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Abstract:

In this note we solve Noether’s problem over Q for some meta-abelian groups

of small degree n. Let G be a subgroup of the group of one-dimensional affine transformations on
Z/nZ which contains Z/nZ. For n = 9,10, 12,14, 15, we show that Noether’s problem for G has
an affirmative answer by constructing an explicit transcendental basis of the fixed field over Q.
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1. Introduction. Let K = Q(xo,...,Tn_1)
be the field of rational functions in n variables and G
a transitive subgroup of S,, the symmetric group of
degree n. Let G act on K by permuting the variables
2oy ..., Tn—1. Emmy Noether [11, 12] raised the fol-
lowing problem which is called Noether’s problem for
G (over Q): Is the subfield K¢ of G-invariant ele-
ments of K rational (i.e. purely transcendental) over
Q? This is one of central problems of the inverse Ga-
lois theory because if this problem has an affirmative
answer then we get a Q-generic polynomial for G (cf.
[7]). The polynomial g(t; X) := g(t1,...,tn; X) €
Q(t1,...,tn)[X], where t1,...,t, and X are inde-
terminates, is called Q-generic for G if the splitting
field of g(t; X) over Q(t1,...,t,) has Galois group G
and every Galois extension L/M with Gal(L/M) =
G and M D Q is the splitting field of a polynomial
g(a; X) for some a = (ay,...,a,) € M™. Namely
every G-extension over a field M whose characteris-
tic is zero can be obtained by some specialization of
the parameters of g(t; X). In this note we shall solve
Noether’s problem for some meta-abelian groups G
of small degree m by constructing an explicit tran-
scendental basis of K¢ over Q. Let Aff(Z/nZ) be
the group of one-dimensional affine transformations
on Z/nZ. We have Aff(Z/nZ) = (Z/nZ) x (Z/nZ)*.
The main result of this note is the following

Main Theorem. Let G be a subgroup of
Aff(Z/nZ) containing Z/nZ. For n=9,10,12,14,15,
Noether’s problem for G has an affirmative answer.

We treated this problem in the cases n < 7 and
n =11 in [3, 4, 6]. In the previous paper [6], we ex-
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tended Masuda’s method [8, 9] for cyclic groups Cy,,
and we also use Masuda’s approach in this note (cf.
Lemma 1). Note that n = 8 is the smallest degree
for which K" is not rational over Q. Moreover it
is known that there does not exist Q-generic polyno-
mial for Cyg,,, and hence Noether’s problem for Cg,,
has a negative answer (see [7]). Recently, however,
it has been showed that KPs, K@Ps and KM are
rational over Q, where Dg (resp. QDsg, Myg) is the di-
hedral (resp. quasi-dihedral, modular) group of order
16 (see [1, 5]). The case n = 13 can not be applied
original Masuda’s approach as remarked by Endo-
Miyata [2]. We shall treat some prime degree cases
n = p with p > 13 in a separate paper by studying
the structure of the fixed field K€ in detail.

2. Preliminaries. In this section, we recall
Masuda’s method [8] for cyclic groups and its ex-
tension [6] for subgroups of Aff(Z/nZ). Let o be
the cyclic permutation of the variables xq, ..., Tn_1,
ie. o(xg) = 1,...,0(xp—1) = xo and 7y the xo-
fixed permutation defined by 7x(z;) = xy; for A €
(Z/nZ)*, where we take the subscript of z mod-
ulo n. We can identify a subgroup G of Aff(Z/nZ)
which contains Z/nZ with (o, 7x,,...,7,) for cer-
tain A1,..., A\, € (Z/nZ)*. For example, we have
D,, = (0,7_1); the dihedral group of order 2n. Let
¢ be a primitive n-th root of unity, k := Q((),
yj = 300 (g, and ¢k = yyn/yjen for gk =
0,...,n— 1. We shall take the subscript of y and ¢
modulo n, since y; = Ymn+j, (J =0,...,n—1). We
have that K ({) = k(wg, . ..,7,_1)% for G C S, and
k(zgy...sTn—1) = k(Yo,-.-,Yn—-1). And we see that
the actions of o and 7y on the y;’s and the c¢;’s

are given by o(y;) = (Jy;j,0(cik) = cjr, Taly;) =
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Yn-15,Ta(Cjk) = ex-1jr-1k, for j,k =0,...,n— L. Proof. The assertion follows from
First we can obtain that I — K(Tr(xoxél)), o Tr(xoxifll),
Cn _ . ) —
k(xo,...,l'n_l) —k(CLk | 0 S],kﬁ <n 1), ...,Tr(xoxém)),.--,Tl“(xoxiﬁ)l)),

and the c; ;’s satisfy the following relations: (see also [6]). |
(1) e = CLECLEHL " CLkti=1 (s 9), 3. Explicit transcendental basis of K.

€1,1€1,2" " C15-1 We shall solve Noether’s problem for subgroups G
Hence we have of Aff(Z/nZ) containing Z/nZ for each degree n =

) e _ 1 9,10,12, 14, 15

(2)  k(@o,...,2n-1)"" =k(ero, c11, -0 1) For n = 9, the subgroups of Aff(Z/9Z) contain-
Namely k(zo, . .., 2,_1)°" is rational over k for any g Z/9Z are Cy = (0), Dy = (0,7-1) (= Cy x C2),

n. Masuda’s method teaches us when we can
descend the base field from k to Q. For f €
k(z0, .-, p—1)", we define a set [f]conj := { all con-
jugates of f over K¢} and we put ¢(f) := #[f]con;-

Lemma 1 (Masuda [8]). Suppose that there
exist elements ai,...,a; € k(xg,...,2n_1)"" such
that k(xo, ..., Tn-1)" = k([@i]conj | 1 < i < t) and
Z§=1 t(a;) =n. Let wi 1, ..., wi (a0, be a basis of kN
K% (a;) over Q. If we write a; = Z;(jl) Wi i My 4,
(mj; € K€, fori=1,...,t, then K¢ = Q(mjﬂ- |
1<i<t,1<j<ua)).

Indeed, in the next section, we shall give such
elements ai,...,a; as in above lemma for n =
9,10,12,14,15 explicitly. For a subgroup G =
(0, Tays -+ -y T,y of Aff(Z/nZ) containing Z/nZ, we
have from Lemma 1 that

KG — (KCW)G/Cn _ (K<U>)<7'A17~~77'AT>
= Q(my | 1<i<t,1<5 < () P,

We also can obtain the action of 7, on the transcen-
dental basis {m; ;} of K over Q by using the equa-
tion 7x(cj k) = ax-1(cjk) for A € (Z/nZ)*, where

ax € Gal(Q(¢)/Q) such that a(¢) = ¢*.

Let xéj),...,x;jll,(j = 1,...,m) be variables
and L := K(xél),...,xi}ll,...,xém),...,x;”i)l). It

is well-known from the No-Name Lemma that if C,,
acts on L as the cyclic permutation of the variables

xéj) for j =1,...,m, then L is rational over K¢~

(cf. [10],[7, page 22]). Moreover we can give an ex-
plicit transcendental basis of LE" over K.
Lemma 2 ([6]). We have

Lcn — Kcn (Tr(xoxél)), ceey Tr(xoxillll))
e Tr(xoxém)), .- .,Tr(xoxgﬁ)l)),

where Tr is the trace under the action of Cy,.

G973 = <0', T4> (g Cg Dal 03), AH(Z/QZ) = <0', T2> (g

Cg X CG)
Proposition 1. We have
k(xo, ey .1'8)09

= k(co,1,[c1,2 + ca,8 + €5,7]conjs [€1,4]conj)-

Proof. We see easily that co1 = yo = zo+- -+
c _
xg € K, [c12]conj = {€1,2,¢2,4,Ca8,€1,5,C5.7,C7.8}
and [c1 4)conj = {C€1,4, 2,8, Ca,7,C2 5, C1,7, C5.8}. By us-
ing (1), we can obtain that

C1,6C7,8 C1,6C7,8 C2,5C7.8
Cigi=——, 3= ——, Q5= —
C2.8 C4,8 C2.8
C1,2C2 5C4.7 C1,2C47 C1,6C7,8
cie=——", Gir=——, i 8=— .
C2.4C5.7 C48 €o,1

Therefore it follows from (2) that k(xo, ..., zs) =
k(co,1, [€1,2]conjs [€1,4]conj)- And we have the following

relations:
c1,5¢28 —C25¢78 =0, 24058 —Ca5c7,8 =0,
c12c47 —C1,7¢48 =0, c12ca7 —cracs7 = 0.

Put uio:=cio+ecsg+esr,ursi=cis+caatcrg,
then we have from above equations that

Cag= C1,4C4,7U1,2, - C1,7C4,7U1,2,
’ Wi ’ Wi
Cou = 02,502,8161,5, Crg = 02,805,8161,5,
' Wa ' Wa
where W1 = cigac17 + cracar + crrcay, Wo =
€2,5C2,8+C2,5C5 8+C2 8C5 8. The assertion follows from
k(xo, cey .1'8)09 = k(CQ71, u1,2, U1,5, [01,4]conj)- |

Thus it follows from Lemma 1 that
K = Q(yo, 8}, 55, th,th, ..., t5),
where
Cr2+ cas + s =8y + shC5,
cra =t ¢+t 4+ 50

We see that the m-action on K9 is given by
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! !
Yo = Yo, S1 < Sa,

th ty — g, by o by, by o b, £y o —t5, 5 o 1,
since m2(c1,4) = as(c1.4), where as(¢) = ¢5. We use
the following non-singular transformation

t 1 0 1 0 0 07t
ty 0 1 0 0 -1 1 t,
ts| | -1 0o 1 1 0 of]¢
| "] 0 =10 0 0 1 t)
ts 0 0 1 -1 0 0/|]|¢
t o 0 0 0 1 1 t

Then we have

KCQ = Q(yo, 5{[’ 5’2) tl) t2) o 7t6))
and the m-action on it can be described as

Yo > Yo, ) o o, t1 oty bt b

We see that s = fl(g)/ (2), 5 = fg(g)/ (2),
gzm / g§6), where f;k), g< ) are homogeneous elements

K3
of degree k in Qzo,...,zs) for j = 1,2,3 and i =

1,...,7. From Lemma 2, we put
S1 = Il(tl +t3+t5)+52(t2+t4 +t6)
Sg 1= Il(tg +t4+t6)+52(t1 + t3 +t5)

then we see that s1,s9 are mo-invariants, i.e.
Aff(Z/9Z)-invariants, and we have

K = Q(yo, 51, 52, t1, t2, - . ., tg).
For Dy and Gg 3 = (0, T4), since the 7_1-action (resp.
T4-action) on K above is given by t1 < ty, to < ts,
t3 > tg (resp. t; = t3 = t5 = t1, to >ty > tg —
t2), we have from Lemma 2 that
KDQ _ (KCQ)(T*1>
= Q(yo, 51, 52, t1 + ta, tita, tits + tats,
tits + tota, tits + tate, tite + tsts),

KGQ'3 — (KCQ)<7—4>
NI‘(tl +t3 — 2t5)

Tr(t% - tltg) ’

= Q<y0,51,52,t1 +t3 + t5,

NI‘(tl - tg)

Tr(t1t2), Tr(t1ts), Tr(t1t
Tl —fatyy 1) ) r(16)>’

where Nr and Tr are the norm and the trace under
the action of 74. Because it is well-known a transcen-
dental basis of Q(wg, ..., 75)° = Q(z1, ..., 2) over
Q (see, for example, [6]), we can obtain an explicit
transcendental basis of KAf(2/92) gyer Q by using
Zly--+5%6-
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For n = 10, we see that the subgroups of
Aff(Z/10Z) containing Z/10Z are C19 = (o), D1 =
<0', T_1>, AH(Z/lOZ) = (0’, T3> (g 010 X 04) In the
previous paper [6], we showed the following

Proposition 2 ([6]). We have

k(xo, ey .Z'g)clo

= k(co,1, [€1,4)conjs [€1,8]conj, €1,0 + €3,7).

Hence, by applying Lemma 1 to Proposition 2,
we have

C
K 10 :Q(yQ,Tl,Sll,...,Sﬁl,tl,...,t4),

where
r1=-c1,9+ c3,7,
c1a = 81+ 55¢° + 843¢7 + 55¢7,
18 =t +ta¢® + tal" + t3¢°.
And the action of 73 on it is given by
Yo — Yo, T1 > T,
St 1 s o oy o o
t1 = to =ty =ty — 1.

5 4 5 4
f()/ (), t; = gj)/g(),

where fz( ), g§ ) are homogeneous elements of de-
gree k in Q[xzo,...,x9] for 4,5 = 1,...,5. From
Lemma 2, we put s; := Tr(s}t;) for i =1,...,4,

We also see that 5

where Tr is the trace under the action of 73, then we
see that s1,..., s4 are 73-invariants (i.e. Aff(Z/10Z)-
invariants) and we have

Kcm = Q(QO,Tlasla ey

Therefore if we put uy :=t1 +t3, ug :=to +t4, v1 :=
t1 —t3, vg 1=ty — t4, then we get

54;t15 . '7t4)'

KDm - Q(yO;T1551552)53’54’t1 +t3’
tits, t1ta +t3ta, 1t + t2t3)a
S4, U1 +/U/2;/U% +Uga

(u1 — u2)v1v2, (U1 — ua) (v — v3)).

KAH(Z/IOZ) = Q(ZUO, T1,81,+++,

For n = 12, the groups Ci2 = (o), D12 =
(0,721), Gigy = (0.73), Gigy = (o,7r) and
AH(Z/lQZ) = <0’, T_1,T5> (g 012 X (CQ X CQ)) are
subgroups of Aff(Z/12Z) which contain Z/12Z.

Proposition 3. We have

k(zo, ..., 211)92 = k(co1, [c1,2 + €5,10)conjs [€1,3]conjs

[€1,5)conjs [€1,7]conjs C1,11 + €5,7)-
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Proof. We have that con = yo = zo + -+ +
11 € K92, [ero]eony = {c1,2, 5,10, C2,7, Cr011},
[CI,S]conj = {CI,S; C3,5,C7,9, 09,11}; [0175]conj =
{01,5,07,11}, [01,7]conj = {01,7, C5,11} and [01,11]conj
{c111,¢5,7}. By using (1), we can obtain that

€0,1C1,7C1,11 €0,1C1,11 €0,1C1,11
aAl1=—"HCQ4=——""HCQ6=—
C2.7C9.11 C5,11 C7,11
~ Co,1C1,11 _ Co,1C1,11 ~ €1,3C510
Cilg=——" C19=—— A0 = ——
C9,11 C10,11 C5,11
Hence it follows from (2) that k(zg,...,x11)""2 =

k(co,1, [€1,i)conj | = 2,3,5,7,11) and we also have

€1,3C5,10C7,11 — €1,5€7,9¢10,11 = 0,
C1,2C5,7€C10,11 — €1,11€2,7C5,10 = 0,

€1,3€5,7C9,11 — €1,11¢3,5¢7,9 = 0.

Put U1,2 *= C1,2 + C5,10, U2,7 *= C2,7 + C10,11, U1,11 =
c1,11 + ¢s5,7, then we have from above equations that

¢7,9(C3,5C7,11U1,2 — €1,5C9 11U2,7)

C5,10 =
c711(¢3,5¢7,9 — €1,3¢9,11)
01,3(03,507,11U1,2 - C1,509,11U2,7)
C10,11 = )
c1,5(c3.507,9 — €1,3C9,11)
C3,5C7,9U1,11
C5,7 = .
€3,5C7,9 + €1,3C9,11
Thus the assertion follows from k(zo, . ..,x11)"2 =
k(co,1,u1,2, u2,7, [€1,3]coni, [€1,5)conjs [€1,7]conj, U1,11)-

|
By applying Lemma 1 to Proposition 3, we have
KCl2 = Q(yO; T1, Slla 5l2) 5{’,) 521; tla t2) Ullla U’IQa V1, U2)a

where

r1 =C1,11 + C5,7,
c13 = $1C+ 55C% + s5¢° + s4,¢%
t1(¢? = ¢*) + 12,
17 = uy(® +uh(?,

c12 +c510 = v1(¢% = ¢h) + 0P,

C1,5

Since ¢ — ¢* = 1, we have that yo, 71, ti,
v1 are Aff(Z/12Z)-invariants. From the equa-
tion 7a(cjk) = ax-1(¢jk), we obtain that the

action of 7_1 (resp. 75,77) on K €12 ahove is
given as follows: (s}, s, 85, s, to, ul, ub,va) +—
! / / ! / li li
(Sla_54a_(51 + 53),—52,—t2,—u2,—u1,—vg),
! / / / / t li li
(resp. (=8}, —8h, 8§ + s5, —sh, ta, —ub, —u}, va),
(—s1, 82, —S83, S4, —ta, uf, ub, —v2)). Now we use the
following bi-rational transformation:

[Vol. 81(A),
s1 =8, sy = s1,
So 1= 8h + 8, sh=(s24+ 84)/2,
s3 1= 8| + 255, sh=(—s1483)/2,
84 1= 8h — 8, sy = (82— 84)/2,
up =) + ub, uh = (u1 +u2)/2,
ug 1= uj — ub, ub = (u1 — ug)/2.

Then we have that s4, ug are Aff(Z/12Z)-invariants
and 7_1 : (s1,82,83,u1) — (81, —82, —83, —U1), T5 :
(s1,82,83,u1) — (—81,—52,83,—u1), T = T_1Ts5.
- C _
We put W := (yo,r1, Sa,t1,u2,v1) then K2 =
Q(W, 51, S2, 83, t2, u1, v2), and hence we get
D 9 83 To up w2
K= = Q(WaSI;SQa_a T s |
S2 S22 S2 S2

aW 9 S2 (5%
K 12'2:Q W5515_553;t25_av2 )
51 51

)

(2) sz t v

e 2 3 U2 2

K 12'2:Q(W5515525_5_ U, — J-
S1 S1 S1

Since 75 acts on KP12 ag
o 83 t2 uy V2
S1,89, =y T Ty
S99 S S2 SS9
2 83 t2 w1 V2

= | —=S1,89, =, [
S92 S92 So S92

we have

Aff(Z/12Z 2 .2 53 ta up v
K 2/ ):Q(WaSDSQa ) s T .
S1S82 S1S2 S22 S1S52

For n = 14, we have that the subgroups of
Aff(Z/14Z) containing Z/14Z are C14 = (o), D14 =
<0’, T_1>, G1473 = <0’, T9> (g 014 ><103), AH(Z/14Z) =
<0’, T3> (g Ca X CG)

Proposition 4.

k(xo, ..

We have

i) xlB)CM

=k(co,1, [€1,6]conj, [€1,12]conjs €1,13 + €3,11 + C5,9).

Proof. Wehavethat cp1 = yo = o+ - -+213 €
K4, [c16lconj = {€1,6,C3.4,C2.5,C9.12, C10,11, C8,13 )
[01,12]conj = {01,12, C3,8,C4,5, €C9,10, C6,11, 02,13} and
[c1,18]conj = {€1,13,¢3.11, ¢5,9}. By using (1), we can
obtain that

C0,1C1,13 C1,5C2,5C6,11€9,10
Cl 1= Cl Q=
) ) )
C2.13 €0,1C5,9C10,11
C0,1€1,13€3,8C10,11 C1,5C3,4€C6,11€9,10
C1,3 = G R —
C4,5C8,13€9,10 €0,1C5,9C10,11
c €0,1C1,13C2 5 €0,1C1,13
1 5 = — = —
' €1,6C2,13 ' 8,13
C1,5C3,8C6,11 C1,5C3,4C6,11
cig=————— 9= ——————

€0,1C5,9 C4,5C10,11
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C1,13€C3,8C10,11
Cilio=——_  Cii11 =
C3,11C8,13
Thus it follows from (2) that k(zo,...,z13
k(co,1, [c1,6)conj, [€1,12]coni, [€1,13]conj). We also get the
following two relations:

C1,5C3,4C6,11
C4,5C9,12

)014 —

C1,6C3,11€4,5C8,13C9,10 — €1,13€3,4C3,8C6,11C10,11 = 0,
C2 5C3,11C4,5C9,10C9,12 — C1,12€2,13C3,4C5 9C10,11 = 0.

Put 1 :=c1,13 + ¢3,11 + ¢5,9, then we have

C1,12€2,13€3,4C3,8C6,11C10,117'1

C3,11 = ;
€1,6C8,13V1V2 + C2,5C9 12V2V3 + €3,4C10,11V1V3

C2,5C3,8C4,5C6,11€9,10C9,127T'1

C5,9 =

)

)
€1,6C8,13V1V2 + C2,5C9 12V2V3 + €3,4C10,11V1V3

where vy = C1,12€2,13,V2 = C4,5C9.10,V3 = C€3,8C6,11-
Hence the assertion follows. O
From Lemma 1 we have

KO = Qo 71,y oot 1)

where

r1 = 1,13 + €3,11 + C5,9,

cre = $1C + 55C7 + $5C7 + s4C 4 550 + 567,
t1¢ + taC® 4 t3¢7 + 14 + t5¢ + 160

C1,12
and the 73-action on it is given by
Yo = Yo, T1 > T,
5y 1o sy o sy 8,

t1 = ta = ot ot

since 73(c1x) = as(ci) for & = 6,12. From
Lemma 2, we put s; := Tr(sjt;) for ¢ = 1,...,6,
where Tr is the trace under the action of 73, then we
see that s1,...,s¢ are Aff(Z/14Z)-invariants and

K9 = Q(yo, 71, 51, - - ., t6).

Therefore we obtain an explicit transcendental basis
of KP1s KGia3 and KAH(Z/142) by ysing the same
manner as in the case n = 9.

'786;t15"

For n = 15, we see that the subgroups of
Aff(Z/15Z) containing Z/15Z are Cy5 = (o), D15 =
<0’, T_1>, G(115)72 = <0’, T4>, (g 015 X CQ = 05 X Cﬁ =
D5 X Cg), G(125)72 = <0’, T11>, (g 015 Dal CQ = Sg X 05),
G15,2,2 1= (0,721, T1) (& C15 % (C2 x C2)), G154 :=
<0’, T2> (g 015 X 04), AH(Z/15Z) = <0’, T_1,T2> (g
Ci5 x (Cq x Cy)). We note that there are precisely
4 groups of order thirty (i.e. C30, D15, G(115)72, G(125)72),
(cf. [13]).

Proposition 5. We have
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k(xo, .. )Cls

-y T14
= k(co,1, [€1,4 + €11,14] conjs [€1,7]conjs [€1,11]conj)-

Proof. Wehavethat cp1 = yo = o+ - +214 €
Kcls, [01,4]conj = {61,4, C2,8,C7,13, C11,14}, [01,7]conj =
{01,7, C214,C4,13,C4,7,C8,11, C2,11, C1,13, 68,14} and
[61,11]conj = {61,11, C2,7, C4,14, 68,13}- By using (1), we
can obtain that

C1,7C8,14 C1,13C4,14 ~ C1,7C8,14
cl1=—— CG2=——"—, G13=——
C2,14 C4,13 C4,14
C1,7C8,13 ~ C1,13€C8,14 ~ C2,7C8,14
C1,5 = , Cl6 = , C1,8=
C7,13 8,13 C2,14
C1,7C2.8 ~ C1,7C8,14
9= ——, Gt10= ————
C27 C11,14
C1,7C2,11C8,14 ~ C1,7C8,14
112 = ———————— A4 = —.
C1,11€2,14 €o,1
Therefore from (2) we have k(zo,...,714)" =

k(co,1, [c1,4]conj, [€1,7]conjs [€1,11]conj). And we can ob-
tain the following two relations:

C1,7C2,8C4,13 — C1,13C4,7C11,14 = 0,
C1,4C2,14C8,11 — €2,11C7,13C8,14 = 0.

Put uy 4 := c14 + c11,14,u2,8 = c2.8 + ¢7,13, then we
have

C1,7C4,13(02,1408,11U1,4 - 02,1108,14U2,8)

C11,14 = )
C1,7C2,14€C4,13C8,11 — €C1,13€2,11C4,7C8,14
Cr1s = _02,1408,11(01,1304,7U1,4 - C1,7C4,13U2,8) .
C1,7C2,14€C4,13C8,11 — €C1,13€2,11C4,7C8,14
This proves the assertion. O

From Lemma 1 we have
K = Q(yo, 77,75, 5], ..
where

c1a+ci1a =711(C+ ¢+
+15(C% + T+ ),
c1 = 81C+ 8507 + s5C" + 547
+ 0 + 150+t
e = ur(C+ ¢ +ua (¢ + (")
+ug(Ch+ ¢ +ua(C® + ¢,

! A A
Sy by e T UL, Ug),

And the actions of 7_; and 75 on K15 are given by
. / / / o /
T_1:Y0 = Yo, Ty — T, To =Ty 81 < by,
! ! ! ! ! !
Sy > Uy, 83 <> U3, 55 = 1y, UL <> U3z, Uz < Ug,
/ / ! / / / /
T2 Yo P2 Yo, Ty 7 Ty S B2 Sy 2 83 b2 S 2 5y,

t'l|—>t'2|—>t§|—>tﬁl|—>t'1,u1|—>u2»—>u3|—>u4n—>u1.
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We also have 74 = 7'22, T11 = T—174. Using Lemma 2,
we put r1 = Tr(rjui), ro = Tr(rbuy), s; :=
Tr(sju1), t; := Tr(tjuq) for i = 1,...,4, where Tr
is the trace under the action of 75. We see that yq,
r1, ro are Aff(Z/15Z)-invariants. Hence we put W =
(yo,71,72) then we have

Kcls :Q(W,Sl,...,S4,t1,...,t4,’U,1,...,U4).

The 7_-action on K5 above is given by s; < t1,
So tQ, §3 t3, S4 t4, Ul <> U3, Uz <> Ug and
To acts on Si,...,84,%t1,...,t4 trivially and the u;’s
as uy — ug — ug — ug — u1. Therefore we can eas-
ily obtain an explicit transcendental basis of K15,
KGE?Q, KGE?Q, KGi522 KGisa and KAf(Z/15Z) 1o
ing the same way as in the case n = 10.
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