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Continuity of Sobolev functions of variable exponent on metric spaces
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Abstract: Our aim in this paper is to discuss continuity of Sobolev functions of variable
exponent on metric spaces in the limiting case of Sobolev’s imbedding theorem.
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1. Introduction. Sobolev functions are de-
fined usually as functions whose weak derivatives (of
first order) belong to some Lebesgue Lp class lo-
cally. Hence it is important to discuss the case that
Sobolev functions are continuous and further have
usual derivatives which are equal to weak deriva-
tives. It is well known that this is true if p is
greater than the space dimension n (see e.g., Stein
[11, Chap. VIII]). There are known facts which treat
the borderline case p = n, by the authors [5, 6, 7, 8]
and [10]. Recently, Björn [1], Haj�lasz-Koskela [2]
and the authors [9] discussed continuity properties
for Sobolev functions in the metric space setting;
these results can be used to treat the differentiability
of Sobolev functions defined in the Euclidean spaces.
Our aim in the present note is to extend those results
to Sobolev functions of variable exponent in the met-
ric space setting. For this purpose we prepare some
definitions.

Let X be a metric space with a metric d. For
simplicity, we write |x − y| instead of d(x, y). We
denote by B(x, r) the open ball centered at x ∈ X

with radius r > 0. For σ > 0, we write

σB(x, r) = B(x, σr).

Let µ be a Borel measure on X. Assume that µ(B) <
∞ and there exist constants C > 0 and s � 1 such
that

(1.1)
µ(B′)
µ(B)

� C

(
r′

r

)s

for all balls B = B(x, r) and B′ = B(x′, r′) with
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x′ ∈ B and 0 < r′ � r. Note that µ is a doubling
measure on X, that is, there exists a constant C ′ > 0
such that

(1.2) µ(B(x, 2r)) � C ′µ(B(x, r))

for all x ∈ X and r > 0.
We say that a pair (u, g) of functions in

Lp0
loc(X;µ) satisfies a p0-Poincaré inequality (on

rings), 1 � p0 < ∞, if for every c1 and c2 with
c2 > c1 > 1 there are constants M > 0 and σ � 1
such that

−
∫

A(r,r′)
|u(y) − uA(r,r′)| dµ(1.3)

� Mr

(
−
∫

σA(r,r′)
|g|p0 dµ

)1/p0

whenever c1r′ < r < c2r
′, where A(r, r′) = B(x, r)−

B(x, r′), σA(r, r′) = B(x, σr) −B(x, σ−1r′) and

uG = −
∫

G

u dµ =
1

µ(G)

∫
G

u dµ

for Borel sets G ⊂ X. If (1.3) holds for r′ = 0, then
the pair (u, g) is said to satisfy the usual p0-Poincaré
inequality on balls. Under certain assumptions, the
usual p0-Poincaré inequality on balls implies our p0-
Poincaré inequality; see e.g. [2, Theorem 9.7].

When X = Rn, Björn ([1, Theorem 1.5 and
Theorem 3.1]) proved that if p0 > s and u is a func-
tion in the weighted Sobolev space W 1,p0(Rn;µ),
then u can be modified on a set of µ-measure zero so
that it is locally Hölder continuous in Rn and totally
differentiable µ-a.e. in Rn. In the previous paper [9],
we extended her results by proving Hölder continu-
ity of Sobolev functions when p0 � s, in the metric
space setting.

In the present note, we consider a continuous
function p : X → [s,∞) (called the variable expo-
nent on X), and discuss the log-Hölder continuity of
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weighted Sobolev functions of variable exponent, as
an extention of the authors’ result [9, Theorem 1].
When X = Rn, we are concerned with differen-
tiability of functions in the weighted Sobolev space
W 1,p(·)(Rn;µ) of variable exponent, which is defined
by

W 1,p(·)(Rn;µ)

= {u ∈ Lp(·)(Rn;µ) : |∇u| ∈ Lp(·)(Rn;µ)};

for fundamental properties of this space, see, for ex-
ample, Kováčik and Rákosńık [4].

2. Statement of results. Consider a posi-
tive function Φq(r) with the following properties:

(ϕ1) Φq(r) is of the form rqϕ(r), where 1 � q < ∞
and ϕ is a positive nondecreasing function on
(0,∞). The value Φq(0) is defined to be zero.

(ϕ2) There exists c > 1 such that

c−1ϕ(r) � ϕ(r2) � cϕ(r)

whenever r > 0.
We see that Φq(·) is continuous on [0,∞).

For a continuous function p : X → (1,∞), we
define p∗(B) := inf{p(x) : x ∈ B} and p∗(B) :=
sup{p(x) : x ∈ B}. For simplicity, set p∗ = p∗(B0)
for fixed ball B0 = B(x0, r0). We consider the func-
tion

κ(r)

=
(∫ r

0

[t−εω(t)ϕ(t−1)]−1/(p∗−1)t−1dt

)(p∗−1)/p∗

for 0 < ε < 1, where ω(r) = infx∈A(r,r/2) |p(x) − p∗|.
In this note we assume that
(ω) ω satisfies the doubling condition on [0,∞), that

is, there exists c > 1 such that

c−1ω(r) � ω(2r) � cω(r) for r � 0.

Our main aim in this note is to show the follow-
ing result, which is an extension of [2, Theorem 5.1]
and [9, Theorem 1].

Theorem 2.1. Let X be a connected metric
space and let µ be a Borel measure on X satisfy-
ing the decay condition (1.1) with s = p∗. Assume
further that a pair (u, g) satisfies the p∗-Poincaré in-
equality in X, κ(1) <∞ and

(2.1)
∫

X

Φp(x)(|g(x)|) dµ(x) <∞.

Then u can be modified on a set of µ-measure zero so
that it is locally κ-Hölder continuous on B0. More-
over, u satisfies

|u(x) − u(y)| � Mr1−ε

+Mr0 κ(r)
(
−
∫

cσB0

Φp(z)(|g(z)|) dµ(z)
)1/p∗

for all x, y ∈ B = B(x0, r) with 0 < r < r0, where c
is a positive constant, 0 < ε < 1 and M is a positive
constant depending on ε.

This can be proved in a way similar to the proof
of [9, Theorem 1] with some needed modifications,
and hence we omit the proof.

Remark 2.2. Assume that p(·) is a function
on X defined by

p(x) = s+
a log[log(1/r)]

log(1/r)
+

a′

log(1/r)
,

for r ≤ r0 < 1/e, where r = |x− x0|, a > 0 and a′ is
a real number; set p(x) = p(x0 + r0(x−x0)/|x−x0|)
when |x− x0| > r0. Further, consider

ϕ(r) = [log(1 + r)]b

for a real number b. If b > s− a − 1, then, taking ε
such that (s−b−1)/a < ε < 1, we see that κ(1) <∞
and κ(r) � M [log(1/r)]−(εa+b+1−s)/s for small r >
0.

The simplest case is as follows:
Corollary 2.3. Let p(·) be as above. If u ∈

W 1,p(·)(B0;µ), then u can be modified on a set of
measure zero to satisfy

|u(x) − u(y)| � M [log(1/|x− y|)]−A

for all x, y ∈ B(x0, r) with r = min{r0/2, 1/4},
when 0 < A < (a+ 1 − s)/s.

The log-Hölder continuity does not always hold
when a < s− 1, as will be shown in the last section.

A positive measurable function w on Rn is called
an Aq weight (written as w ∈ (Aq)) if there exists a
positive constant Cq such that

−
∫

B

w(x) dx
(
−
∫

B

w(x)1/(1−q) dx

)q−1

� Cq

for all balls B, where 1 < q < ∞; we say that w is
an A1 weight if there exists a positive constant C1

such that

−
∫

B

w(x) dx � C1 ess infB w

for all balls B. Note that if w is an Aq weight, then
dµ = wdx satisfies the decay condition (1.1) with
s = nq, on account of [3, Section 15.5].

In view of [3, Section 15.26], we can show that
the p∗-Poincaré inequality is valid for (u, |∇u|) and
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dµ = wdx with u ∈ W 1,p(Rn;µ) and w ∈ (Ap∗).
Hence we have the following result as an extension
of Björn [1, Theorem 1.5], the first author [5, 6, 7]
and the authors [8, 9, 10].

Corollary 2.4. Let 1 < p∗ < ∞, w ∈ (Ap∗)
and κ(1) <∞. Assume further that µ satisfies (1.1)
with s = p∗, where dµ = wdx. Let u be a function
in W 1,p(·)(Rn;µ) satisfying

(2.2)
∫
Rn

Φp(x)(|∇u(x)|) dµ(x) <∞.

Then u can be modified on a set of measure zero so
that it becomes a locally κ-Hölder continuous func-
tion on Rn satisfying

|u(x) − u(y)| � Mr1−ε

+Mr0 κ(r)
(
−
∫

cB0

Φp(z)(|∇u(z)|) dµ(z)
)1/p

for all x, y ∈ B = B(x0, r) with 0 < r < r0, where c
is a positive constant, 0 < ε < 1 and M is a positive
constant depending on ε.

Corollary 2.4 can be proved in the same way as
Corollary 1 in [9].

We say that a function u on Rn is totally differ-
entiable at x0 if

lim
x→x0

|u(x) − u(x0) − a · (x− x0)|
|x− x0| = 0

for some a ∈ Rn. By using Corollary 2.4, we can
prove the differentiability of Sobolev functions in the
same way as Theorem 2 in [9]; see also the book by
Stein [11].

Theorem 2.5. Let 1 < p∗ < ∞, w ∈ (Ap∗)
and κ(1) <∞. Assume further that µ satisfies (1.1)
with s = p∗, where dµ = wdx. Let u be a function in
W 1,p(·)(Rn;µ) satisfying (2.2). Then u can be modi-
fied on a set of measure zero so that it becomes totally
differentiable a.e. on Rn.

3. Sharpness. Let ω(r) be a nonnegative in-
creasing continuous function on the interval [0,∞)
such that ω(r) � a log(log(1/r))/ log 1/r for small
r > 0. Consider

p(y) = n+ ω(|y|)
and

ϕ(t) = [log(1 + t)]b.

In this case, p∗ = n. Further, if a + b < n − 1, then
κ(1) = ∞, and we can find a function u satisfying

(i)
∫

B0

Φp(x)(|∇u(x)|)dx <∞;

(ii) lim
x→0

u(x) = ∞.

This implies that Theorem 2.1 is best possible as to
the Hölder exponent. In fact, by considering b = 0,
Corollary 2.3 is seen to be sharp as to the Hölder
exponent.

To show this, consider the function

u(x) = [log(1/|x|)]δ on B0,

where 0 < δ < 1 and B0 = B(0, r0) with 0 < r0 <

1/e. If a+ b < n(1 − δ) − 1, then we see that

|∇u(x)| � M1|x|−1[log(1/|x|)]δ−1,

so that∫
B0

Φp(x)(|∇u(x)|)dx � M2

∫
B0

|x|−(n+ω(|x|))

× [log(1/|x|)](δ−1)(n+ω(|x|))ϕ(|x|−1)dx

� M3

∫ r0

0

(log 1/t)(δ−1)n+a+bt−1dt <∞,

where M1, M2, M3 are positive constants.
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ity and Hölder continuity of Riesz potentials of
Orlicz functions. Analysis (Munich), 20, 201–223
(2000).



No. 6] Sobolev functions of variable exponent 99

[ 9 ] Mizuta, Y., and Shimomura, T.: Continuity
and differentiability for weighted Sobolev spaces.
Proc. Amer. Math. Soc., 130, 2985–2994 (2002).

[ 10 ] Shimomura, T., and Mizuta, Y.: Taylor expansion
of Riesz potentials. Hiroshima Math. J., 25, 595–
621 (1995).

[ 11 ] Stein, E. M.: Singular Integrals and Differentiabil-
ity Properties of Functions. Princeton Mathemat-
ical Series, no. 30, Princeton Univ. Press, Prince-
ton, N.J. (1970).




