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Abstract:

This note gives examples of nonconvex self-similar solutions for a crystalline

curvature flow with an interfacial energy of which the Wulff shape is a regular triangle or a square.
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1. Introduction.
two examples of homothetically shrinking nonconvex

In this note, we present

polygonal curves in the plane R? moving under crys-
talline curvature flows. Such flows were originally
defined by [3] and [9]. Since then several authors
have considered its generalization; in a typical case
the speed of motion of each edge is determined by a
homogeneous function of some degree in its length.

Let us formulate the flow in this paragraph. As-
sume that an interfacial energy density v is a convex
function on R? and satisfies v(r cos 6, 7 sin @) = ro(6)
(r>0,0¢€S'=R/2nZ) for some positive function
o € C(SY). We consider the case where the Wulff
shape of v, W, = MNyegii(z,y) € R? | zcosf +
ysinf < o(6)}, is a polygon. In this case, ~ is called
a crystalline energy, and we may express its Wulff
shape as

N
W, = ﬂ {(x,y)€R2 |xcos§n + ysinb, < U(gn)},

n=1

where gn is the exterior normal angle of the n-th
edge with 6, € (gn_1,§n_1 + ) for each n, and N
is a number of edges (N > 3). Let P be a simple
closed K-sided polygonal curve in R?, and label the
vertices (g, yx) (K =1,2,..., K) in an anticlockwise
order with (zg,y0) = (k, YK ):
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K
P=JS.
k=1

Sk ={(1 =t)(wr—1,yp—1) + t(zg,yx) | 0 <t <1},

and let 0y be the exterior normal angle of the k-th
edge Si. We say that P is a K-admissible curve if
the normal angles ), of all edges Sy belong to (:)7 =
{51, 52, e gN} and the angles of all adjacent edges
in P are adjacent in (:)7 (C S'). For each edge Sy a
crystalline curvature is defined by Hy = Xkan(k)/lk;
where i is the length of S and l~n( k) is the length of
the n-th edge of W, satisfying 6N?n = 0. The quantity
Xk is a transition number, which takes —1 (resp., +1)
if P is convex (resp., concave) at Sy in the outward
normal direction (cosf,sinfy). Otherwise we set
Xt = 0. Note that xi = —1 (Vk) if P is a convex
polygon and that the crystalline curvature of W, is
—1 on each edge. Under a crystalline curvature flow
each edge Sy keeps the same direction but moves
in the outward normal direction with the velocity
Vi determined by a homogeneous function of some
degree a > 0 in the crystalline curvature Hy:

(1) Vi = U(ek)|Hk|a_1Hk on Sy

for k =1,2,..., K. It is easy to show that if K =
N and P is homothety of OW,, then P is a self-
similar solution curve of (1); For N = 3 all admissible
triangles are self-similar.

In this paper we give examples of a noncon-
vex self-similar solution curve shrinking to a point
when the Wulff shape is a regular triangle or a reg-
ular square. Among other results we show that if
a € (0,1), then such a nonconvex self-similar solu-
tion exists even if the motion is orientation-free, i.e.,
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Fig. 1. Two examples in §2 and §3. From left to right: the Wulff triangle with zp = 0; the 5-admissible

self-similar solution curve in the case o = 1 and ¢ = (v/5 — 1)/2; the Wulff square with zo = —1/2; and
the 6-admissible self-similar solution curve in the case o =1 and ¢ = 2.

o(6 + m) = o(f). This is a strong contrast to a mo-
tion by smooth interfacial energy density where the
curve becomes convex in a finite time [4]. From our
example it seems that general convexity statement in
[5, Lemma 2 (i) (a)] is somewhat overstated. If o > 1
and (6 + ) = o(6), then a solution curve P; of (1)
with a K-admissible initial curve Py converges to a
single point or a K’-admissible curve with K’ < K
as t tends to a finite time T > 0, and eventually P;
shrinks to a point at a finite time T > T ([5]). Al-
though it was stated that a solution becomes convex
before it shrinks to a point ([5, Proposition 6]), a
further investigation seems to be necessary to clarify
in what generality such a convexity result hold.

For convex solution curves, on the other hand,
detailed properties are known ([2, 5, 6, 7]). If « = 1,
o(6+7) = o(f) and N > 6, then the only convex self-
similar solution curve is a homothety of OW., ([§]).
For a smooth interfacial energy density - see, e.g.,
[1, 4].

2. The first example (case N =3 and
K =5). We put (pn,qn) = (20 + cos(2nrw/3),
sin(2n7/3)) for n =0,1,2 and 29 € (—1,1/2). Let a
crystalline energy density v be

~(r cos B, rsin 6)
=ro(f) =r max {py,cosf + ¢, sinb}.
n=0,1,2

Then the Wulff shape of v is a triangle with the ver-
tices (pn,qn) (n =0,1,2):

3
W, = ﬂ {(z,y) € R? | zcosb, +ysinb, < hn},
n=1
where gn = 7m(2n —1)/3 and fNLn =1/2+ zocosgn.
See Fig. 1 (far left). The length of each edge is

I, = V/3 (Vn). We construct the 5-admissible curve
P = U2=1 Sk, with the vertices (xg, yx) satisfying for
b>a >0 (zg,y) = (x5,95) = (0,0), (x1,91) =
(\/gaa a)/2a (an y2) = (\/g(a_b)a a+b)/2a (x?n y3) =
(\/g(a —b), _(a + b))/2 and (x4a Ya) = (\/gaa _a)/2'
The length of Sk, I = |(zr — Tk—1,Yr — Yk—1)|, and
its crystalline curvature satisfy Iy =I5 = a, ls =1y =
b,ls=a+band H = Hs =0, Hy = H; = —/3/b,
Hs = —/3/(a+b), respectively. Hence, by virtue of
0(0k) = hnry and Vi = V5 = 0, Vo = Vi = v/34/2,
Vs = v/3(b— @)/2, evolution equations (1) are given
as

b
Here and hereafter fNLn(k) = fNLn for gn = 0, and u
means du/dt. Putting b — a = ac, we have

) \/ga_l(l +20) ((c+2)% 1-—2z
¢= — :
1 + 20

actl(c+2)* \ (c+1)~
The nonconvex solution curve is self-similar if and
only if ¢ = 0, that is

(c+2)% 1-2z
(C—i—l)a - 1+ZQ

fle,a) ==

holds. Then we have lim. 4o f(c,a) = 0 and
lime oo f(c, @) = 400, If 0 < a < 3+ 2v/2, then
df(c,a)/0c > 0 holds for all ¢ > 0. If « > 3 +
2v/2, then 0f(c,a)/0c = 0 holds only for ¢ = (o —
3+ /(a—3)?—=8)/2 > 0. Therefore, we have the
following two cases:

Case 0< a<3+4+2V2. For any z €
(—1,1/2) there exists a unique ¢ > 0 such that the
solution is self-similar. See Fig. 1 (left).
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Case o > 3 + 24/2. There exists two con-
stants —1 < z_ < z; < 1/2 such that the following
three cases hold: (i) For any z € (—1, z—)U(24,1/2)
there exists a unique ¢ > 0 such that the solution is
self-similar. (ii) For any zo € {z—,z+} there exist
two positive constants c; and co such that the solu-
tion is self-similar if and only if ¢ = ¢1 or cq. (iii) For
any zo € (z—, z4) there exist three positive constants
c1, co and c3 such that the solution is self-similar if
and only if ¢ = ¢1, co or c3.

3. The second example (case N = 4 and
K =6). We put (pn,qn) = (20 + cos(nm/2),
sin(nm/2)) for n = 0,1,2,3 and zy € (—1,1). Let
a crystalline energy density v be

~(r cos B, r sin 6)

=ro@)=r | max {pn cos b + gy sin0}.

,1,2,3

Then the Wulff shape of « is a square with the ver-
tices (pn,qn) (n =0,1,2,3):

4
ﬂ {(z,y) €R2|xcose +ysinb, <h}

n=1

where 6N’n =m(2n —1)/4 and fNLn =1/vV2+ 2 cosgn.
See Fig. 1 (right). The length of each edge is I, =
V2 (Vn). We construct the 6-admissible curve P =
U2=1 Sk, with the vertices (xg, yx) satisfying for a >
0 and b > 0 (z0,y0) = (x6,96) = (0,0), (x1,91) =
(a,a)/V2, (x2,y2) = (a —b,a+b)/V?2, (x3,y3) =
(—=2b,0)/v2, (x4,44) = (a — b, —(a + b))/v/2 and
(z5,95) = (a, —a)/+/2. The length of Sy, and its crys-
talline curvature satisfy Iy =lg =a, lo =15 =0, I3 =
ly =a+band H = Hg = 0, Hy, = Hs = —/2/b,
Hs = Hy = —/2/(a + b), respectively. Hence, by
virtue of o(6x) = fNLn(k) and Vi =V =0, Vo = V5 =
a, V3 = V4 = b, evolution equations (1) are given as

V2 b
Putting b = ac, we have
VT ) (D) 1-2
(2) ¢= — .
a®tl(c4 1) 14 2z
The nonconvex solution curve is self-similar if and

only if ¢ = 0, that is

ca—l

(c+1)”

ca—l

__1-—20
142

g(e,a) =

holds.
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Case 0 < a < 1. Since lim,— 9 g(c,a) = 0,
lime—, 400 g(c, @) = 400 and dg/0c > 0 (Ve > 0)
hold, we have the following: For any zy € (—1,1)
there exists a unique ¢ > 0 such that the solution s
self-similar.

Case a = 1. Since g(¢,1) = ¢ + 1, we have
the following two cases: (i) For any zp € [0,1) and
¢ > 0 the solution is not self-similar. (i) For any
2o € (—1,0) the solution is self-similar if and only if
c=—2z/(1+ zp) > 0. See Fig. 1 (far right).

Case a > 1. Tt holds that lim.— ¢ g(c, ) =
lime—, 400 g(¢, @) = +00. Further, dg(c,a)/dc = 0
holds if and only if ¢ = a — 1. Therefore, we have
the following three cases: Let z, = —{a® — (a —
Do /{a® + (e — 1)*71} € (=1,0). (i) For any
20 € (24, 1) and ¢ > 0 the solution is not self-similar.
(i) For zo = z. the solution is self-similar if and only
ifc=a—=1>0. (iii) For any zo € (—1, z,) there
exrist two positive constants c¢; and co such that the
solution is self-similar if and only if ¢ = c1 or cs.

Remark in case a = 1. All convex solutions
are self-similar. On the other hand, when z, €
(—1,0) and ¢o = ¢(0) € (0,—2z/(1 + 20)), the
nonconvex solution shrinks to a single point and
maxy 1/l blows up to infinity as ¢ tends to a finite
time T with its rate being faster than the self-similar
rate. Indeed, from (2), ¢ < —2z0/(1+ zp) implies ¢ <
0. Hence, b(T) = 0 (coa(t) > b(t) > 0) holds, and
so a(T) = 0 holds since no degenerate pinching oc-
curs [5, Lemma 2 (iii)], which implies a single point
extinction. Also, the enclosed area A = (2a + b)b
satisfies A(t) = 4(T — t). Therefore, we obtain the
estimate b(t) < C(T — t)% for some C > 0 since
b= —(1—2)(c+2)b/{(c+ 1A} < —dob/(T —
holds. Here do = (1 — z0)(co +2)/{4(co + 1)}, which
satisfies dy € (1/2,1). Hence b(t) never does admit
the self-similar rate v/T —¢t. Furthermore, a(t) >
20 T — t)1=% — 271C(T — )% holds, which im-
plies the isoperimetric ratio L(t)%/A(t) diverges to
infinity as ¢ tends to T. Here L(t) = 2(a + b) is the
total length.
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