4}))$. We note that there are precisely 4 groups of order thirty (i.e. C_{30} , D_{15} , $G_{15,2}^{(1)}$, $G_{15,2}^{(2)}$), (cf. [13]).

Proposition 5. We have

$$\begin{split} &\mathsf{k}(x_0,\dots,x_{14})^{C_{15}} \\ &= \mathsf{k}(c_{0,1},[c_{1,4}+c_{11,14}]_{\mathrm{conj}},[c_{1,7}]_{\mathrm{conj}},[c_{1,11}]_{\mathrm{conj}}). \end{split}$$

Proof. We have that $c_{0,1}=y_0=x_0+\cdots+x_{14}\in K^{C_{15}},\ [c_{1,4}]_{\text{conj}}=\{c_{1,4},c_{2,8},c_{7,13},c_{11,14}\},\ [c_{1,7}]_{\text{conj}}=\{c_{1,7},c_{2,14},c_{4,13},c_{4,7},c_{8,11},c_{2,11},c_{1,13},c_{8,14}\}$ and $[c_{1,11}]_{\text{conj}}=\{c_{1,11},c_{2,7},c_{4,14},c_{8,13}\}.$ By using (1), we can obtain that

$$\begin{split} c_{1,1} &= \frac{c_{1,7}c_{8,14}}{c_{2,14}}, \quad c_{1,2} = \frac{c_{1,13}c_{4,14}}{c_{4,13}}, \quad c_{1,3} = \frac{c_{1,7}c_{8,14}}{c_{4,14}}, \\ c_{1,5} &= \frac{c_{1,7}c_{8,13}}{c_{7,13}}, \quad c_{1,6} = \frac{c_{1,13}c_{8,14}}{c_{8,13}}, \quad c_{1,8} = \frac{c_{2,7}c_{8,14}}{c_{2,14}}, \\ c_{1,9} &= \frac{c_{1,7}c_{2,8}}{c_{2,7}}, \quad c_{1,10} = \frac{c_{1,7}c_{8,14}}{c_{11,14}}, \\ c_{1,12} &= \frac{c_{1,7}c_{2,11}c_{8,14}}{c_{1,11}c_{2,14}}, \quad c_{1,14} = \frac{c_{1,7}c_{8,14}}{c_{0,1}}. \end{split}$$

Therefore from (2) we have $k(x_0, \ldots, x_{14})^{C_{15}} = k(c_{0,1}, [c_{1,4}]_{\text{conj}}, [c_{1,7}]_{\text{conj}}, [c_{1,11}]_{\text{conj}})$. And we can obtain the following two relations:

$$c_{1,7}c_{2,8}c_{4,13} - c_{1,13}c_{4,7}c_{11,14} = 0,$$

 $c_{1,4}c_{2,14}c_{8,11} - c_{2,11}c_{7,13}c_{8,14} = 0.$

Put $u_{1,4} := c_{1,4} + c_{11,14}, u_{2,8} = c_{2,8} + c_{7,13}$, then we have

$$\begin{split} c_{11,14} &= \frac{c_{1,7}c_{4,13}(c_{2,14}c_{8,11}u_{1,4} - c_{2,11}c_{8,14}u_{2,8})}{c_{1,7}c_{2,14}c_{4,13}c_{8,11} - c_{1,13}c_{2,11}c_{4,7}c_{8,14}}, \\ c_{7,13} &= -\frac{c_{2,14}c_{8,11}(c_{1,13}c_{4,7}u_{1,4} - c_{1,7}c_{4,13}u_{2,8})}{c_{1,7}c_{2,14}c_{4,13}c_{8,11} - c_{1,13}c_{2,11}c_{4,7}c_{8,14}} \end{split}$$

This proves the assertion.

From Lemma 1 we have

$$K^{C_{15}} = \mathbf{Q}(y_0, r'_1, r'_2, s'_1, \dots, s'_4, t'_1, \dots, t'_4, u_1, \dots, u_4),$$

where

$$c_{1,4} + c_{11,14} = r'_1(\zeta + \zeta^4 + \zeta^{11} + \zeta^{14})$$

$$+ r'_2(\zeta^2 + \zeta^7 + \zeta^8 + \zeta^{13}),$$

$$c_{1,7} = s'_1\zeta + s'_2\zeta^2 + s'_3\zeta^4 + s'_4\zeta^8$$

$$+ t'_1\zeta^{14} + t'_2\zeta^{13} + t'_3\zeta^{11} + t'_4\zeta^7,$$

$$c_{1,11} = u_1(\zeta + \zeta^{11}) + u_2(\zeta^2 + \zeta^7)$$

$$+ u_3(\zeta^4 + \zeta^{14}) + u_4(\zeta^8 + \zeta^{13}).$$

And the actions of τ_{-1} and τ_{2} on $K^{C_{15}}$ are given by $\tau_{-1}: y_{0} \mapsto y_{0}, \ r'_{1} \mapsto r'_{1}, \ r'_{2} \mapsto r'_{2} \ s'_{1} \leftrightarrow t'_{1},$ $s'_{2} \leftrightarrow t'_{2}, \ s'_{3} \leftrightarrow t'_{3}, \ s'_{4} \leftrightarrow t'_{4}, \ u_{1} \leftrightarrow u_{3}, \ u_{2} \leftrightarrow u_{4},$ $\tau_{2}: y_{0} \mapsto y_{0}, \ r'_{1} \leftrightarrow r'_{2} \ s'_{1} \mapsto s'_{2} \mapsto s'_{3} \mapsto s'_{4} \mapsto s'_{1},$ $t'_{1} \mapsto t'_{2} \mapsto t'_{3} \mapsto t'_{4} \mapsto t'_{1}, u_{1} \mapsto u_{2} \mapsto u_{3} \mapsto u_{4} \mapsto u_{1}.$

We also have $\tau_4 = \tau_2^2, \tau_{11} = \tau_{-1}\tau_4$. Using Lemma 2, we put $r_1 := \operatorname{Tr}(r_1'u_1), r_2 := \operatorname{Tr}(r_2'u_1), s_i := \operatorname{Tr}(s_i'u_1), t_i := \operatorname{Tr}(t_i'u_1)$ for $i = 1, \ldots, 4$, where Tr is the trace under the action of τ_2 . We see that y_0, r_1, r_2 are Aff($\mathbf{Z}/15\mathbf{Z}$)-invariants. Hence we put $W = (y_0, r_1, r_2)$ then we have

$$K^{C_{15}} = \mathbf{Q}(W, s_1, \dots, s_4, t_1, \dots, t_4, u_1, \dots, u_4).$$

The τ_{-1} -action on $K^{C_{15}}$ above is given by $s_1 \leftrightarrow t_1$, $s_2 \leftrightarrow t_2$, $s_3 \leftrightarrow t_3$, $s_4 \leftrightarrow t_4$, $u_1 \leftrightarrow u_3$, $u_2 \leftrightarrow u_4$ and τ_2 acts on $s_1, \ldots, s_4, t_1, \ldots, t_4$ trivially and the u_i 's as $u_1 \mapsto u_2 \mapsto u_3 \mapsto u_4 \mapsto u_1$. Therefore we can easily obtain an explicit transcendental basis of $K^{D_{15}}$, $K^{G_{15,2}^{(1)}}$, $K^{G_{15,2}^{(2)}}$, $K^{G_{15,2}}$, $K^{G_{15,2}}$, $K^{G_{15,2}}$, and $K^{Aff}(\mathbf{Z}/15\mathbf{Z})$ using the same way as in the case n = 10.

Acknowledgements. The author is a Research Fellow of the Japan Society for the Promotion of Science and supported by Grant-in-Aid for Scientific Research for JSPS Fellows. He also would like to express his gratitude to Professor Ki-ichiro Hashimoto who gave him various suggestions during this study.

References

- [1] H. Chu, S.-J. Hu and M. Kang, Noether's problem for dihedral 2-groups, Comment. Math. Helv. **79** (2004), no. 1, 147–159.
- [2] S. Endô and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan **25** (1973), 7–26.

- [3] K. Hashimoto and A. Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp. (To appear).
- [4] K. Hashimoto and A. Hoshi, Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups, Tokyo J. Math. (To appear).
- [5] K. Hashimoto, A. Hoshi and Y. Rikuna, Noether's problem and Q-generic polynomials for the normalizer of the 8-cycle in S₈, (2004). (Preprint).
- [6] A. Hoshi, Noether's problem for Frobenius groups of degree 7 and 11, (2004). (Preprint).
- [7] C. U. Jensen, A. Ledet and N. Yui, Generic polynomials, Cambridge Univ. Press, Cambridge, 2002.
- [8] K. Masuda, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 59–63.
- [9] K. Masuda, Application of the theory of the group of classes of projective modules to the existance problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968), 223–232.
- [10] T. Miyata, Invariants of certain groups. I, Nagoya Math. J. 41 (1971), 69–73.
- [11] E. Noether, Rationale Funktionenkörper, Jahrbericht Deutsch. Math.-Verein. 22 (1913), 316–319.
- [12] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221–229.
- [13] A. D. Thomas and G. V. Wood, Group tables, Shiva mathematics series, 2, Shiva, Nantwich, 1980.