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Topological Euler numbers in a semi-stable degeneration of surfaces
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Abstract: The object of this paper is to study topological Euler numbers in a semi-stable
degeneration of surfaces by using the semi-stable minimal model program. As its application, we
find some restrictions of singularities in a semi-stable degeneration of surfaces with general fiber a
minimal κ = 0 surface.
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Introduction. Let X → ∆ be a one parame-
ter flat family of projective surfaces over a small disk
in C. We assume that a general fiber Xt for t ∈ ∆−
{0} has nef canonical bundle. Then via log resolu-
tion, base change, normalization and special resolu-
tion of toric singularities one can obtain a new family
X → ∆ with smooth X and simple normal crossing
X0, called a semi-stable reduction [3]. Given a semi-
stable reduction family of projective surfaces over ∆
whose canonical bundle of a general fiber is nef, the
following holds by semi-stable minimal model pro-
gram of threefolds (cf. [5]).

Theorem A. Semi-stable minimal model pro-
gram (it may need base change) leads a degeneration
π : X → ∆ with the following properties:

1. X has Q-factorial terminal singularities,
2. X0 is a reduced Cartier divisor and is nu-

merically zero relative to π,
3. π : X → ∆ is dlt ((X , π−1(t)) is dlt for all

t ∈ ∆),
4. KX/∆ is π-nef.
Let π : X → ∆ be a semi-stable degeneration (in

the sense of the minimal model program) of surfaces
whose canonical bundle is relatively nef. Let (V,DV )
be a pair of a component and its double curve in the
central fiber. Then (V,DV ) is a dlt pair with DV
a reduced Weil divisor (cf. [5]). The second Chern
class of a dlt pair can be defined as an orbifold Euler
number (cf. [12, 19]). Define Sing(V,DV ) to be the
set of singular points of V outside DV . Then

c2(V,DV ) = etop(V ) − etop(DV )

−
∑

p∈ Sing(V,DV )

(1 − 1/r(p))
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where r(p) is the local orbifold fundamental group.
Bogomolov-Miyaoka-Yau inequality can be general-
ized to a dlt pair (cf. [11, 12, 19]), and therefore the
following holds.

Theorem B. Let X → ∆ be a semi-stable de-
generation (in the sense of the minimal model pro-
gram) of surfaces whose canonical bundle is relatively
nef. Let (V,DV ) be a pair of a component and its
double curve in the central fiber. Then the following
holds:

1. c2(V,DV ) ≥ 1/3(KV +DV )2,
2. etop(V )−etop(DV ) ≥ 0, and it is strictly pos-

itive if it has a singular point outside double curves.
In the paper, our concern is to study the rela-

tion between
∑

V etop(V ) − etop(DV ) and c2(Xt) in
a semi-stable degeneration of surfaces. Precisely, we
prove the following by using the semi-stable minimal
model program:

Theorem. Let π : X → ∆ be a semi-stable
degeneration (in the sense of the minimal model pro-
gram) of surfaces whose canonical bundle is relatively
nef. Let (V,DV ) be a pair of a component and its
double curve in the central fiber.

Then c2(Xt) ≥
∑

V etop(V ) − etop(DV ).
For a semi-stable reduction family of surfaces

X → ∆, we have the equality

c2(Xt) =
∑
V

etop(V ) − etop(DV )

by topological argument [15]. Theorem can be ap-
plied to the bounds of the number of components and
to the restriction of singularities on the central fiber
of semi-stable degeneration of surfaces. It is proved
in [9] under the suitable condition (semi-stable de-
generation with permissible singularities), and it can
be generalized to stable log surfaces [10].



No. 2] Topological Euler numbers in a semi-stable degeneration of surfaces 43

1. Preliminaries. The notion of discrep-
ancy is the fundamental measure of the singularities
of (X,D) (cf. [4] or [5]).

Definition. Let X be a normal variety and
D =

∑
diDi an effective Q-divisor such that KX+D

is Q-Cartier. Let f : Y → X be a proper birational
morphism from a normal variety Y . Then we can
write

KY + f−1
∗ (D) ≡ f∗(KX +D) +

∑
a(E,D)E

where f−1∗ (D) is the proper transform of D, the
sum runs over distinct prime divisors E ⊂ Y , and
a(E,D) ∈ Q. This a(E,D) is called the discrepancy
of E with respect to (X,D); it only depends on the
divisor E, and not on the partial resolution Y .

We define discrep(X,D)
= infE{a(E,D) |E is exceptional, CenterX(E) �=
∅}. And we say that (X,D), or KX +D is

terminal
canonical
purely log terminal
log canonical




if discrep(X,D)




> 0,
≥ 0,
> −1,
≥ −1.

Moreover, (X,D) is Kawamata log terminal
(klt) if (X,D) is purely log terminal and di < 1 for
every i; and (X,D) is divisorial log terminal (dlt) if
there exists a log resolution such that the exceptional
locus consists of divisors with all a(E,D) > −1.

We work throughout over the complex number
field C. The notation here follows Hartshorne’s Al-
gebraic Geometry.

2. Proof of Theorem.
Theorem. Let π : X → ∆ be a semi-stable

degeneration (in the sense of the minimal model pro-
gram) of surfaces whose canonical bundle is relatively
nef. Let (V,DV ) be a pair of a component and its
double curve in the central fiber. Then c2(Xt) ≥∑

V etop(V ) − etop(DV ).
Proof. We change a semi-stable degeneration

X → ∆ to another semi-stable degeneration Y →
∆′ (relatively minimal permissible model, cf. [2, 9])
which admits a semi-stable model (in the sense of
the semi-stable reduction theorem). Let the central
fiber Y0 =

∑
(W,DW ) of Y. By this process, we can

compare the second Chern class of the central fiber
with that of a general fiber, the proof is given in [9]:

c2(Yt) =
∑
W

etop(W ) − etop(DW ).

When we change X → ∆ to Y → ∆′ there is no

change of type of a singularity on the double curves
of the central fiber, i.e.,

∑
V etop(V ) − etop(DV ) =∑

W etop(W )−etop(DW ) if there is no singular point
outside double curves. The possible type of a singu-
larity on the central fiber of X outside double curves
is a rational double point or a quotient singularity
of the form 1/(r2s)(1, dsr − 1) where d is prime to
r (cf. [6]). The possible type of a singularity on the
central fiber of Y is a quotient singularity of the form
1/(r2)(1, dr − 1) where d is prime to r (cf. [2]). For
the Milnor fiber F of a Q-Gorenstein smoothing of a
singularity of the form 1/(r2s)(1, dsr− 1) where d is
prime to r, it holds b2(F ) = s− 1 (cf. [2, 6]). Since
the change of X → ∆ to Y → ∆′ is obtained by some
base change of ∆ and simultaneous resolution of ra-
tional double points, the following inequality holds
by decreasing the second Betti number of the central
fiber via Milnor fiber:

c2(Xt) = c2(Yt)

=
∑
W

etop(W ) − etop(DW )

≥
∑
V

etop(V ) − etop(DV ).

By Theorem B and Theorem, we have the fol-
lowing:

Corollary 1. Let π : X → ∆ be a semi-stable
degeneration (in the sense of the minimal model pro-
gram) of surfaces whose canonical bundle is relatively
nef. Let (V,DV ) be a pair of a component and its
double curve in the central fiber. Then the number of
components on the central fiber, with (KV +DV )2 >
0 or with singular points outside double curves, is
bounded by c2(Xt).

3. Application to a semi-stable degener-
ation of surfaces with κ = 0. Let π : X → ∆ be
a semi-stable degeneration (in the sense of the mini-
mal model program) of surfaces with general fiber a
minimal κ = 0 surface. Assume that mKXt ∼ 0 for
t ∈ ∆ − {0}. Then mKX0 ∼ 0 by semi-stable min-
imal model program (cf. [5]). Before the minimal
model program, the similar results were obtained by
Kulikov, Morrison, Persson, Pinkham and others via
elementary modifications [7, 8, 13, 16].

Therefore the index of X is bounded by the
number m which is the smallest number such that
mKXt ∼ 0 for t ∈ ∆ − {0}. So on a semi-stable de-
generation of K3 surfaces or abelian surfaces, KX/∆
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is Cartier divisor. And on a semi-stable degenera-
tion of Enriques surfaces, the example with the sin-
gular points of the index 2 outside double curves
was given by Persson [15]. The examples with the
singular points of the index 2 on the double curves
can be constructed easily by using the involution ac-
tion on the special degenerations of K3 surfaces (cf.
[13, 17]). Also on semi-stable degenerations of hy-
perelliptic surfaces, the examples with the singular
points of the index 2, 3, 4, 6 on the double curves
can be constructed easily by using the action on the
special degenerations of abelian surfaces (cf. [18]).

Let X → ∆ be a semi-stable degeneration of hy-
perelliptic surfaces. Then the central fiber X0 has no
singular point outside double curves by Theorem B,
and Theorem. So our concern is to study a semi-
stable degeneration of Enrique surfaces.

Corollary 2. Let X → ∆ be a semi-stable de-
generation (in the sense of the minimal model pro-
gram) of surfaces. Assume that a general fiber is a
minimal Enriques surface. Then the number of sin-
gular points outside double curves on the central fiber
X0 is bounded by 16. If X0 is normal then this num-
ber is bounded by 10.

Proof. Let (V,DV ) be a pair of a component
and its double curve in the central fiber and let
Sing(V,DV ) be the set of singular points of V outside
DV . Then (V,DV ) is a dlt pair with DV a reduced
Weil divisor (cf. [5]). The second Chern class of a dlt
pair can be defined as an orbifold Euler number (cf.
[12, 19]). Let r(p) be the local orbifold fundamental
group of a singular point p ∈ Sing(V,DV ).

The first statement holds directly by Theorem B
and Theorem:

12 = c2(Xt)

≥
∑
V

etop(V ) − etop(DV )

≥
∑
V

∑
p∈SV

(1 − 1/r(p)) +
∑
V

�RV

where the set of singular points

RV = {rational double points in Sing(V,DV )}
and the set of singular points SV = Sing(V,DV ) −
RV . Note that r(p) ≥ 4 if p ∈ SV .

Assume that X0 is normal. We consider the
global index one cover Z of X (cf. [5]). Then Z → ∆
gives a semi-stable degeneration of K3 surfaces (in
the sense of the minimal model program) and the

central fiber Z0 of Z is normal with at most rational
double points. For the Milnor fiber F of a rational
double point or a quotient singularity of the form
1/(r2s)(1, dsr− 1) for s > 1 where d is prime to r, it
holds b2(F ) ≥ 1 (cf. [2, 6]). Note that b2(Xt) = 10.

If there is a rational double point or a quotient
singularity of the form 1/(r2s)(1, dsr − 1) for s > 1
where d is prime to r, each point decreases topologi-
cal Euler number by more than or equal to 1. There-
fore we may assume that singularities are of the form
1/(r2)(1, dr− 1) where d is prime to r. Since the in-
dex of singularity is only 2, the form of a singularity
is 1/4(1, 1). And the corresponding singular point
on Z0 is an ordinary double point.

The involution σ induces a quotient Z0 → X0.
Let Z be the minimal resolution of Z0. Consider the
topological Lefschetz formula and the holomorphic
Lefschetz formula [1]:

etop(Zσ) =
∑

(−1)i Tr(σ∗ : Hi(Z,Z))∑
(−1)i Tr(σ∗ : Hi(Z,OZ)) = 0.

Therefore σ∗ acts on H2(Z,OZ) as -1 by the holo-
morphic Lefshetz formula, and it holds that 2 (the
number of (−2) curves) = etop(Zσ) ≤ 20.

Oguiso and Zhang [14] constructed an Enriques
surface with a singularity of the form 1/(2210)(1, 19).
This example is the extremal case of a singularity of
the form 1/(r2s)(1, sdr − 1) where d is prime to r.
The index one cover of this singularity is the form
xy = z20 (A19-singularity). By some base change of
∆ it can be changed to 10 ordinary double points,
therefore it produces 10 singularities of the form
1/4(1, 1) in an Enriques surface.
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