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Elliptic curve point counting over finite fields with Gaussian normal basis
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Abstract: In this paper, we present the GNB-aided MSST algorithm for the curves over
finite fields that have a Gaussian normal basis of type t ≤ 2. It is based on the MSST algorithm
proposed by P. Gaudry [3] at ASIACRYPT 2002. For those fields, we combine the lifting phase of
the MSST algorithm and the norm computation algorithm in [6]. So the time complexity of the
MSST is reduced from O(N2µ+0.5) to O(N2µ+1/(µ+1)) and it runs faster than any other algorithms
in our case.
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1. Introduction. Since Satoh had proposed
an efficient elliptic curve point counting algorithm
for the curves defined over finite fields of small
characteristic p ≥ 5 [7], some works have been
done on this subject to extend it to the character-
istics p = 2, 3 [2, 10] and to use less memory [11].
Last year, Satoh-Skjernaa-Taguchi [9], and Harley-
Mestre-Gaudry [5] separately proposed different effi-
cient elliptic curve point counting algorithms, which
are called the SST and AGM algorithms, respec-
tively. Recently, Gaudry put them together into
more efficient algorithm to announce the modified
SST algorithm (MSST). It modifies only the lifting
phase of the SST by adapting the idea of the AGM,
and so it has the same complexity as that of the SST;
but it removes the intermediate step between the lift-
ing and the norm computation phase in the SST, and
simplifies the implementation codes. As a result, it
runs faster by a constant factor than the original one
although its time complexity remains the same.

In this paper, we present the GNB-aided MSST
algorithm for the curves over finite fields that have a
Gaussian normal basis of type t ≤ 2. In our case, it
has lower time complexity than that of the original
MSST so it runs faster.

This paper is organized as follows: First, we set
up the notation and terminology at the end of Sec-
tion 1, then in Section 2 we briefly introduce the
notion of a Gaussian normal basis. We briefly re-
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view the MSST algorithm and describe how our idea
can be applied to point counting in Section 3. In
Section 4, we exhibit our practical results and notes
for implementation. Finally, this paper ends up with
some comments in Section 5.

Notations. Throughout the rest of this paper,
let p = 2 and q = pN , where N be a positive integer.
We denote the unramified extension of degree N of
Qp by Qq and its valuation ring by Zq. In fact we
consider Zq mod pM instead of Zq for a sufficiently
large integer M which is called a precision. Also, an
operation is said to be done with a precision M if
it is performed modulo pM . We let σ stand for the
Frobenius substitution in Gal(Qq/Qp), and π be the
reduction map by p from Qq to Fq. We assume that
E is a non-supersingular elliptic curve over Fq whose
equation is y2 + xy = x3 + a6, and that j(E) = a−1

6

is its j-invariant where j(E) ∈ Fq\Fp2 . It is well
known that |E(Fq)| = q + 1− T , where T is a trace
of the Frobenius endomorphism of E.

2. Gaussian normal basis. When K is a
field and L/K is a finite Galois extension of degree
N , a basis of L over K is called a normal basis if it
is of the form (λα)λ∈Gal(L/K) for some α ∈ L. Any
such α is called a normal element . In this section, we
concentrate our interest on a normal basis, especially
which is generated by a Gauss period that is defined
below.

Definition 1 [6]. Let N and t be positive in-
tegers such that Nt+1 is a prime not dividing p. Let
τ be any primitive t-th root of unity in Z/(Nt+1)Z.
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Let γ be a primitive (Nt+1)-th root of unity in some
extension field of Fp. A Gauss period of type (N, t)
over Fp is defined as

α =
t−1∑
i=0

γτi

.

Let us call a normal basis induced by the Gauss
period of type (N, t) the Gaussian normal basis of
type t and denote it by GNB of type t. It is easy to see
that the Gauss period of type (N, t) belongs to Fq.
GNBs are very practical for the cryptographic appli-
cation because their representations have the com-
putational advantage that both squaring and multi-
plication can be done very simply. There is a simple
criterion for a Gauss period to be a normal element.

Theorem 1 [6]. Let N and t be positive inte-
gers in Definition 1. Let e be the order of p mod-
ulo Nt + 1. Then gcd(Nt/e,N) = 1 if and only if
the Gauss period of type (N, t) over Fp generates the
normal basis for Fq over Fp.

It is known that a representation with respect
to a GNB of type 1 can be considered as an ordinary
polynomial by a suitable change of indices, and Blake
et al . [1] showed that this idea could be extended to
a GNB of type 2 by using a symmetric polynomial
of double length.

In [6, Section 4], it is showed that if Fq/Fp has a
GNB, then it can be lifted to Zq in a natural way and
so efficient multiplication and the Frobenius substi-
tution are available because the defining polynomial
of the finite field has a sparse structure. Moreover,
a fast norm computation algorithm is derived, so we
focus on finite fields with a GNB of type t ≤ 2
considering the practical reason. Refer [6] for more
details about GNB of type 1 and 2 over finite fields
and its lifting to p-adic fields.

3. Application to point counting.
3.1. Modified SST algorithm. The p-adic

method for elliptic curve point counting which was
firstly proposed by Satoh attempts to construct a
p-adic lift of the Frobenius endomorphism to char-
acteristic zero. The main strategy is to lift E given
over Fq to an elliptic curve over a certain p-adic ring
Zq above Fq. By a result of Lubin-Serre-Tate, there
is a canonical way to lift the curve which is called
the canonical lift of E, by lifting its j-invariant j

from Fq to Zq using the modular polynomial Φp.
Since the canonical lift E↑ satisfies π(E↑) = E and
End(E) ∼= End(E↑), the Frobenius endomorphism

also is lifted to an endomorphism of the lifted curve.
Satoh showed that once one obtains the lifted j-
invariant j↑ and the dual of the Frobenius endomor-
phism of E↑, he can calculate T [7].

The SST algorithm proposed by Satoh-
Skjernaa-Taguchi, improves the lifting phase of pre-
vious p-adic method by using the Frobenius substi-
tution of Zq. Independently, the AGM computes the
canonical lift by iterating the AGM sequence (Re-
fer [3, 8] for more details about the AGM.). Then,
a norm computation gives the trace of the initial
curve up to some precision. Because it does not use
the modular equation Φp and removes the interme-
diate phase between the lifting and norm computa-
tion phases, more fast implementation results are ob-
tained.

In the MSST algorithm, the idea of the AGM
algorithm is used to reveal the polynomial which can
be applicable in place of the modular equation Φp in
the SST algorithm; that is

Ẽ(X,Y ) = (X + 2Y + 8XY )2 + Y + 4XY = 0.

In detail, we know by the AGM that the lifting
of the AGM sequence is more efficient than that
of j-invariant because it induces fewer operations
and more simple procedure of algorithm. So in the
MSST, Ẽ plays the same role of Φp in the SST with
reduced number of operations [3]. Furthermore, if λ

is a solution of Ẽ(X,Xσ) and λ ≡ a6 mod p, then
the following holds:

T ≡ 1
Norm(1 + 4λ)

mod q.

The description of the MSST is as follows:

Algorithm 1. MSST algorithm
Require: a6 in F∗

2n

Ensure: T (E)
1: y ← a6 (arbitrary lift to 2W )
2: for i from 1 to W − 1 do
3: x← σ−1(y) mod 2i+1

4: y ← y − Ẽ(x, y) mod 2i+1

5: end for
6: x← σ−1(y) mod 2W

7: DX ← ∂XẼ(x, y) mod 2W

8: DY ← ∂Y Ẽ(x, y) mod 2W

9: for m from 1 to � N
2W � do

10: Lift arbitrarily y modulo 2(m+1)W

11: x← σ−1(y) mod 2(m+1)W
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12: V ← Ẽ(x, y) mod 2(m+1)W

13: for i from 1 to W − 1 do
14: // break if i + mW ≥ �N

2 �
15: δY ← −2−mW V mod 2W

16: δX ← σ−1(δY ) mod 2W

17: y ← y + 2mW δY mod 2(m+1)W

18: V ← V + 2mW (DXδX + DY δY )
mod 2(m+1)W

19: end for
20: end for
21: Return 1

Norm(1+4λ) mod 2�
N
2 	+2 in

[−2
√

2N , 2
√

2N ]

3.2. GNB-aided MSST algorithm. The
SST and MSST algorithms require much computa-
tions of σ. In order to speed up the computation, the
MSST algorithm uses a dense defining polynomial
for Zq, but a reduction modulo the defining poly-
nomial subsequent to a multiplication or a square
becomes costly. To avoid this harassment, we use
a GNB to represent elements of Zq. A benefit of a
GNB is to make an arithmetic in the field just as
fast as that with a sparse defining polynomial with-
out precomputation and have an easy formula for
σ. Furthermore, we can use the norm computation
algorithm proposed in [6]. By using the 2-adic ex-
pansion of N , this algorithm requires fewer multi-
plications and more Frobenius substitutions. Let us
denote the binary expansion of N =

∑l
i=0 ni2i by

[n0, n1, . . . , nl]2, where nl = 1. Since Gal(Qq/Qp) is
generated by σ, we obtain that

NormQq/Qp
(A) = A(σA) · · · (σN−1A)

= Ml−1 ·
l−2∏
i=0

(σN−[n0,n1,...,ni]2Mi)ni ,

where Mi = (σ2i−1
Mi−1) · Mi−1 and M0 = A.

From this equation, we can derive a norm compu-
tation algorithm [6]. With precision M , it runs
in O((NM)µ log N) time with O(NM) space, while
that of the MSST algorithm runs in O((NM)µM0.5)
time with O(NM) space, where µ is a constant such
that the multiplication of two n bit integers can be
carried out with O(µ) bit operations. Note that M =
N/2 + O(1) in both cases. Because the time com-
plexity of the lifting phase of the MSST algorithm is
O(N2µ+1/(µ+1)), the complexity of whole algorithm
can be reduced from O(N2µ+0.5) to O(N2µ+1/(µ+1))
in our case.

Algorithm 2. Norm computation algorithm
Require: A ∈ Zq, N = [n0, n1, . . . , nl]2, nl = 1
Ensure: NormQq/Qp

(A)
1: M ← A

2: if n0 = 1 then
3: T ← σN−1A

4: else
5: T ← 1
6: end if
7: for i = 1 to l − 1 do
8: M ← (σ2i−1

M) ·M
9: if ni = 1 then

10: T ← T · (σni+12
i+1+···+nl2

l

M)
11: end if
12: end for
13: M ← (σ2l−1

M) ·M
14: M ←M · T
15: Return M

4. Implementation results. Using this
GNB-aided MSST algorithm, we can compute the
order of a given elliptic curve. Our algorithm has
been implemented in C programming language for
the most part, and some assembly for the most basic
operations of multi-precision integers. Our compu-
tational circumstance is on a Pentium III-800MHz
processor with 128MB main memory, running Linux
and all codes are compiled using gcc version 2.96.

For efficiency we use a fixed value W = 32, a ma-
chine word size of 32-bit processors like P-III; hence
in many steps operations are performed within a con-
stant precision. It allows us to eliminate much of the
loop overhead. For t = 2, we use a palindromicity
to store only halves of the polynomials representing
elements of Zq, while elements of Fq are always
represented as full-size polynomials [6]. Multiplica-
tion of two elements in Zq is implemented using
Karatsuba’s method. The following Table I shows
our implementation results.

For the comparison, we present the recent re-
sults of the MSST algorithm [3] in Table II. Gaudry
obtained the result on Pentium III 700MHz running
Linux. He compiled his codes using gcc version 2.96
and the GNU MP library to handle multi-precision
integers.

For a researching interest, we also show out re-
sults for large N for GNBs of type t ≤ 2 in the
Table III, varying W .
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Table I. Timings for computations of order
counting (unit:sec)

N t Total N t Total
162 1 0.0370 233 2 0.1955
173 2 0.0885 239 2 0.2190
194 2 0.1245 268 1 0.1705
196 1 0.0665 292 1 0.1990
209 2 0.1520 293 2 0.4080
210 1 0.0800 299 2 0.4345

Table II. Comparison MSST with GNB-aided
MSST (unit:sec)

N t Lifting Norm Total Note
163 0.08 0.05 0.13 [3]
163 4 0.143 0.126 0.269
239 0.26 0.14 0.40 [3]
239 2 0.099 0.120 0.219

Table III. Timings for computations of norm
and order counting for large N

(unit:sec)

N t W Lifting Norm Total
3010 1 96 334.21 173.0 507.24
3005 2 96 651.60 405.13 1056.75
6010 1 128 3324.62 2245.59 5570.22
6005 2 128 6730.50 4503.88 11234.40

12010 1 192 38206 26907 65113

5. Conclusion and remark. In this paper,
we reduced the time complexity of the MSST from
O(N2µ+0.5) to O(N2µ+1/(µ+1)) on finite fields that
have a GNB of type t ≤ 2 by combining the lifting
phase of the MSST and the norm computation algo-
rithm from [6]. As a result, very fast point counting
is available on finite fields with a GNB of type t ≤ 2
and our method works well for a very large N be-
cause of the less complexity. Our implementation
result shows this fact.

Similar work has been appeared at number the-
ory archive [4]. This work is done independently.
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