L^{2}-torsion invariants and homology growth of a torus bundle over S^{1}

By Teruaki Kitano, ${ }^{*)}$ Takayuki Morifuji, ${ }^{* *)}$ and Mitsuhiko Takasawa*)
(Communicated by Heisuke Hironaka, m. J. a., April 14, 2003)

Abstract

We introduced an infinite sequence of L^{2}-torsion invariants for surface bundles over the circle in [4]. In this note, we investigate in detail the first two terms for a torus bundle case. In particular, we show that the first invariant can be described by the asymptotic behavior of the order of the first homology group of a cyclic covering.

Key words: $\quad L^{2}$-torsion; hyperbolic volume; surface bundle; nilpotent quotient.

1. Introduction. L^{2}-analogues of the Reidemeister and the Ray-Singer torsion were initiated by Mathai [11], Carey-Mathai [1] and Lott [6]. They are defined by using the Fuglede-Kadison determinant of von Neumann algebras. It is shown in [3, 10] that the L^{2}-torsion for the regular representation of fundamental groups is equal to a constant multiple of Gromov's simplicial volume. Thus, for a hyperbolic manifold, it is essentially equal to its hyperbolic volume.

Recently we started to study an infinite sequence $\left\{\tau_{k}\right\}_{k \in \mathbf{N}}$ of L^{2}-torsion invariants, which should approximate the original L^{2}-torsion τ, of a surface bundle over the circle S^{1}. The purpose of this note is to show that the first invariant τ_{1} can be described by the asymptotic behavior of the order of the first homology group of cyclic coverings. We give a proof only for genus one case, but we easily see that it holds for higher genera. Further we show that the second term τ_{2} of our L^{2}-torsion invariants is trivial for all torus bundles over S^{1}.

First we review a definition of the FugledeKadison determinant. Let π be a finitely presentable group and $\mathbf{C} \pi$ denote its group ring over \mathbf{C}. For an element $\sum_{g \in \pi} \lambda_{g} g \in \mathbf{C} \pi$, we define the $\mathbf{C} \pi$-trace $\operatorname{tr}_{\mathbf{C} \pi}: \mathbf{C} \pi \rightarrow \mathbf{C}$ by $\operatorname{tr}_{\mathbf{C} \pi}\left(\sum_{g \in \pi} \lambda_{g} g\right)=\lambda_{e} \in \mathbf{C}$, where e is the unit element in π. Next, for a ma$\operatorname{trix} B=\left(b_{i j}\right) \in M(n, \mathbf{C} \pi)$, we extend this definition of $\mathbf{C} \pi$-trace by means of

[^0]$$
\operatorname{tr}_{\mathbf{C} \pi}(B)=\sum_{i=1}^{n} \operatorname{tr}_{\mathbf{C} \pi}\left(b_{i i}\right)
$$

Let $l^{2}(\pi)$ denote the complex Hilbert space of formal sums $\sum_{g \in \pi} \lambda_{g} g$ which are square summable. For any matrix $B \in M(n, \mathbf{C} \pi)$, we consider the bounded π equivariant operator

$$
R_{B}: \bigoplus_{i=1}^{n} l^{2}(\pi) \rightarrow \bigoplus_{i=1}^{n} l^{2}(\pi)
$$

defined by natural right action of B. We fix a positive real number K so that $K \geq\left\|R_{B}\right\|_{\infty}$ holds, where $\left\|R_{B}\right\|_{\infty}$ is the operator norm of R_{B}.

Definition 1.1. The Fuglede-Kadison determinant of a matrix B is defined by
$\operatorname{det}_{\mathbf{C} \pi}(B)$
$=K^{n} \exp \left(-\frac{1}{2} \sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbf{C} \pi}\left(I-K^{-2} B B^{*}\right)^{p}\right) \in \mathbf{R}_{>0}$,
if the infinite sum of non-negative real numbers $\sum(1 / p) \operatorname{tr}_{\mathbf{C} \pi}\left(I-K^{-2} B B^{*}\right)^{p}$ converges to a real number. Here I is the identity matrix and B^{*} denotes the adjoint of B. That is, $B^{*}=\left(\overline{b_{j i}}\right)$ and $\overline{\sum \lambda_{g} g}=$ $\sum \overline{\lambda_{g}} g^{-1}$.

Remark 1.2. (i) The Fuglede-Kadison determinant $\operatorname{det}_{\mathbf{C} \pi}(B)$ is independent of the choice of the constant K.
(ii) Recently Schick [12] defined some class of groups, which includes abelian groups and amenable groups, and proved the following: If a group π belongs to this class and $\lim _{p \rightarrow \infty}(1 / p) \operatorname{tr}_{\mathbf{C} \pi}(I-$ $\left.K^{-2} B B^{*}\right)^{p}=0$, then the above infinite sum converges.
2. Definition of $\boldsymbol{\tau}_{\boldsymbol{k}}$. From now on, we restrict ourselves to a surface bundle over S^{1} and review the construction of its L^{2}-torsion invariants (see
[4] for details). As for the definition of the original L^{2}-torsion τ, see [9].

Let $\Sigma_{g, 1}$ be a compact oriented smooth surface of genus $g \geq 1$ with one boundary component. For an orientation preserving diffeomorphism φ of $\Sigma_{g, 1}$, we form the mapping torus W_{φ} by taking $\Sigma_{g, 1} \times[0,1]$ and gluing $\Sigma_{g, 1} \times\{0\}$ and $\Sigma_{g, 1} \times\{1\}$ via φ. For simplicity, we put $\pi=\pi_{1}\left(W_{\varphi}, *\right)$ and $\Gamma=\pi_{1}\left(\Sigma_{g, 1}, *\right)$, where the base point $*$ of π and Γ is the same one on the fiber $\Sigma_{g, 1} \times\{0\} \subset W_{\varphi}$. Then π is isomorphic to the semidirect product of Γ and $\pi_{1} S^{1} \cong \mathbf{Z}=\langle t\rangle$.

Now let us consider the lower central series of Γ :

$$
\Gamma_{1}=\Gamma \supset \Gamma_{2} \supset \cdots \supset \Gamma_{k} \supset \cdots
$$

where $\Gamma_{k}=\left[\Gamma_{k-1}, \Gamma_{1}\right]$ for $k \geq 2$. Let N_{k} be the k th nilpotent quotient $N_{k}=\Gamma / \Gamma_{k}$ and $p_{k}: \Gamma \rightarrow N_{k}$ be the natural projection. The group Γ_{k} is a normal subgroup of π, so that we can take the quotient group $\pi(k)=\pi / \Gamma_{k}$. It should be noted that $\pi(k)$ is isomorphic to the semi-direct product $N_{k} \rtimes \mathbf{Z}$. We denote the induced homomorphism $\pi \rightarrow \pi(k)$ by the same letter p_{k}. Thereby we can consider the chain complex

$$
C_{*}\left(W_{\varphi}, l^{2}(\pi(k))\right)=l^{2}(\pi(k)) \otimes_{\mathbf{z} \pi} C_{*}\left(\widetilde{W}_{\varphi}\right)
$$

through the projection p_{k}, where $\widetilde{W}_{\varphi} \rightarrow W_{\varphi}$ is a universal covering space. By using the Laplace operator on this complex, we define the k th L^{2}-torsion $\tau_{k}\left(W_{\varphi}\right)$ as follows:

Definition 2.1.

$$
\tau_{k}\left(W_{\varphi}\right)=\prod_{i=0}^{3} \operatorname{det}_{\mathbf{C} \pi(k)}\left(\Delta_{i}^{(k)}\right)^{(-1)^{i+1} i}
$$

where $\Delta_{i}^{(k)}: C_{i}\left(\widetilde{W}_{\varphi}, \mathbf{C} \pi(k)\right) \rightarrow C_{i}\left(\widetilde{W}_{\varphi}, \mathbf{C} \pi(k)\right)$ is the Laplace operator on $\mathbf{C} \pi(k)$.

Remark 2.2. For some K, a limit of $(1 / p) \operatorname{tr}_{\mathbf{C} \pi}\left(I-K^{-2} \Delta_{i}^{(k)}\left(\Delta_{i}^{(k)}\right)^{*}\right)^{p}$ on p is zero by Lück [8]. Furthermore it is easy to see $\pi(k)$ belongs to the class of groups defined by Schick. Therefore every τ_{k} is well-defined.

Here let us state our volume conjecture for a surface bundle over S^{1}.

Conjecture 2.3. The sequence $\left\{\tau_{k}\left(W_{\varphi}\right)\right\}_{k \in \mathbf{N}}$ converges to $\tau\left(W_{\varphi}\right)$ when we take the limit on k.

In our setting, Lück's formula [7] of $\tau_{k}\left(W_{\varphi}\right)$ is described as follows: Let $x_{1}, \ldots, x_{2 g}$ be a generating system of the free group $F_{2 g}=\Gamma$. Then the fundamental group π is presented by

$$
\begin{aligned}
& \pi=\left\langle x_{1}, \ldots, x_{2 g}, t\right| r_{i}=t x_{i} t^{-1}\left(\varphi_{*}\left(x_{i}\right)\right)^{-1} \\
&1 \leq i \leq 2 g\rangle
\end{aligned}
$$

where $\varphi_{*}: \Gamma \rightarrow \Gamma$ is a homomorphism induced by φ : $\Sigma_{g, 1} \rightarrow \Sigma_{g, 1}$. Applying the free differential calculus to relators $r_{1}, \ldots, r_{2 g}$, we obtain a Fox matrix

$$
A=\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \in M(2 g, \mathbf{Z} \pi)
$$

Let $p_{k_{*}}: \mathbf{C} \pi \rightarrow \mathbf{C} \pi(k)$ be an induced homomorphism over the group rings and we put

$$
A_{k}=\left(p_{k_{*}}\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right) \in M(2 g, \mathbf{C} \pi(k))
$$

Moreover we fix a constant K_{k} satisfying $K_{k} \geq$ $\left\|R_{A_{k}}\right\|_{\infty}$. Thereby the formula is given by

$$
\begin{aligned}
\log \tau_{k}\left(W_{\varphi}\right)= & -2 \log \operatorname{det}_{\mathbf{C} \pi(k)}\left(A_{k}\right) \\
= & -4 g \log K_{k} \\
& +\sum_{p=1}^{\infty} \frac{1}{p} \operatorname{tr}_{\mathbf{C} \pi(k)}\left(I-K_{k}^{-2} A_{k} A_{k}^{*}\right)^{p}
\end{aligned}
$$

3. A formula of τ_{1} and cyclic covering. In the following, we only consider torus bundles over the circle. First we review a formula of the first invariant τ_{1} (see $[4,5]$).

Theorem 3.1. The logarithm of $\tau_{1}\left(W_{\varphi}\right)$ is given by

$$
\log \tau_{1}\left(W_{\varphi}\right)=-2 \log \max \{|\alpha|, 1 /|\alpha|\}
$$

where α and $1 / \alpha$ are the eigenvalues of the homology representation $\varphi_{*} \in S L(2, \mathbf{Z})$.

Remark 3.2. In other words, the first term $\log \tau_{1}$ is nothing but minus twice of the Mahler measure (see [2]) of the characteristic polynomial of $\varphi_{*} \in$ $S L(2, \mathbf{Z})$.

From this description, we obtain the following notable corollary.

Corollary 3.3. A mapping torus W_{φ} admits a hyperbolic structure if and only if W_{φ} has a nontrivial L^{2}-torsion invariant $\tau_{1}\left(W_{\varphi}\right)$.

Therefore, in some sense, we can say that the first invariant τ_{1} already approximates the simplicial volume in genus one case.

By the way, if we consider only the first term τ_{1}, we can define it for a manifold M with a surjection $\pi_{1}(M) \rightarrow T \cong \mathbf{Z}$, for example an exterior of a knot, not only for surface bundles. In this case, the above formula of τ_{1} is related with the following classical result on knots (see [13]).

We fix a prime number $n \geq 2$. Let $W_{\varphi^{n}} \rightarrow$ W_{φ} be the n-fold cyclic covering of W_{φ}. Then we define $\operatorname{ord}(\varphi, n)$ to be the order of the quotient group $H_{1}\left(W_{\varphi^{n}}, \mathbf{Z}\right) /\langle t\rangle$. If its order is infinity, we put $\operatorname{ord}(\varphi, n)=0$. Here associated with
$\pi_{1}\left(W_{\varphi}\right) \rightarrow \pi(1)=T=\langle t\rangle \ni t \mapsto \bar{t} \in \bar{T}^{(n)}:=\left\langle\bar{t} \mid \bar{t}^{n}\right\rangle$, we can define the L^{2}-torsion invariant $\tau_{1}^{(n)}\left(W_{\varphi}\right)$. Because in this case, $\mathbf{C} \bar{T}^{(n)}=l^{2}\left(\bar{T}^{(n)}\right) \cong \mathbf{C}^{n}$ is a finite dimensional vector space. We then obtain

Theorem 3.4. It holds that
(i) $\log \tau_{1}^{(n)}\left(W_{\varphi}\right)=-\frac{2}{n} \log \operatorname{ord}(\varphi, n)$,
(ii) $\lim _{n \rightarrow \infty} \log \tau_{1}^{(n)}\left(W_{\varphi}\right)=\log \tau_{1}\left(W_{\varphi}\right)$.

Proof. We consider the Fox matrix $A_{1}^{(n)} \in$ $M\left(2, \mathbf{C} \bar{T}^{(n)}\right)$ over $\mathbf{C} \bar{T}^{(n)}$, which is induced from A_{1} by the projection $T \rightarrow \bar{T}^{(n)}$. We write $\tilde{A}_{1}^{(n)}$ to its induced linear endmorphism on $l^{2}\left(\bar{T}^{(n)}\right) \oplus l^{2}\left(\bar{T}^{(n)}\right) \cong$ $\mathbf{C}^{n} \oplus \mathbf{C}^{n}=\mathbf{C}^{2 n}$. Then we notice the fact that

$$
\operatorname{tr}_{\mathbf{C} \bar{T}^{(n)}}\left(A_{1}^{(n)}\right)=\frac{1}{n} \operatorname{tr}\left(\tilde{A}_{1}^{(n)}\right),
$$

where 'tr' is the ordinary trace for matrices. By using this fact and the definition of $\operatorname{det}_{\mathbf{C} \bar{T}^{(n)}}$, it follows that

$$
\log \operatorname{det}_{\mathbf{C} \bar{T}^{(n)}}\left(A_{1}^{(n)}\right)=\frac{1}{n} \log \left|\operatorname{det}\left(\tilde{A}_{1}^{(n)}\right)\right|
$$

where 'det' denotes the usual determinant. On the other hand, $A_{1}^{(n)}$ is a presentation matrix for $H_{1}\left(W_{\varphi^{n}}, \mathbf{Z}\right)$ as a $\mathbf{Z} \bar{T}$-module and $\tilde{A}_{1}^{(n)}$ is such one as a Z-module. Thus $\left|\operatorname{det}\left(\tilde{A}_{1}^{(n)}\right)\right|=\operatorname{ord}(\varphi, n)$ holds. Therefore, by using Lück's formula mentioned in the previous section, we obtain $\log \tau_{1}^{(n)}\left(W_{\varphi}\right)=$ $(-2 / n) \log \operatorname{ord}(\varphi, n)$.

To prove the second assertion, we only have to show

$$
\lim _{n \rightarrow \infty} \operatorname{tr}_{\mathbf{C}^{(n)}}(f(\bar{t}))=\operatorname{tr}_{\mathbf{C} T}(f(t))
$$

for any $f(t)=\sum a_{k} t^{k} \in \mathbf{C} T$. Here we have written $f(\bar{t})$ to the corresponding element in $\mathbf{C} \bar{T}^{(n)}$.

By the definition, $\operatorname{tr}_{\mathbf{C} \bar{T}^{(n)}}(f(\bar{t}))=\sum_{k \equiv 0(n)} a_{k}$. The right hand side is equal to a finite sum $\sum_{i=1}^{n}(1 / n) f\left(\zeta^{i}\right)$, where ζ is a primitive nth root of unity. Because n is prime and ζ is primitive, and then

$$
\frac{1}{n} \sum_{i=1}^{n} a_{k}\left(\zeta^{i}\right)^{k}=\frac{a_{k}}{n} \sum_{i=1}^{n} \zeta^{i k}= \begin{cases}a_{k} & \left(\zeta^{k}=1\right) \\ 0 & \left(\zeta^{k} \neq 1\right)\end{cases}
$$

holds. Furthermore it is clear that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} f\left(\zeta^{i}\right)=\int_{0}^{1} f\left(e^{2 \pi \sqrt{-1} \theta}\right) d \theta
$$

Here we recall from [4] Theorem 5.1 that

$$
\operatorname{tr}_{\mathbf{C} T}(f(t))=\int_{0}^{1} f\left(e^{2 \pi \sqrt{-1} \theta}\right) d \theta
$$

holds. Hence we have

$$
\lim _{n \rightarrow \infty} \operatorname{tr}_{\mathbf{C} \bar{T}^{(n)}}(f(\bar{t}))=\operatorname{tr}_{\mathbf{C} T}(f(t))
$$

Remark 3.5. The above theorem also holds for higher genera. As for a related work to Theorem 3.4, see [14].
4. Vanishing of $\log \tau_{2}$. As was showing in [4], for a monodromy $\varphi: \Sigma_{1,1} \rightarrow \Sigma_{1,1}$ satisfying $\left|\operatorname{tr}\left(\varphi_{*}\right)\right| \leq 2$, the k th invariant $\tau_{k}\left(W_{\varphi}\right)$ is trivial for every k. In general, we can prove the vanishing of $\log \tau_{2}\left(W_{\varphi}\right)$ as follows:

Theorem 4.1. The second term $\tau_{2}\left(W_{\varphi}\right)$ is always trivial.

Proof. To prove this theorem, we use Lück's formula in the closed surface bundle case ([7] Theorem 2.4). For any diffeomorphism ϕ on a closed torus Σ_{1}, we simply denote its fundamental group $\pi_{1}\left(W_{\phi}\right)$ by $\bar{\pi}$. We then obtain the same Fox matrix

$$
A=\left(\frac{\partial r_{i}}{\partial x_{j}}\right)
$$

In this case, Lück's formula of the original L^{2}-torsion τ is described as follows:

$$
\log \tau\left(W_{\phi}\right)=-2 \log \operatorname{det}_{\mathbf{C} \bar{\pi}}(A)
$$

Now we regard as $\Sigma_{1,1} \subset \Sigma_{1}$ and let $\phi: \Sigma_{1} \rightarrow \Sigma_{1}$ be a diffeomorphism induced from $\varphi: \Sigma_{1,1} \rightarrow \Sigma_{1,1}$ (namely, $\left.\phi\right|_{\Sigma_{1,1}}=\varphi$ holds). Thereby we have

$$
\log \tau_{2}\left(W_{\varphi}\right)=\log \tau\left(W_{\phi}\right)=C\left\|W_{\phi}\right\|
$$

by the above formula and the definition of τ_{2}. Here C is a constant and $\left\|W_{\phi}\right\|$ the simplicial volume of W_{ϕ} (see [7]). This W_{ϕ} is a Seifert fibered space, or a solvable manifold. Hence $\left\|W_{\phi}\right\|$ is zero. Therefore $\log \tau_{2}\left(W_{\varphi}\right)$ is also zero. This completes the proof.

Acknowledgement. The first and second authors are supported in part by Grand-in-Aid for Scientific Research (No. 12740035 and No. 14740036), Japan Society for the Promotion of Science.

References

[1] Carey, A., and Mathai, V.: L^{2}-torsion invariants. J. Funct. Anal., 110, 377-409 (1992).
[2] Everest, G.: Measuring the height of a polynomial. Math. Intelligencer, 20, 9-16 (1998).
[3] Hess, E., and Schick, T.: L^{2}-torsion of hyperbolic manifolds. Manuscripta Math., 97, 329-334 (1998).
[4] Kitano, T., Morifuji, T., and Takasawa, M.: L^{2} torsion invariants of a surface bundle over S^{1}. J. Math. Soc. Japan (To appear).
[5] Kitano, T., Morifuji, T., and Takasawa, M.: Numerical calculation of L^{2}-torsion invariants. Interdiscip. Inform. Sci. (To appear).
[6] Lott, J.: Heat kernels on covering spaces and topological invariants. J. Diff. Geom., 35, 471-510 (1992).
[7] Lück, W.: L^{2}-torsion and 3-manifolds. LowDimensional Topology (ed. Johanson, K.). Conf. Proc. Lecture Notes Geom. Topology, III. Internat. Press, Cambridge, pp. 75-107 (1994).
[8] Lück, W.: L^{2}-Betti numbers of mapping tori and groups. Topology, 33, 203-214 (1994).
[9] Lück, W.: L^{2}-Invariants: Theory and Applications to Geometry and K-theory. Springer-Verlag, Berlin (2002).
[10] Lück, W., and Schick, T.: L^{2}-torsion of hyperbolic manifolds of finite volume. Geom. Funct. Anal., 9, 518-567 (1999).
[11] Mathai, V.: L^{2}-analytic torsion. J. Funct. Anal., 107, 369-386 (1992).
[12] Schick, T.: L^{2}-determinant class and approximation of L^{2}-Betti numbers. Trans. Amer. Math. Soc., 353, 3247-3265 (2001).
[13] Seifert, H.: Über das Geshlecht von Knoten. Math. Ann., 110, 571-592 (1934).
[14] Silver, D. S., and Williams, S. G.: Mahler measure, links and homology growth. Topology, 41, 979991 (2002).

[^0]: 2000 Mathematics Subject Classification. Primary 57Q10; Secondary 57M05, 46L10.
 *) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguroku, Tokyo 152-8552.
 **) Department of Mathematics, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588.

