L^2 -torsion invariants and homology growth of a torus bundle over S^1

By Teruaki KITANO, *) Takayuki MORIFUJI, **) and Mitsuhiko TAKASAWA *)

(Communicated by Heisuke HIRONAKA, M. J. A., April 14, 2003)

Abstract: We introduced an infinite sequence of L^2 -torsion invariants for surface bundles over the circle in [4]. In this note, we investigate in detail the first two terms for a torus bundle case. In particular, we show that the first invariant can be described by the asymptotic behavior of the order of the first homology group of a cyclic covering.

Key words: L^2 -torsion; hyperbolic volume; surface bundle; nilpotent quotient.

1. Introduction. L^2 -analogues of the Reidemeister and the Ray-Singer torsion were initiated by Mathai [11], Carey-Mathai [1] and Lott [6]. They are defined by using the Fuglede-Kadison determinant of von Neumann algebras. It is shown in [3, 10] that the L^2 -torsion for the regular representation of fundamental groups is equal to a constant multiple of Gromov's simplicial volume. Thus, for a hyperbolic manifold, it is essentially equal to its hyperbolic volume.

Recently we started to study an infinite sequence $\{\tau_k\}_{k\in\mathbb{N}}$ of L^2 -torsion invariants, which should approximate the original L^2 -torsion τ , of a surface bundle over the circle S^1 . The purpose of this note is to show that the first invariant τ_1 can be described by the asymptotic behavior of the order of the first homology group of cyclic coverings. We give a proof only for genus one case, but we easily see that it holds for higher genera. Further we show that the second term τ_2 of our L^2 -torsion invariants is trivial for all torus bundles over S^1 .

First we review a definition of the Fuglede-Kadison determinant. Let π be a finitely presentable group and $\mathbf{C}\pi$ denote its group ring over \mathbf{C} . For an element $\sum_{g\in\pi} \lambda_g g \in \mathbf{C}\pi$, we define the $\mathbf{C}\pi$ -trace $\operatorname{tr}_{\mathbf{C}\pi} : \mathbf{C}\pi \to \mathbf{C}$ by $\operatorname{tr}_{\mathbf{C}\pi}(\sum_{g\in\pi} \lambda_g g) = \lambda_e \in \mathbf{C}$, where e is the unit element in π . Next, for a matrix $B = (b_{ij}) \in M(n, \mathbf{C}\pi)$, we extend this definition of $\mathbf{C}\pi$ -trace by means of

$$\operatorname{tr}_{\mathbf{C}\pi}(B) = \sum_{i=1}^{n} \operatorname{tr}_{\mathbf{C}\pi}(b_{ii}).$$

Let $l^2(\pi)$ denote the complex Hilbert space of formal sums $\sum_{g \in \pi} \lambda_g g$ which are square summable. For any matrix $B \in M(n, \mathbb{C}\pi)$, we consider the bounded π equivariant operator

$$R_B: \bigoplus_{i=1}^n l^2(\pi) \to \bigoplus_{i=1}^n l^2(\pi)$$

defined by natural right action of B. We fix a positive real number K so that $K \ge ||R_B||_{\infty}$ holds, where $||R_B||_{\infty}$ is the operator norm of R_B .

Definition 1.1. The Fuglede-Kadison determinant of a matrix B is defined by

 $\det_{\mathbf{C}\pi}(B)$

$$= K^{n} \exp\left(-\frac{1}{2} \sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbf{C}\pi} \left(I - K^{-2} B B^{*}\right)^{p}\right) \in \mathbf{R}_{>0},$$

if the infinite sum of non-negative real numbers $\sum (1/p) \operatorname{tr}_{\mathbf{C}\pi} (I - K^{-2}BB^*)^p$ converges to a real number. Here I is the identity matrix and B^* denotes the adjoint of B. That is, $B^* = (\overline{b_{ji}})$ and $\overline{\sum \lambda_g g} = \sum \overline{\lambda_g} \overline{\lambda_g} g^{-1}$.

Remark 1.2. (i) The Fuglede-Kadison determinant $\det_{\mathbf{C}\pi}(B)$ is independent of the choice of the constant K.

(ii) Recently Schick [12] defined some class of groups, which includes abelian groups and amenable groups, and proved the following: If a group π belongs to this class and $\lim_{p\to\infty}(1/p)\operatorname{tr}_{\mathbf{C}\pi}(I - K^{-2}BB^*)^p = 0$, then the above infinite sum converges.

2. Definition of τ_k . From now on, we restrict ourselves to a surface bundle over S^1 and review the construction of its L^2 -torsion invariants (see

²⁰⁰⁰ Mathematics Subject Classification. Primary 57Q10; Secondary 57M05, 46L10.

^{*)} Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguroku, Tokyo 152-8552.

^{**)} Department of Mathematics, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588.

 L^2 -torsion invariants

[4] for details). As for the definition of the original L^2 -torsion τ , see [9].

Let $\Sigma_{g,1}$ be a compact oriented smooth surface of genus $g \geq 1$ with one boundary component. For an orientation preserving diffeomorphism φ of $\Sigma_{g,1}$, we form the mapping torus W_{φ} by taking $\Sigma_{g,1} \times [0, 1]$ and gluing $\Sigma_{g,1} \times \{0\}$ and $\Sigma_{g,1} \times \{1\}$ via φ . For simplicity, we put $\pi = \pi_1(W_{\varphi}, *)$ and $\Gamma = \pi_1(\Sigma_{g,1}, *)$, where the base point * of π and Γ is the same one on the fiber $\Sigma_{g,1} \times \{0\} \subset W_{\varphi}$. Then π is isomorphic to the semidirect product of Γ and $\pi_1 S^1 \cong \mathbf{Z} = \langle t \rangle$.

Now let us consider the lower central series of Γ :

$$\Gamma_1 = \Gamma \supset \Gamma_2 \supset \cdots \supset \Gamma_k \supset \cdots,$$

where $\Gamma_k = [\Gamma_{k-1}, \Gamma_1]$ for $k \geq 2$. Let N_k be the kth nilpotent quotient $N_k = \Gamma/\Gamma_k$ and $p_k : \Gamma \to N_k$ be the natural projection. The group Γ_k is a normal subgroup of π , so that we can take the quotient group $\pi(k) = \pi/\Gamma_k$. It should be noted that $\pi(k)$ is isomorphic to the semi-direct product $N_k \rtimes \mathbf{Z}$. We denote the induced homomorphism $\pi \to \pi(k)$ by the same letter p_k . Thereby we can consider the chain complex

$$C_*\left(W_{\varphi}, l^2\left(\pi(k)\right)\right) = l^2\left(\pi(k)\right) \otimes_{\mathbf{Z}\pi} C_*(\widetilde{W}_{\varphi})$$

through the projection p_k , where $W_{\varphi} \to W_{\varphi}$ is a universal covering space. By using the Laplace operator on this complex, we define the kth L^2 -torsion $\tau_k(W_{\varphi})$ as follows:

Definition 2.1.

$$\tau_k(W_{\varphi}) = \prod_{i=0}^3 \det_{\mathbf{C}\pi(k)} \left(\Delta_i^{(k)}\right)^{(-1)^{i+1}i}$$

where $\Delta_i^{(k)} : C_i(\widetilde{W}_{\varphi}, \mathbf{C}\pi(k)) \to C_i(\widetilde{W}_{\varphi}, \mathbf{C}\pi(k))$ is the Laplace operator on $\mathbf{C}\pi(k)$.

Remark 2.2. For some K, a limit of $(1/p) \operatorname{tr}_{\mathbf{C}\pi} (I - K^{-2} \Delta_i^{(k)} (\Delta_i^{(k)})^*)^p$ on p is zero by Lück [8]. Furthermore it is easy to see $\pi(k)$ belongs to the class of groups defined by Schick. Therefore every τ_k is well-defined.

Here let us state our volume conjecture for a surface bundle over S^1 .

Conjecture 2.3. The sequence $\{\tau_k(W_{\varphi})\}_{k \in \mathbb{N}}$ converges to $\tau(W_{\varphi})$ when we take the limit on k.

In our setting, Lück's formula [7] of $\tau_k(W_{\varphi})$ is described as follows: Let x_1, \ldots, x_{2g} be a generating system of the free group $F_{2g} = \Gamma$. Then the fundamental group π is presented by

$$\pi = \langle x_1, \dots, x_{2g}, t \mid r_i = t x_i t^{-1} \left(\varphi_*(x_i) \right)^{-1},$$
$$1 \le i \le 2g \rangle,$$

where $\varphi_* : \Gamma \to \Gamma$ is a homomorphism induced by $\varphi : \Sigma_{g,1} \to \Sigma_{g,1}$. Applying the free differential calculus to relators r_1, \ldots, r_{2g} , we obtain a Fox matrix

$$A = \left(\frac{\partial r_i}{\partial x_j}\right) \in M(2g, \mathbf{Z}\pi).$$

Let $p_{k_*} : \mathbf{C}\pi \to \mathbf{C}\pi(k)$ be an induced homomorphism over the group rings and we put

$$A_{k} = \left(p_{k_{*}}\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right) \in M(2g, \mathbf{C}\pi(k)).$$

Moreover we fix a constant K_k satisfying $K_k \geq ||R_{A_k}||_{\infty}$. Thereby the formula is given by

$$\log \tau_k(W_{\varphi}) = -2 \log \det_{\mathbf{C}\pi(k)}(A_k)$$
$$= -4g \log K_k$$
$$+ \sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbf{C}\pi(k)} \left(I - K_k^{-2} A_k A_k^*\right)^p$$

3. A formula of τ_1 and cyclic covering.

In the following, we only consider torus bundles over the circle. First we review a formula of the first invariant τ_1 (see [4, 5]).

Theorem 3.1. The logarithm of $\tau_1(W_{\varphi})$ is given by

$$\log \tau_1(W_{\varphi}) = -2\log \max\{|\alpha|, 1/|\alpha|\},\$$

where α and $1/\alpha$ are the eigenvalues of the homology representation $\varphi_* \in SL(2, \mathbb{Z})$.

Remark 3.2. In other words, the first term $\log \tau_1$ is nothing but minus twice of the Mahler measure (see [2]) of the characteristic polynomial of $\varphi_* \in SL(2, \mathbb{Z})$.

From this description, we obtain the following notable corollary.

Corollary 3.3. A mapping torus W_{φ} admits a hyperbolic structure if and only if W_{φ} has a nontrivial L^2 -torsion invariant $\tau_1(W_{\varphi})$.

Therefore, in some sense, we can say that the first invariant τ_1 already approximates the simplicial volume in genus one case.

By the way, if we consider only the first term τ_1 , we can define it for a manifold M with a surjection $\pi_1(M) \to T \cong \mathbb{Z}$, for example an exterior of a knot, not only for surface bundles. In this case, the above formula of τ_1 is related with the following classical result on knots (see [13]).

No. 4]

We fix a prime number $n \geq 2$. Let $W_{\varphi^n} \to W_{\varphi}$ be the *n*-fold cyclic covering of W_{φ} . Then we define $\operatorname{ord}(\varphi, n)$ to be the order of the quotient group $H_1(W_{\varphi^n}, \mathbb{Z})/\langle t \rangle$. If its order is infinity, we put $\operatorname{ord}(\varphi, n) = 0$. Here associated with

$$\pi_1(W_{\varphi}) \to \pi(1) = T = \langle t \rangle \ni t \mapsto \bar{t} \in \bar{T}^{(n)} := \langle \bar{t} \mid \bar{t}^n \rangle$$

we can define the L^2 -torsion invariant $\tau_1^{(n)}(W_{\varphi})$. Because in this case, $\mathbf{C}\bar{T}^{(n)} = l^2(\bar{T}^{(n)}) \cong \mathbf{C}^n$ is a finite dimensional vector space. We then obtain

Theorem 3.4. It holds that

(i) $\log \tau_1^{(n)}(W_{\varphi}) = -\frac{2}{n} \log \operatorname{ord}(\varphi, n),$ (ii) $\lim_{n \to \infty} \log \tau_1^{(n)}(W_{\varphi}) = \log \tau_1(W_{\varphi}).$

Proof. We consider the Fox matrix $A_1^{(n)} \in M(2, \mathbf{C}\bar{T}^{(n)})$ over $\mathbf{C}\bar{T}^{(n)}$, which is induced from A_1 by the projection $T \to \bar{T}^{(n)}$. We write $\tilde{A}_1^{(n)}$ to its induced linear endmorphism on $l^2(\bar{T}^{(n)}) \oplus l^2(\bar{T}^{(n)}) \cong \mathbf{C}^n \oplus \mathbf{C}^n = \mathbf{C}^{2n}$. Then we notice the fact that

$$\operatorname{tr}_{\mathbf{C}\bar{T}^{(n)}}(A_1^{(n)}) = \frac{1}{n}\operatorname{tr}(\tilde{A}_1^{(n)})$$

where 'tr' is the ordinary trace for matrices. By using this fact and the definition of $\det_{\mathbf{C}\overline{T}^{(n)}}$, it follows that

$$\log \det_{\mathbf{C}\bar{T}^{(n)}}(A_1^{(n)}) = \frac{1}{n} \log |\det(\tilde{A}_1^{(n)})|,$$

where 'det' denotes the usual determinant. On the other hand, $A_1^{(n)}$ is a presentation matrix for $H_1(W_{\varphi^n}, \mathbb{Z})$ as a $\mathbb{Z}\overline{T}$ -module and $\tilde{A}_1^{(n)}$ is such one as a \mathbb{Z} -module. Thus $|\det(\tilde{A}_1^{(n)})| = \operatorname{ord}(\varphi, n)$ holds. Therefore, by using Lück's formula mentioned in the previous section, we obtain $\log \tau_1^{(n)}(W_{\varphi}) =$ $(-2/n) \log \operatorname{ord}(\varphi, n)$.

To prove the second assertion, we only have to show

$$\lim_{t \to \infty} \operatorname{tr}_{\mathbf{C}\bar{T}^{(n)}}(f(\bar{t})) = \operatorname{tr}_{\mathbf{C}T}(f(t))$$

for any $f(t) = \sum a_k t^k \in \mathbf{C}T$. Here we have written $f(\bar{t})$ to the corresponding element in $\mathbf{C}\bar{T}^{(n)}$.

By the definition, $\operatorname{tr}_{\mathbf{C}\overline{T}^{(n)}}(f(\overline{t})) = \sum_{k\equiv 0(n)} a_k$. The right hand side is equal to a finite sum $\sum_{i=1}^{n} (1/n) f(\zeta^i)$, where ζ is a primitive *n*th root of unity. Because *n* is prime and ζ is primitive, and then

$$\frac{1}{n}\sum_{i=1}^{n}a_{k}(\zeta^{i})^{k} = \frac{a_{k}}{n}\sum_{i=1}^{n}\zeta^{ik} = \begin{cases} a_{k} & (\zeta^{k}=1)\\ 0 & (\zeta^{k}\neq 1) \end{cases}$$

holds. Furthermore it is clear that

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} f(\zeta^{i}) = \int_{0}^{1} f(e^{2\pi\sqrt{-1}\theta}) \, d\theta.$$

Here we recall from [4] Theorem 5.1 that

$$\operatorname{tr}_{\mathbf{C}T}(f(t)) = \int_0^1 f(e^{2\pi\sqrt{-1}\theta}) \, d\theta$$

holds. Hence we have

$$\lim_{n \to \infty} \operatorname{tr}_{\mathbf{C}\bar{T}^{(n)}}(f(\bar{t})) = \operatorname{tr}_{\mathbf{C}T}(f(t)).$$

Remark 3.5. The above theorem also holds for higher genera. As for a related work to Theorem 3.4, see [14].

4. Vanishing of $\log \tau_2$. As was showing in [4], for a monodromy $\varphi : \Sigma_{1,1} \to \Sigma_{1,1}$ satisfying $|\operatorname{tr}(\varphi_*)| \leq 2$, the *k*th invariant $\tau_k(W_{\varphi})$ is trivial for every *k*. In general, we can prove the vanishing of $\log \tau_2(W_{\varphi})$ as follows:

Theorem 4.1. The second term $\tau_2(W_{\varphi})$ is always trivial.

Proof. To prove this theorem, we use Lück's formula in the closed surface bundle case ([7] Theorem 2.4). For any diffeomorphism ϕ on a closed torus Σ_1 , we simply denote its fundamental group $\pi_1(W_{\phi})$ by $\bar{\pi}$. We then obtain the same Fox matrix

$$A = \left(\frac{\partial r_i}{\partial x_j}\right).$$

In this case, Lück's formula of the original L^2 -torsion τ is described as follows:

$$\log \tau(W_{\phi}) = -2 \log \det_{\mathbf{C}\bar{\pi}}(A).$$

Now we regard as $\Sigma_{1,1} \subset \Sigma_1$ and let $\phi : \Sigma_1 \to \Sigma_1$ be a diffeomorphism induced from $\varphi : \Sigma_{1,1} \to \Sigma_{1,1}$ (namely, $\phi|_{\Sigma_{1,1}} = \varphi$ holds). Thereby we have

$$\log \tau_2(W_{\varphi}) = \log \tau(W_{\phi}) = C||W_{\phi}||$$

by the above formula and the definition of τ_2 . Here C is a constant and $||W_{\phi}||$ the simplicial volume of W_{ϕ} (see [7]). This W_{ϕ} is a Seifert fibered space, or a solvable manifold. Hence $||W_{\phi}||$ is zero. Therefore $\log \tau_2(W_{\varphi})$ is also zero. This completes the proof.

Acknowledgement. The first and second authors are supported in part by Grand-in-Aid for Scientific Research (No. 12740035 and No. 14740036), Japan Society for the Promotion of Science.

References

- Carey, A., and Mathai, V.: L²-torsion invariants. J. Funct. Anal., **110**, 377–409 (1992).
- [2] Everest, G.: Measuring the height of a polynomial. Math. Intelligencer, 20, 9–16 (1998).
- [3] Hess, E., and Schick, T.: L²-torsion of hyperbolic manifolds. Manuscripta Math., 97, 329–334 (1998).
- [4] Kitano, T., Morifuji, T., and Takasawa, M.: L^2 torsion invariants of a surface bundle over S^1 . J. Math. Soc. Japan (To appear).
- [5] Kitano, T., Morifuji, T., and Takasawa, M.: Numerical calculation of L²-torsion invariants. Interdiscip. Inform. Sci. (To appear).
- [6] Lott, J.: Heat kernels on covering spaces and topological invariants. J. Diff. Geom., 35, 471–510 (1992).
- [7] Lück, W.: L²-torsion and 3-manifolds. Low-Dimensional Topology (ed. Johanson, K.). Conf. Proc. Lecture Notes Geom. Topology, III. Internat. Press, Cambridge, pp. 75–107 (1994).

- [8] Lück, W.: L²-Betti numbers of mapping tori and groups. Topology, **33**, 203–214 (1994).
- [9] Lück, W.: L²-Invariants: Theory and Applications to Geometry and K-theory. Springer-Verlag, Berlin (2002).
- [10] Lück, W., and Schick, T.: L²-torsion of hyperbolic manifolds of finite volume. Geom. Funct. Anal., 9, 518–567 (1999).
- [11] Mathai, V.: L²-analytic torsion. J. Funct. Anal., 107, 369–386 (1992).
- [12] Schick, T.: L^2 -determinant class and approximation of L^2 -Betti numbers. Trans. Amer. Math. Soc., **353**, 3247–3265 (2001).
- [13] Seifert, H.: Über das Geshlecht von Knoten. Math. Ann., **110**, 571–592 (1934).
- [14] Silver, D. S., and Williams, S. G.: Mahler measure, links and homology growth. Topology, 41, 979– 991 (2002).